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Abstract

In this paper we consider quantized frame expansions and pair frames. Es-
pecially one method of quantization called Σ∆ algorithm is studied, also we
study pair frames and we obtain some properties of them. Moreover by using
pair frames, duals and controlled frames, we get some upper bounds for the
error obtained in Σ∆ algorithm.
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1 Introduction

In 1946, Gabor [8] introduced a method for reconstructing functions (signals)
using a family of elementary functions. Later in 1952, Duffin and Schaeffer
[6] presented a similar tool in the context of nonharmonic Fourier series and
this is the starting point of frame theory. After some decades, Daubechies,
Grossmann and Meyer reintroduced frames in [5].

Let H be a separable Hilbert space and I be a finite or countable set.
A sequence F = {fi}i∈I ⊆ H is a frame for H, if there exist two constants
A,B > 0, such that

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2,
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for each f ∈ H. In this case we say that F is an (A,B)-frame. If only
the right-hand side inequality holds, then F is called a Bessel sequence. If
‖fi‖ = 1, for each i ∈ I, then F is called a normalized frame. If F = {fi}i∈I
is a Bessel sequence, then the operator S : H −→ H, which is defined by
S(f) =

∑
i∈I〈f, fi〉fi is bounded and called the frame operator of F . If F is

an (A,B)-frame, then A.IdH ≤ S ≤ B.IdH . Now define f̃i = S−1fi. Then for
each f ∈ H, we have ∑

i∈I

〈f, f̃i〉fi = f, f =
∑
i∈I

〈f, fi〉f̃i.

The sequence F̃ = {f̃i}i∈I is an ( 1
B
, 1
A

)-frame for H and called the canonical
dual frame of F . We say that a Bessel sequence {gi}i∈I is a dual for the Bessel
sequence {fi}i∈I , if for each f ∈ H, we have

f =
∑
i∈I

〈f, fi〉gi,

or equivalently

f =
∑
i∈I

〈f, gi〉fi.

In signal processing, one of the primary goals is to obtain a digital represen-
tation of the signal which is suitable for storage, transmission and recovery.
As we stated above if {fi}i∈I is a frame for H, then every signal f ∈ H
has an expansion like f =

∑
i∈I cifi. This expansion is not digital, since the

coefficient sequence {ci}i∈I is real or complex valued, therefore it is needed
to reduce this sequence to a discrete, and preferably finite set. This step is
called quantization, for more information, see [2]. In this paper, we consider
one method of quantization called Σ∆ algorithm, we obtain some upper error
bounds especially by considering pair frames, duals and controlled frames.

2 Quantized Frame Expansions

We recall the definition of pair frames, for more study see [7]:

Definition 2.1. Let H be a Hilbert space, F = {fi}i∈I , G = {gi}i∈I ⊆ H
and {mi}i∈I ⊆ C.

(i) (m,G, F ) is called an m-pair Bessel if the operator SmGF : H −→ H

SmGFf =
∑
i∈I

mi〈f, fi〉gi,

is bounded. If mi = 1, for each i ∈ I, then (G,F ) is called a pair Bessel.
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(ii) Suppose that (m,G, F ) is an m-pair Bessel. We say that (m,G, F ) is
an m-pair frame if SmGF is invertible. If mi = 1, for each i ∈ I, then
(G,F ) is called a pair frame.

(iii) Let (m,G, F ) be an m-pair Bessel. We call it an m-pair dual if

f =
∑
i∈I

mi〈f, fi〉gi,∀f ∈ H.

(iv) Let (m,G, F ) be an m-pair Bessel. Then it is called a near identity pair
frame if there exists a nonzero element a ∈ C such that ‖IdH−aSmGF‖ <
1. In this case (m,G, F ) is called an a-near identity pair frame.

Lemma 2.2. Let H be a Hilbert space. If {fi}i∈I is an (A,B) frame with
the frame operator S, then Aα.IdH ≤ Sα ≤ Bα.IdH , for α ≥ 0 and Bα.IdH ≤
Sα ≤ Aα.IdH , for α < 0.

