Gen. Math. Notes, Vol. 1, No. 2, December 2010, pp. 108-114
ISSN 2219-7184; Copyright © ICSRS Publication, 2010
www.i-csrs.org
Available free online at http://www.geman.in

Approximate Solution of ConvectionDiffusion Equation by the Homotopy Perturbation Method

Mehdi Gholami Porshokouhi ${ }^{1, *}$, , Behzad Ghanbari ${ }^{1}$, Mohammad Gholami ${ }^{2}$ and Majid Rashidi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of science, Islamic Azad University, Takestan Branch, Iran
Email: m_gholami_p@yahoo.com, b.ghanbary@yahoo.com
${ }^{2}$ Department of Agricultural Machinery, Faculty of Agriculture, Islamic Azad
University, Takestan Branch, Iran
Email: gholamihassan@yahoo.com, majidrashidi81@yahoo.com

Abstract

In recent years, a new difference scheme with high accuracy has been applied for solving convection-diffusion equation [1]. In this letter, we solve this equation by homotopy perturbation method (HPM) [2-4]. To illustrate the ability and reliability of the method some examples are provided. The results reveal that the method is very effective and simple

Keywords: Homotopy perturbation method; Convection-diffusion equation
2000 MSC No: 65Q20, 65Q10.

1 Introduction

Consider the convection-diffusion equation [1]

[^0]\[

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\varepsilon \frac{\partial u}{\partial x}=\gamma \frac{\partial^{2} u}{\partial x^{2}} \quad 0 \leq x \leq 1, t \geq 0 \tag{1}
\end{equation*}
$$

\]

Subject to the initial condition, $u(x, 0)=g(x), \quad 0 \leq x \leq 1$ and boundary conditions $u(0, t)=0, \quad t \geq 0 . u(1, t)=0, \quad t \geq 0$. where the parameter γ is the viscosity coefficient and ε is the phase speed and both are assumed to be positive. g is a given function of sufficient smoothness.
To illustrate the basic concepts of homotopy perturbation method, consider the following non-linear functional equation:

$$
\begin{equation*}
A(u)=f(r), \quad r \in \Omega, \tag{2}
\end{equation*}
$$

With the following boundary conditions:

$$
B(u, \partial u / \partial n)=0, r \in \Gamma .
$$

Where A is a functional operator, B is a boundary operator, $f(r)$ is a known analytic function, and Γ is the boundary of the domain Ω. Generally speaking, the operator A can be decomposed into two parts L and N, where L is a linear and N is a non-linear operator. Therefore Eq. (2) can be rewritten as the following:

$$
\begin{equation*}
L(u)+N(u)-f(r)=0 \tag{3}
\end{equation*}
$$

We construct a homotopy $v(r, p): \Omega \times[0,1] \rightarrow R$, which satisfies:

$$
H(v, p)=(1-p)\left[L(v)-L\left(u_{0}\right)\right]+p[A(v)-f(r)]=0, p \in[0,1], r \in \Omega
$$

Or

$$
H(v, p)=L(v)-L\left(u_{0}\right)+p L\left(u_{0}\right)+p[N(v)-f(r)]=0, p \in[0,1], r \in \Omega .,
$$

Where u_{0} is an initial approximation to the solution of Eq. (2). In this method, homotopy perturbation parameter p is used to expand the solution, as a power series, say;

$$
v=v_{0}+p v_{1}+p^{2} v_{2}+\cdots,
$$

Usually an approximation to the solution, will be obtained by taking the limit, as p tends to 1 ,

$$
u=\lim _{p \rightarrow 1} v=v_{0}+v_{1}+v_{2} \cdots,
$$

For solving Eq.(1) , by homotopy perturbation method, we construct the following homotopy:

$$
(1-p)\left(\frac{\partial v}{\partial t}-\frac{\partial u_{0}}{\partial t}\right)+p\left(\frac{\partial v}{\partial t}+\varepsilon \frac{\partial v}{\partial x}-\gamma \frac{\partial^{2} v}{\partial x^{2}}\right)=0,
$$

Or

$$
\begin{equation*}
\frac{\partial v}{\partial t}-\frac{\partial u_{0}}{\partial t}+p\left(\varepsilon \frac{\partial v}{\partial x}-\gamma \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial u_{0}}{\partial t}\right)=0 \tag{4}
\end{equation*}
$$

Suppose that the solution of Eq. (4) to be in the following form

$$
\begin{equation*}
v=v_{0}+p v_{1}+p^{2} v_{2}+\ldots \tag{5}
\end{equation*}
$$

