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Abstract
In this paper, and from the definition of a distance between numbers by a

recurrence relation, new kinds of k–Fibonacci numbers are obtained. But these
sequences differ among themselves not only by the value of the natural number
k but also according to the value of a new parameter r involved in the definition
of this distance. Finally, various properties of these numbers are studied.
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1 Introduction

Classical Fibonacci numbers have been generalized in different ways [1, 2,
3, 4]. One of these generalizations that greater interest lately among mathe-
matical researchers is that leads to the k–Fibonacci numbers [6, 7].

Then the k–Fibonacci numbers are defined.

Definition 1.1 For every natural number k, the k–Fibonacci sequence Fk =
{Fk,n} is defined by the recurrence relation

Fk,n+1 = k Fk,n + Fk,n−1 for n ≥ 1. (1)

with initial conditions Fk,0 = 0; Fk,1 = 1

From this definition, the general expression of the first k–Fibonacci num-
bers is presented in the following table:
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Table 1: k–Fibonacci numbers

Fk,0 = 0
Fk,1 = 1
Fk,2 = k
Fk,3 = k2 + 1
Fk,4 = k3 + 2k
Fk,5 = k4 + 3k2 + 1
Fk,6 = k5 + 4k3 + 3k
Fk,7 = k6 + 5k4 + 6k2 + 1
Fk,8 = k7 + 6k5 + 10k3 + 4k
· · ·

If k = 1 the clasical Fibonacci sequence is obtained F1 = {0, 1, 1, 2, 3, 5, 8, . . .}
and if k = 2 that is the Pell sequence F2 = P = {0, 1, 2, 5, 12, 29, 70, 169, . . .}.

2 Generalized (k, r)–Fibonacci Numbers

In this section we apply the definition of r–distance to the k–Fibonacci
numbers in such a way that generalize earlier results [5, 11]. Very interesting
are the formulas used to calculate the general term of the sequences generated
by the above definition, as well as which allows to find the sum of the first n
terms.

Definition 2.1 Let the natural numbers k ≥ 1, n ≥ 0, r ≥ 1 be. We define
the generalized (k, r)–Fibonacci numbers Fk,n(r) by the recurrence relation

Fk,n(r) = k Fk,n−r(r) + Fk,n−2(r) for n ≥ r, (2)

with the initial conditions Fk,n(r) = 1, n = 0, 1, 2, . . . r−1, except Fk,1(1) = k

So, if Fk(r) = {Fk,n(r)/n ∈ N}, the expressions of the sequences obtained for
r = 1, 2, . . . 7 are:

Fk(1) = {1, k, 1 + k2, 2k + k3, 1 + 3k2 + k4+, 3k + 4k3 + k5, 1 + 6k2 + 5k4 + k6, . . .}
Fk(2) = {1, 1, 1 + k, 1 + k, (1 + k)2, (1 + k)2, (1 + k)3, (1 + k)3, (1 + k)4, (1 + k)4, . . .}
Fk(3) = {1, 1, 1, 1 + k, 1 + k, 1 + 2k, 1 + 2k + k2, 1 + 3k + k2, 1 + 3k + 3k2, . . .}
Fk(4) = {1, 1, 1, 1, 1 + k, 1 + k, 1 + 2k, 1 + 2k, 1 + 3k + k2, 1 + 3k + k2, 1 + 4k + 3k2, . . .}
Fk(5) = {1, 1, 1, 1, 1, 1 + k, 1 + k, 1 + 2k, 1 + 2k, 1 + 3k, 1 + 3k + k2, 1 + 4k + k2, . . .}
Fk(6) = {1, 1, 1, 1, 1, 1, 1 + k, 1 + k, 1 + 2k, 1 + 2k, 1 + 3k, 1 + 3k, 1 + 4k + k2, . . .}
Fk(7) = {1, 1, 1, 1, 1, 1, 1, 1 + k, 1 + k, 1 + 2k, 1 + 2k, 1 + 3k, 1 + 3k, 1 + 4k, 1 + 4k + k2, . . .}
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2.1 (k, r)–Fibonacci Numbers for k = 1, 2, 3

If we particularize the previous sequences for k = 1, 2, 3, . . ., then obtain
distinct integer sequences whose properties we study below.