Proof. First suppose that α ≥ 0. If λ ∈ σ(S), since S is positive and S ≤
B.IdH , then λ ∈ R+ and λ ≤ ‖S‖ ≤ B. For λ < A, we have S − λ.IdH ≥
(A−λ)IdH . Since A−λ > 0, then S−λ.IdH is invertible, therefore λ /∈ σ(S).
Thus σ(S) ⊆ [A,B]. Now define f(z) = Bα − zα. Since the spectrum of S
does not contain zero and negative numbers, then f is analytic on σ(S), hence

σ(Bα.IdH − Sα) = σ(f(S)) = f(σ(S)) [ by Theorem 4.10 in [4]].

Since σ(S) ⊆ [A,B] and α ≥ 0, then f(σ(S)) ⊆ R+. Hence
(Bα.IdH−Sα) is a positive operator. It means that Sα ≤ Bα.IdH . Now define
g(z) = zα − Aα. We have

σ(Sα − Aα.IdH) = σ(g(S)) = g(σ(S)).

Since σ(S) ⊆ [A,B] and α ≥ 0, then g(σ(S)) ⊆ R+. Thus Sα − Aα.IdH is
positive. For α < 0, put η = −α. By the first case, we have Aη.IdH ≤ Sη ≤
Bη.IdH . Now by Theorem 2.2.5 in [9], Bα.IdH ≤ Sα ≤ Aα.IdH .

Proposition 2.3. Let {fi}i∈I be an (A,B) frame, α ∈ R and m = {mi}i∈I
with mi = 1, for each i ∈ I. Then

(i) If α ≥ 0 and B2α+2

A2(Aα+1)2
< 1, then (m, {(IdH + Sα)−1S−1fi}i∈I , {fi}i∈I)

is an 1-near identity pair frame.
(ii) If α < 0 and B2A2α−2

(Bα+1)2
< 1, then (m, {(IdH + Sα)−1S−1fi}i∈I , {fi}i∈I) is

an 1-near identity pair frame.

Proof. (i) Let gi = (IdH + Sα)−1S−1fi and hi = fi + Sαfi. It is clear that
G = {gi}i∈I and Z = {hi}i∈I are frames. Since the frame operator of {hi}i∈I
is (IdH + Sα)S(IdH + Sα), then

{(IdH + Sα)−1S−1(IdH + Sα)−1(IdH + Sα)fi}i∈I = {gi}i∈I ,
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is the canonical dual frame of {hi}i∈I . Now for each f ∈ H, we have∑
i∈I

|〈f, fi − hi〉|2 =
∑
i∈I

|〈Sαf, fi〉|2 ≤ B‖Sα‖2‖f‖2 ≤ B2α+1‖f‖2,

the last inequality follows from the above lemma and Theorem 2.2.5 in [9].
Also we have ∑

i∈I

|〈f, gi〉|2 ≤ B‖S−1‖2‖(IdH + Sα)−1‖2‖f‖2

≤ B

A2(Aα + 1)2
‖f‖2.

Note that the inequality ‖(IdH + Sα)−1‖ < 1
Aα+1

, follows from the above
lemma. Now we have

‖(IdH − SmGF )x‖ = ‖(SmGZ − SmGF )x‖ = sup
‖y‖=1

|〈(SmGZ − SmGF )x, y〉|

≤
[
B2α+1(

B

A2(Aα + 1)2
)
] 1

2‖x‖,

and since B2α+1( B
A2(Aα+1)2

) < 1, then the result follows.

The proof of (ii) is similar to (i).

Now we recall some definitions from [2]:
Let K ∈ N and δ > 0. Given the midrise quantization alphabet

AδK = {(−K +
1

2
)δ, (−K +

3

2
)δ, . . . , (−1

2
)δ, (

1

2
)δ, . . . , (K − 1

2
)δ},

consisting of 2K elements, the 2K-level midrise uniform scalar quantizer with
stepsize δ is defined by

Q(u) = argminq∈Aδk |u− q|.

Thus, Q(u) is the element of the alphabet which is closest to u. If two elements
of AδK are equally close to u, then let Q(u) be the larger of these two elements,
i.e., the one larger than u.