Substituting Eq. (5) into Eq. (4), and equating the coefficients of the terms with the identical powers of p,

$$
\begin{array}{ll}
p^{0}: \frac{\partial v_{0}}{\partial t}-\frac{\partial u_{0}}{\partial t}=0, & \\
p^{1}: \frac{\partial v_{1}}{\partial t}+\frac{\partial u_{0}}{\partial t}+\varepsilon \frac{\partial v_{0}}{\partial x}-\gamma \frac{\partial^{2} v_{0}}{\partial x^{2}}=0, & v_{1}(x, 0)=0 \\
p^{2}: \frac{\partial v_{2}}{\partial t}+\varepsilon \frac{\partial v_{1}}{\partial x}-\gamma \frac{\partial^{2} v_{1}}{\partial x^{2}}=0, & v_{2}(x, 0)=0 \\
p^{3}: \frac{\partial v_{3}}{\partial t}+\varepsilon \frac{\partial v_{2}}{\partial x}-\gamma \frac{\partial^{2} v_{2}}{\partial x^{2}}=0, & v_{3}(x, 0)=0 \\
\vdots & \\
p^{j}: \frac{\partial v_{j}}{\partial t}+\varepsilon \frac{\partial v_{j-1}}{\partial x}-\gamma \frac{\partial^{2} v_{j-1}}{\partial x^{2}}=0, & v_{j}(x, 0)=0
\end{array}
$$

For simplicity we take

$$
v_{0}(x, t)=u_{0}(x, t)=u(x, 0)
$$

Having this assumption we get the following iterative equation

$$
v_{j}=\int_{0}^{t}\left(\gamma \frac{\partial^{2} v_{j-1}}{\partial x^{2}}-\varepsilon \frac{\partial v_{j-1}}{\partial x}\right) d t, \quad j=1,2,3, \ldots
$$

Therefore, the approximated solutions of Eq.(1) can be obtained, by setting $p=1$

$$
u=\lim _{p \rightarrow 1} v=v_{0}+v_{1}+v_{2}+v_{3}+\ldots
$$

2 numerical examples

In this section, we present examples of convection-diffusion equation and results will be compared with the exact solutions.

Example1. Let us consider the convection-diffusion equation

$$
\frac{\partial u}{\partial t}+0.1 \frac{\partial u}{\partial x}=0.01 \frac{\partial^{2} u}{\partial x^{2}} \quad 0 \leq x \leq 1, t \geq 0 .
$$

With the following initial condition $u(x, 0)=e^{5 x} \sin \pi x$.
The exact solution is $u(x, t)=e^{5 x-\left(0.25-0.01 \pi^{2}\right) t} \sin \pi x$.
Approximation to the solution of example 1 can be readily obtained by

$$
u_{20}=\sum_{i=0}^{20} v_{i}
$$

The results corresponding absolute errors are presented in Fig.1.

Fig.1. The absolute error between exact and numerical solutions in Example 1.

Example 2. Consider the following the convection-diffusion equation with boundary conditions $u(x, 0)=e^{0.22 x} \sin \pi x$.
The exact solution is $u(x, t)=e^{0.22 x-\left(0.024+0.5 \pi^{2}\right) t} \sin \pi x$.

$$
\frac{\partial u}{\partial t}+0.22 \frac{\partial u}{\partial x}=0.5 \frac{\partial^{2} u}{\partial x^{2}} \quad 0 \leq x \leq 1, t \geq 0 .
$$

Approximation to the solution of example 2 can be readily obtained by

$$
u_{20}=\sum_{i=0}^{20} v_{i}
$$

The results corresponding absolute errors are presented in Fig.2.

Fig.2. The absolute error between exact and numerical solutions in Example 2.

Example3. We consider the convection-diffusion equation with boundary conditions

$$
u(x, 0)=e^{0.25 x} \sin \pi x .
$$

The exact solution is $u(x, t)=e^{0.25 x-\left(0.0125+0.2 \pi^{2}\right) t} \sin \pi x$.

$$
\frac{\partial u}{\partial t}+0.1 \frac{\partial u}{\partial x}=0.2 \frac{\partial^{2} u}{\partial x^{2}} \quad 0 \leq x \leq 1, t \geq 0 .
$$

Approximation to the solution of example 3 can be readily obtained by

$$
u_{20}=\sum_{i=0}^{20} v_{i}
$$

The results corresponding absolute errors are presented in Fig.3.

Fig.3. The absolute error between exact and numerical solutions in Example 3.

4 Conclusion

In this paper, we proposed the homotopy perturbation method for solving the convection-diffusion equations. The obtained solutions, in comparison with exact solutions admit a remarkable accuracy. The computations associated with the examples in this paper were performed using maple 10.

References

[1] H.Ding and Y.Zhang, A new difference scheme with high accuracy and absolute stability solving convection-diffusion equations, J. Comput. Appl. Math. 230(2009), 600-606.
[2] J-H. He, Homotopy perturbation technique. Comput Methods Appl Mech Eng 1999;178(3/4), 257-62.
[3] J-H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl Math Comput, 135(2003), 73-9.
[4] J-H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int J Nonlinear Mech, 35(1) (2000), 37-43.

[^0]: * Corresponding author