For k = 1, the following sequences [11] are obtained:

Table 2: (1, r)–Fibonacci numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
F1,n(1) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 · · ·
F1,n(2) 1 1 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256
F1,n(3) 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65
F1,n(4) 1 1 1 1 2 2 3 3 5 5 8 8 13 13 21 21 34
F1,n(5) 1 1 1 1 1 2 2 3 3 4 5 6 8 9 12 14 17
F1,n(6) 1 1 1 1 1 1 2 2 3 3 4 4 6 6 9 9 13
F1,n(7) 1 1 1 1 1 1 1 2 2 3 3 4 4 5 6 7 9

F1(1) is the classical Fibonacci sequence F = {Fn} = {0, 1, 1, 2, 3, 5, 8, . . .}.
The first eight sequences of this relationship are listed in [10] (from now on
OEIS).
F1(4) is the classical Fibonacci sequence, double.
For k = 2, the following sequences are obtained: F2(1) is the Pell sequence.

Table 3: (2, r)–Fibonacci numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F2,n(1) 1 2 5 12 29 70 169 408 985 · · · · · · · · · · · · · · · · · · · · ·
F2,n(2) 1 1 3 3 9 9 27 27 81 81 243 243 729 729 · · · · · ·
F2,n(3) 1 1 1 3 3 5 9 11 19 29 41 67 99 149 233 347
F2,n(4) 1 1 1 1 3 3 5 5 11 11 21 21 43 43 85 85
F2,n(5) 1 1 1 1 1 3 3 5 5 7 11 13 21 23 35 45
F2,n(6) 1 1 1 1 1 1 3 3 5 5 7 7 13 13 23 23

Finally, for k = 3 the following table is obtained:

3 Some Properties of the Generalized (k, r)–

Fibonacci Sequences

In this section, we study the general properties of the (k, r)–Fibonacci
sequences.
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Table 4: (3, r)–Fibonacci numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F3,n(1) 1 3 10 33 109 360 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
F3,n(2) 1 1 4 4 16 16 64 64 256 256 · · · · · · · · · · · · · · · · · ·
F3,n(3) 1 1 1 4 4 7 16 19 37 67 94 178 295 460 829 · · ·
F3,n(4) 1 1 1 1 4 4 7 7 19 19 40 40 97 97 217 217
F3,n(5) 1 1 1 1 1 4 4 7 7 10 19 22 40 43 70 100
F3,n(6) 1 1 1 1 1 1 4 4 7 7 10 10 22 22 43 43

Proposition 3.1 For r ≥ 2 it is

Fk,r(r) = 1 + k (3)

Just apply Equation (2).

Proposition 3.2 If r is even, the respective sequence is double:
Fk,2n(2m) = Fk,2n+1(2m)

Proof. By induction.
For n = 0 it is Fk,0(2m) = 1, Fk,1(2m) = 1 because definition of r–distance.

Let us suppose this formula is true until 2n + 1. Then

Fk,2n+2(2m) = k Fk,2n+2−2m(2m) + Fk,2n(2m)

= k Fk,2(n+1−m)(2m) + Fk,2n(2m)

Fk,2n+3(2m) = k Fk,2n+3−2m(2m) + Fk,2n+1(2m)

= k Fk,2(n+1−m)+1(2m) + Fk,2n+1(2m)

And both expressions are equal because
Fk,2n+1(2m) = Fk,2n(2m)→ Fk,2(n+1−m)+1(2m) = Fk,2(n+1−m)(2m)

Proposition 3.3 For n = r, r + 1, . . . , 2r − 1, it is

Fk,n(r) =

(⌊n− r

2

⌋
+ 1

)
k + 1.

Proof. By induction.
Let us suppose r is even, r = 2m.
Then, for n = r = 2m, Left Hand Side (LHS) of this equation is
LHS = Fk,2m(2m) = kFk,0(2m) +Fk,2m−2(2m) = k + 1 while Right Hand Side

(RHS) is RHS =

(⌊n− r

2

⌋
+ 1

)
k + 1 =

(⌊0

2

⌋
+ 1

)
k + 1 = k + 1.

