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Abstract 

     In recent years, a new difference scheme with high accuracy has been 
applied for solving convection-diffusion equation [1]. In this letter, we solve 
this equation by homotopy perturbation method (HPM) [2-4]. To illustrate 
the ability and reliability of the method some examples are provided. The 
results reveal that the method is very effective and simple 
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1      Introduction 

Consider the convection-diffusion equation [1]  
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Subject to the initial condition, ( ) ( ),0 , 0 1u x g x x= ≤ ≤  and boundary 

conditions ( ) ( )0, 0, 0. 1, 0, 0.u t t u t t= ≥ = ≥  where the parameter γ  is the 

viscosity coefficient and ε  is the phase speed and both are assumed to be 
positive. g  is a given function of sufficient smoothness. 
   To illustrate the basic concepts of homotopy perturbation method, consider the 
following non-linear functional equation:  
 
      ( ) ( ) , ,A u f r r= ∈Ω                                                                                    ( )2      

                  
                                                                                   

 
With the following boundary conditions:       
      

      ( ), 0, .uB u rn
∂ = ∈Γ∂                                                                                   

                                                                                     
WhereA  is a functional operator,B  is a boundary operator,( )f r  is a known 

analytic function, and Γ  is the boundary of the domain Ω . Generally speaking, 
the operatorA  can be decomposed into two partsL and N , whereL  is a linear 
andN is a non-linear operator. Therefore Eq.( )2 can be rewritten as the following: 

 
      ( ) ( ) ( ) 0.L u N u f r+ − =                                                                                 

( )3   

                                                                                                     
We construct a homotopy

 [ ]( , ) : 0,1 ,v r p RΩ× →  which satisfies: 

 

     ( ) ( ) ( ) ( ) ( ) ( ) [ ]0, 1 0, 0,1 , .H v p p L v L u p A v f r p r   = − − + − = ∈ ∈Ω       

Or  

     
( ) ( ) ( ) ( ) ( ) ( ) [ ]0 0, 0, 0,1 , .H v p L v L u pL u p N v f r p r = − + + − = ∈ ∈ Ω  ,   

                      
Where 0u  is an initial approximation to the solution of Eq.( )2 . In this method, 

homotopy perturbation parameter p  is used to expand the solution, as a power 
series, say; 
 
      2

0 1 2v v pv p v= + + +⋯  ,        

                                                                                                               



 
 

 
 

 
 
Mehdi Gholami Porshokouhi et al.                                                                      110 

Usually an approximation to the solution, will be obtained by taking the limit, as 
p tends to 1, 

 

      
0 1 2

1
lim
p

u v v v v
→

= = + + ⋯  ,                                                                                                                        

For solving Eq.( )1 , by homotopy perturbation method, we construct the following 

homotopy: 
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t t t x x

ε γ ∂∂ ∂ ∂ ∂ − − + + − =  ∂ ∂ ∂ ∂ ∂   
     

                                                               

Or 

         

2
0 0

2
0,
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 ∂ ∂∂ ∂ ∂− + − + = ∂ ∂ ∂ ∂ ∂ 

                                                      ( )4                                                                    

Suppose that the solution of Eq. ( )4 to be in the following form 

 

      
2

0 1 2v v pv p v= + + +…                                                                                   ( )5                                                                                                                                 

Substituting Eq.( )5  into Eq.( )4 , and equating the coefficients of the terms with 

the identical powers of p , 
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For simplicity we take 
 
     ( ) ( ) ( )0 0, , ,0v x t u x t u x= =      

                                                                                                      
Having this assumption we get the following iterative equation 
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1 1
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Therefore, the approximated solutions of Eq.( )1  can be obtained, by setting 1p =

    
 

      
0 1 2 31

lim ...
p

u v v v v v
→

= = + + + +           

2      numerical examples 

In this section, we present examples of convection-diffusion equation and results 
will be compared with the exact solutions.  
                                                   
Example1. Let us consider the convection-diffusion equation   
 

      
2

2
0.1 0.01 0 1, 0.

u u u
x t

t x x

∂ ∂ ∂+ = ≤ ≤ ≥
∂ ∂ ∂

       

                             
With the following initial condition ( ) 5,0 sinxu x e xπ= .  

The exact solution is ( ) ( )25 0.25 0.01
, sin

x t
u x t e x

π π− −= . 

Approximation to the solution of example 1 can be readily obtained by 
 

       

20

20
0

i
i

u v
=

=∑  

 
The results corresponding absolute errors are presented in Fig.1. 
 

 
Fig.1. The absolute error between exact and numerical solutions in Example 1. 
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Example 2. Consider the following the convection-diffusion equation with 
boundary conditions( ) 0.22,0 sinxu x e xπ= . 

The exact solution is( ) ( )20.22 0.0242 0.5
, sin

x t
u x t e x

π π− += . 
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Approximation to the solution of example 2 can be readily obtained by 
 

       

20

20
0

i
i

u v
=

=∑
 

 
The results corresponding absolute errors are presented in Fig.2. 

 
      Fig.2. The absolute error between exact and numerical solutions in Example 2.    
 
 
Example3. We consider the convection-diffusion equation with boundary 
conditions    
 
       ( ) 0.25,0 sinxu x e xπ= . 

The exact solution is ( ) ( )20.25 0.0125 0.2
, sin

x t
u x t e x

π π− += . 
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Approximation to the solution of example 3 can be readily obtained by 
 

        

20
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0

i
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=
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The results corresponding absolute errors are presented in Fig.3. 

 

                                                                                                   

       Fig.3. The absolute error between exact and numerical solutions in Example 3.    

 

4      Conclusion 

In this paper, we proposed the homotopy perturbation method for solving the 
convection-diffusion equations. The obtained solutions, in comparison with exact 
solutions admit a remarkable accuracy. The computations associated with the 
examples in this paper were performed using maple 10. 
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