

Gen. Math. Notes, Vol. 1, No. 2, December 2010, pp. 108-114 ISSN 2219-7184; Copyright © ICSRS Publication, 2010 www.i-csrs.org Available free online at http://www.geman.in

Approximate Solution of Convection-Diffusion Equation by the Homotopy Perturbation Method

Mehdi Gholami Porshokouhi^{1,*}, Behzad Ghanbari¹, Mohammad Gholami² and Majid Rashidi²

¹Department of Mathematics, Faculty of science, Islamic Azad University, Takestan Branch, Iran Email: *m_gholami_p@yahoo.com*, *b.ghanbary@yahoo.com*

²Department of Agricultural Machinery, Faculty of Agriculture, Islamic Azad University, Takestan Branch, Iran Email: *gholamihassan@yahoo.com, majidrashidi81@yahoo.com*

Abstract

In recent years, a new difference scheme with high accuracy has been applied for solving convection-diffusion equation [1]. In this letter, we solve this equation by homotopy perturbation method (HPM) [2-4]. To illustrate the ability and reliability of the method some examples are provided. The results reveal that the method is very effective and simple

Keywords: Homotopy perturbation method; Convection-diffusion equation

2000 MSC No: 65Q20, 65Q10.

1 Introduction

Consider the convection-diffusion equation [1]

^{*} Corresponding author

$$\frac{\partial u}{\partial t} + \varepsilon \frac{\partial u}{\partial x} = \gamma \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1, \ t \ge 0.$$
(1)

Subject to the initial condition, u(x,0) = g(x), $0 \le x \le 1$ and boundary conditions u(0,t) = 0, $t \ge 0$. u(1,t) = 0, $t \ge 0$. where the parameter γ is the viscosity coefficient and ε is the phase speed and both are assumed to be positive. g is a given function of sufficient smoothness.

To illustrate the basic concepts of homotopy perturbation method, consider the following non-linear functional equation:

$$A(u) = f(r), \quad r \in \Omega, \tag{2}$$

With the following boundary conditions:

$$B\left(u,\frac{\partial u}{\partial n}\right) = 0, \ r \in \Gamma.$$

Where A is a functional operator, B is a boundary operator, f(r) is a known analytic function, and Γ is the boundary of the domain Ω . Generally speaking, the operator A can be decomposed into two parts L and N, where L is a linear and N is a non-linear operator. Therefore Eq.(2) can be rewritten as the following:

$$L(u) + N(u) - f(r) = 0.$$
(3)

We construct a homotopy $v(r, p): \Omega \times [0,1] \rightarrow R$, which satisfies:

$$H(v, p) = (1-p) [L(v) - L(u_0)] + p [A(v) - f(r)] = 0, \ p \in [0,1], \ r \in \Omega.$$

Or
$$H(v, p) = L(v) - L(u_0) + p L(u_0) + p [N(v) - f(r)] = 0, \ p \in [0,1], \ r \in \Omega.,$$

Where u_0 is an initial approximation to the solution of Eq. (2). In this method, homotopy perturbation parameter p is used to expand the solution, as a power series, say;

$$v = v_0 + pv_1 + p^2 v_2 + \cdots,$$

Usually an approximation to the solution, will be obtained by taking the limit, as p tends to 1,

$$u = \lim_{p \to 1} v = v_0 + v_1 + v_2 \cdots$$
,

For solving Eq. (1), by homotopy perturbation method, we construct the following homotopy:

$$(1-p)\left(\frac{\partial v}{\partial t}-\frac{\partial u_0}{\partial t}\right)+p\left(\frac{\partial v}{\partial t}+\varepsilon\frac{\partial v}{\partial x}-\gamma\frac{\partial^2 v}{\partial x^2}\right)=0,$$

Or

$$\frac{\partial v}{\partial t} - \frac{\partial u_0}{\partial t} + p \left(\varepsilon \frac{\partial v}{\partial x} - \gamma \frac{\partial^2 v}{\partial x^2} + \frac{\partial u_0}{\partial t} \right) = 0, \tag{4}$$

Suppose that the solution of Eq. (4) to be in the following form

$$v = v_0 + pv_1 + p^2 v_2 + \dots$$
 (5)