Let us suppose this formula is true until n = 2r − 2 = 4m− 2. That is,
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Fk,4m−2(2m) = mk + 1 =

(⌊n− r

2

⌋
+ 1

)
k + 1 =

(⌊4m− 2− 2m

2

⌋
+ 1

)
k +

1 = mk + 1.
Then, if n = 2r − 1 = 4m− 1, it is

Fk,4m−1(2m) = kFk,2m−1(2m) + Fk,4m−3(2m) = k +

(⌊2m− 3

2

⌋
+ 1

)
k + 1

= k + (m− 1 + 1)k + 1 = (m + 1)k + 1

And of the other hand:(⌊n− r

2

⌋
+ 1

)
k + 1 =

(⌊2m− 1

2

⌋
+ 1

)
k + 1 = (m + 1)k + 1.

If r is odd, the proof is similar.

For proofs that follow will take into account that a < b →
(
a

b

)
= 0,

a < 0 →
(
a

b

)
= 0, and

(
a

0

)
= 1, ∀a. For these reasons will extend the

following sums from j = 0 until the combinatorial number is null, without
having to specify exactly where just the sum.

Following proposition shows the formulas used to calculate the general term
of the sequence Fk(r) = {Fk,n(r)}, according to that r ≥ 2 is odd or even (see
[6, 7] for r = 1).

Theorem 3.4 Main formula

1. If r is even, r = 2p:

Fk,2n(2p) = Fk,2n+1(2p) =

n/p∑
j=0

(
n− (p− 1)j

j

)
kj (4)

2. If r is odd, r = 2p+ 1 ≥ 3:

Fk,2n(2p+ 1) =
∑
j=0

[(
n− (2p− 1)j

2j

)
k2j +

(
n− p− (2p− 1)j

2j + 1

)
k2j+1

]
(5)

Fk,2n+1(2p+ 1) =
∑
j=0

[(
n− (2p− 1)j

2j

)
k2j +

(
n− (p− 1)− (2p− 1)j

2j + 1

)
k2j+1

]
(6)

Proof. By induction.
Formula (4). Let r = 2p be.
For n = 0, by definition it is Fk,0(2p) = 1 and SHR of (4) is Fk,0(2p) =
0∑
0

(
(1− p)j

j

)
kj = 1.

For n = 1, by definition it is Fk,2(2) = 1 + k and Fk,2(r) = 1 for r > 2.

In Formula (4) it is Fk,2(2p) =
2∑
0

(
1− (p− 1)j

j

)
kj = 1 +

(
1− (p− 1)j

1

)
k.
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Then, Fk,2(2) = 1 + k y Fk,2(2p) = 1 for 2p = 4, 6, 8, . . .
Let us suppose this formula is true until n. Then:

Fk,2n+2(2p) = k Fk,2n+2−2p(2p) + Fk,2n(2p)

=
∑
j=0

(
n− (p− 1)j

j

)
kj + k Fk,2(n+1−p)(2p)

=
∑
j=0

(
n− (p− 1)j

j

)
kj + k

∑
j=0

(
n + 1− p− (p− 1)j

j

)
kj

= 1 +
∑
j=1

(
n− (p− 1)j

j

)
kj +

∑
j=0

(
n− (p− 1)(j + 1)

j

)
kj+1

= 1 +
∑
j=0

[(
n− (p− 1)(j + 1)

j + 1

)
kj+1 +

(
n− (p− 1)(j + 1)

j

)
kj+1

]
= 1 +

∑
j=0

(
n− (p− 1)(j + 1) + 1

j + 1

)
kj+1

=
∑
j=0

(
n + 1− (p− 1)j

j

)
kj = Fk,2n+2(2p)

no more take into account the addition formula

(
a

j + 1

)
+

(
a

j

)
=

(
a + 1

j + 1

)
(see [9]).

We will prove Formulas (5) and (6) together.
For n = 0 it is Fk,0(2p + 1) = 1 and SHR of (5) is

0∑
0

[(
−(2p− 1)j

2j

)
k2j +

(
−p− (2p− 1)j

2j + 1

)
k2j+1

]
= 1.

In the same way, it is Fk,1(2p + 1) = 1 and SHR of (6) is
0∑
0

[(
−(2p− 1)j

2j

)
k2j +

(
1− p− (2p− 1)j

2j + 1

)
k2j+1

]
= 1 because 1−p < 0.

For n = 1 it is Fk,2(2p + 1) = 1 and SHR of (5) is
0∑
0

[(
1− (2p− 1)j

2j

)
k2j +

(
1− p− (2p− 1)j

2j + 1

)
k2j+1

]
= 1, because

p ≥ 1→ 1− p− (2p− 1)j < 0.
For Formula (6), if p = 1, the LHS is Fk,3(2p + 1) = 1 + k while the RHS is
0∑
0

[(
1− j

2j

)
k2j +

(
1− j

2j + 1

)
k2j+1

]
= 1 + k.

If p > 1, the LHS of (6) is 1 as well the RHS.
Let us suppose the formula is true for 2n and 2n + 1. Then:

Fk,2n+2(2p+ 1) = k Fk,2n+1−2p(2p+ 1) + Fk,2n(2p+ 1)
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= k Fk,2(n−p)+1(2p+ 1) + Fk,2n(2p+ 1)

= k
∑
j=0

[(
n− p− (2p− 1)j

2j

)
k2j +

(
n− (2p− 1)− (2p− 1)j

2j + 1

)
k2j+1

]

+
∑
j=0

[(
n− (2p− 1)j

2j

)
k2j +

(
n− p− (2p− 1)j

2j + 1

)
k2j+1

]

=
∑
j=0

[(
n− p− (2p− 1)j

2j

)
+

(
n− p− (2p− 1)j

2j + 1

)]
k2j+1

+
∑
j=0

(
n− (2p− 1)(j + 1)

2j + 1

)
k2j+2 + 1 +

∑
1

(
n− (2p− 1)j

2j

)
k2j

=
∑
j=0

(
n+ 1− p− (2p− 1)j

2j + 1

)
k2j+1

+
∑
j=1

(
n− (2p− 1)j

2j − 1

)
k2j + 1 +

∑
1

(
n− (2p− 1)j

2j

)
k2j

=
∑
j=0

(
n+ 1− p− (2p− 1)j

2j + 1

)
k2j+1 +

∑
j=1

(
n+ 1− (2p− 1)j

2j

)
k2j + 1

=
∑
j=0

(
n+ 1− p− (2p− 1)j

2j + 1

)
k2j+1 +

∑
j=0

(
n+ 1− (2p− 1)j

2j

)
k2j

= Fk,2n+2(2p+ 1)

Similarly proved for Fk,2n+3(2p + 1).
If you want to implement Formulas (5) and (6) in Wolfram Mathematica,

the limits of the sums would be as follows:

Fk,2n(2p + 1) =

n/r∑
j=0

(
n− (2p− 1)j

2j

)
k2j +

(n−p−1)/r∑
j=0

(
n− p− (2p− 1)j

2j + 1

)
k2j+1

Fk,2n+1(2p + 1) =

n/r∑
j=0

(
n− (2p− 1)j

2j

)
k2j +

(n−p)/r∑
j=0

(
n− (p− 1)− (2p− 1)j

2j + 1

)
k2j+1

We will then study the formula to find the sum of the terms of the sequence
Fk(r).

Proposition 3.5 Sum of the terms of the sequence Fk(r)
The sum of the first n terms of the sequence Fk(r) is given by the formula

Sk,n(r) =
1

k

(
Fk,n+r−1(r) + Fk,n+r(r)− 2

)
(7)

Proof. Iteratly applying Formula (2:

Fk,n+r(r) + Fk,n+r−1(r) = k Fk,n(r) + Fk,n+r−2(r) + k Fk,n−1(r) + Fk,n+r−3(r)
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= k Fk,n(r) + k Fk,n−1(r) + k Fk,n−2(r) + k Fk,n−3(r) + Fk,n+r−4(r) + Fk,n+r−5(r)

= k[Fk,n(r) + Fk,n−1(r) + Fk,n−2(r) + · · ·+ Fk,1(r) + Fk,0(r)] + Fk,r−1(r) + Fk,r−2(r)

= k

n∑
j=0

Fk,j(r) + 2→
n∑

j=0

Fk,j(r) =
1

k

(
Fk,n+r−1(r) + Fk,n+r(r)− 2

)

In particular, for r = 1, the formula Sk,n(1) = Sk,n =
1

k

(
Fk,n + Fk,n+1 − 2

)
is obtained, [6, 7, 8]. This formula shows the sum of the first k–Fibonacci
numbers with Fk,0 = 0