Substituting Eq. (5) into Eq. (4), and equating the coefficients of the terms with the identical powers of p,

$$p^{0}: \frac{\partial v_{0}}{\partial t} - \frac{\partial u_{0}}{\partial t} = 0,$$

$$p^{1}: \frac{\partial v_{1}}{\partial t} + \frac{\partial u_{0}}{\partial t} + \varepsilon \frac{\partial v_{0}}{\partial x} - \gamma \frac{\partial^{2} v_{0}}{\partial x^{2}} = 0, \qquad v_{1}(x,0) = 0$$

$$p^{2}: \frac{\partial v_{2}}{\partial t} + \varepsilon \frac{\partial v_{1}}{\partial x} - \gamma \frac{\partial^{2} v_{1}}{\partial x^{2}} = 0, \qquad v_{2}(x,0) = 0$$

$$p^{3}: \frac{\partial v_{3}}{\partial t} + \varepsilon \frac{\partial v_{2}}{\partial x} - \gamma \frac{\partial^{2} v_{2}}{\partial x^{2}} = 0, \qquad v_{3}(x,0) = 0$$

$$\vdots$$

$$p^{j}: \frac{\partial v_{j}}{\partial t} + \varepsilon \frac{\partial v_{j-1}}{\partial x} - \gamma \frac{\partial^{2} v_{j-1}}{\partial x^{2}} = 0, \qquad v_{j}(x,0) = 0$$

For simplicity we take

$$v_0(x,t) = u_0(x,t) = u(x,0)$$

Having this assumption we get the following iterative equation

$$v_{j} = \int_{0}^{t} \left(\gamma \frac{\partial^{2} v_{j-1}}{\partial x^{2}} - \varepsilon \frac{\partial v_{j-1}}{\partial x} \right) dt, \qquad j = 1, 2, 3, \dots$$

Therefore, the approximated solutions of Eq. (1) can be obtained, by setting p = 1

$$u = \lim_{p \to 1} v = v_0 + v_1 + v_2 + v_3 + \dots$$

111

2 numerical examples

In this section, we present examples of convection-diffusion equation and results will be compared with the exact solutions.

Example1. Let us consider the convection-diffusion equation

$$\frac{\partial u}{\partial t} + 0.1 \frac{\partial u}{\partial x} = 0.01 \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1, \ t \ge 0.$$

With the following initial condition $u(x,0) = e^{5x} \sin \pi x$.

The exact solution is $u(x,t) = e^{5x - (0.25 - 0.01\pi^2)t} \sin \pi x$. Approximation to the solution of example 1 can be readily obtained by

$$u_{20} = \sum_{i=0}^{20} v_i$$

The results corresponding absolute errors are presented in Fig.1.

Fig.1. The absolute error between exact and numerical solutions in Example 1.

Mehdi Gholami Porshokouhi et al.

Example 2. Consider the following the convection-diffusion equation with boundary conditions $u(x,0) = e^{0.22x} \sin \pi x$.

The exact solution is $u(x,t) = e^{0.22x - (0.0242 + 0.5\pi^2)t} \sin \pi x$. $\frac{\partial u}{\partial t} + 0.22 \frac{\partial u}{\partial x} = 0.5 \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1, t \ge 0.$

Approximation to the solution of example 2 can be readily obtained by

$$u_{20} = \sum_{i=0}^{20} v_i$$

The results corresponding absolute errors are presented in Fig.2.

Fig.2. The absolute error between exact and numerical solutions in Example 2.

Example3. We consider the convection-diffusion equation with boundary conditions

$$u(x,0) = e^{0.25x} \sin \pi x$$

The exact solution is $u(x,t) = e^{0.25x - (0.0125 + 0.2\pi^2)t} \sin \pi x$.

$$\frac{\partial u}{\partial t} + 0.1 \frac{\partial u}{\partial x} = 0.2 \frac{\partial^2 u}{\partial x^2} \qquad 0 \le x \le 1, \ t \ge 0.$$

Approximation to the solution of example 3 can be readily obtained by

$$u_{20} = \sum_{i=0}^{20} v_i$$

The results corresponding absolute errors are presented in Fig.3.

Fig.3. The absolute error between exact and numerical solutions in Example 3.

4 Conclusion

In this paper, we proposed the homotopy perturbation method for solving the convection-diffusion equations. The obtained solutions, in comparison with exact solutions admit a remarkable accuracy. The computations associated with the examples in this paper were performed using maple 10.

References

[1] H.Ding and Y.Zhang, A new difference scheme with high accuracy and absolute stability solving convection-diffusion equations, *J. Comput. Appl. Math.* 230(2009), 600–606.

[2] J-H. He, Homotopy perturbation technique. *Comput Methods Appl Mech Eng* 1999;178(3/4), 257–62.

[3] J-H. He, Homotopy perturbation method: a new nonlinear analytical technique, *Appl Math Comput*, 135(2003), 73–9.
[4] J-H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, *Int J Nonlinear Mech*, 35(1) (2000), 37–43.