3.0.1 Special Sums

The formulas that indicate the sum of the even and odd terms of the above
sequences are, respectively,

n∑
j=0

Fk,2j(r) =
1

k
(Fk,2n+r − 1) (8)

n∑
j=0

Fk,2j+1(r) =
1

k
(Fk,2n+1+r − 1) (9)

Proof. Proof of the first formula. If we apply iteratly Equation (2), it is:

Fk,2n+r(r) = k Fk,2n(r) + Fk,2n+r−2(r)

= k Fk,2n(r) + k Fk,2n−2(r) + Fk,2n+r−4(r)

= k Fk,2n(r) + k Fk,2n−2(r) + k Fk,2n−4(r) + · · ·+ kFk,0(r) + Fk,r−2(r)

= k

n∑
j=0

Fk,2j(r) + 1→
n∑

j=0

Fk,2j(r) =
1

k

(
Fk,2n+r − 1

)
The second formula is proven in a similar way:

Fk,2n+1+r(r) = k Fk,2n+1(r) + Fk,2n+r−1(r)

= k Fk,2n+1(r) + k Fk,2n−1(r) + k Fk,2n−3(r) + · · ·+ kFk,1(r) + Fk,r−1(r)

= k

n∑
j=0

Fk,2j+1(r) + 1→
n∑

j=0

Fk,2j+1(r) =
1

k

(
Fk,2n+1+r − 1

)

4 Generating Functions of the (k, r)–Fibonacci

Numbers

In this section we will study the generating functions of the different se-
quences Fk(r), starting with the calculation of their formulas and continuating
with their graphics.
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Proposition 4.1 Generating function of the sequence Fk(r) = {Fk,n(r)} is

fk(r, x) =
1 + x

1− x2 − k xr

Proof.
If fk(r, x) is the generating function of the sequence Fk(r), then

fk(r, x) = Fk,0(r) + Fk,1(r)x + Fk,2(r)x2 + Fk,3(r)x3 + · · ·
+Fk,r(r)xr + Fk,r+1(r)xr+1 + · · ·

x2fk(r, x) = Fk,0(r)x2 + Fk,1(r)x3 + · · ·
+Fk,r−2(r)xr + Fk,r−1(r)xr+1 + · · ·

k xrfk(r, x) = k Fk,0(r)xr + k Fk,1(r)xr+1 + · · ·

So, fk(r, x)(1− x2 − k xr) =
Fk,0(r) + Fk,1(r)x + (Fk,2(r)− Fk,0(r))x2 + (Fk,3(r)− Fk,1(r))x3 + · · ·
+(Fk,r(r)−Fk,r−2(r)−kFk,0(r))xr +(Fk,r+1(r)−Fk,r−1(r)−kFk,1(r))xr+1 + · · ·
= 1 + x since for n < r it is Fk,n(r) = 1 and for n ≥ r the coefficient of xn of
the SHC verifies the condition of distance, so it vanishes.
Finally, taking into account that for r ≥ 2 it is Fk,0(r) = Fk,1(r) = 1, we obtain
the indicated generating function.

4.1 Graphs of the Generating Functions

Below we show the graphs of the generating functions of the different (k, r)–
Fibonacci numbers.

• If r = 1, the graph of the generating function fk(1, x) = fk(x) =
1 + x

1− k x− x2
is shown below:

Figure 1: Generating function of the (k, 1)–Fibonacci numbers Fk(1)

• If r is even, its graph is
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Figure 2: Generating function of the (k, 2m)–Fibonacci numbers

As it increases r, this curve has a minimum and a maximum relative who
tend to (−1+, 0) and (−1−, 0), respectively.

• Finally, if r is odd and greater than 1, the graph is of the form

Figure 3: Generating function of the (k, 2m + 1)–Fibonacci numbers

This curve has a relative minimum that tends to (−1, 0) as r increases.

5 Conclusions

We have generalized the r–distance Fibonacci numbers to the case of k–
Fibonacci numbers, getting more general formulas that previously found.
These formulas include which allows to find the general term of a sequence of
this type according to r is even or odd.
It also shows the formula to find the sum of the terms of the generalized (k, r)–
Fibonacci sequences as well as the sum of terms of even order and odd-order.
Finally we indicate another way of finding the generalized (k, r)–Fibonacci
sequences from the generating function.
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