Definition 2.4. Let N ∈ N, δ > 0, {ci}Ni=1 ⊆ R and p be a permutation
of {1, 2, . . . , N}. The associated first order Σ∆ quantizer is defined by the
iteration

ui = ui−1 + cp(i) − qi, qi = Q(ui−1 + cp(i)),

where u0 is a specified constant. The first order Σ∆ quantizer produces the
quantized sequence {qi}Ni=1, and an auxiliary sequence {ui}Ni=0 of state variables.
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So if f ∈ Rd has an expansion by using the sequence {cp(i)}Ni=1, then after

quantization, it will be changed to a signal f̃ which it’s expansion uses {qi}Ni=1.

Definition 2.5. Let F = {fi}Ni=1 be a finite frame for Rd, and let p be a
permutation of {1, . . . , N}. The variation of the frame F with respect to p is
defined by

σ(F, p) :=
N−1∑
i=1

‖fp(i) − fp(i+1)‖.

It was shown in [2] that variation is an important tool to find a good

approximation error. Note that if f ∈ Rd and f̃ is quantized of f , then it is
desirable that ‖f − f̃‖ gets small. In the rest of this paper, we obtain some

upper bounds for ‖f − f̃‖ by using different concepts related to frame theory
such as controlled frames which are considered in [1]:

Definition 2.6. Let R be a bounded and invertible operator on H.
A sequence F = {fi}i∈I ⊆ H is called a frame controlled by T or T−controlled
frame if there exist two positive numbers A and B such that

A‖f‖2 ≤
∑
i∈I

〈f, fi〉〈Rfi, f〉 ≤ B‖f‖2,

for each f ∈ H. It was proved in [1] that in this case F is a frame and the
operator SR : H −→ H which is defined by

SR(f) =
∑
i∈I

〈f, fi〉Rfi,

is bounded, positive and invertible.

Suppose that H = Rd, {fi}Ni=1 and {gi}Ni=1 are two frames for H and T is
an invertible operator such that

f =
N∑
i=1

cp(i)T
−1gp(i), cp(i) = 〈f, fp(i)〉,

where p is a permutation of {1, . . . , N}. Now suppose that f̃ is quantized of f

obtained by Σ∆ algorithm, so f̃ =
∑N

i=1 qiT
−1gp(i).

Theorem 2.7. Let F = {fi}Ni=1 and G = {gi}Ni=1 be two frames for Rd,
f ∈ Rd and for each 1 ≤ i ≤ N − 1, |ui| ≤ δ

2
. Then

(i) ‖f − f̃‖ ≤ ‖T−1‖
(
σ(G, p) δ

2
+ |uN |‖gp(N)‖+ |u0|‖gp(1)‖

)
.
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(ii) If F and G are duals, then

‖f − f̃‖ ≤ σ(G, p)
δ

2
+ |uN |‖gp(N)‖+ |u0|‖gp(1)‖.

(iii) If F is an R-controlled frame, then

‖f − f̃‖ ≤ ‖SR−1R‖
(
σ(F, p)

δ

2
+ |uN |‖fp(N)‖+ |u0|‖fp(1)‖

)
.

(iv) If (m,G, F ) is an m-pair frame and m = {mi}Ni=1, then

‖f − f̃‖ ≤ ‖S−1mGF‖
(
σ(m.G, p)

δ

2
+ |uN |‖mp(N).gp(N)‖+ |u0|‖mp(1).gp(1)‖

)
,

where m.G = {migi}Ni=1.

(v) If (m,G, F ) is an m-pair dual and m = {mi}Ni=1, then

‖f − f̃‖ ≤ σ(m.G, p)
δ

2
+ |uN |‖mp(N).gp(N)‖+ |u0|‖mp(1).gp(1)‖,

where m.G = {migi}Ni=1.

(vi) If (m,G, F ) is an a-near identity pair frame, then

‖f − f̃‖ ≤ ‖S−1mGF‖
(
σ(m.G, p)

δ

2
+ |uN |‖mp(N).gp(N)‖+ |u0|‖mp(1).gp(1)‖

)
.

Proof. (i) We have

f − f̃ =
N∑
i=1

(cp(i) − qi)T−1gp(i)

=
N∑
i=1

(ui − ui−1)T−1gp(i)

=
N−1∑
i=1

uiT
−1(gp(i) − gp(i+1))

+ uNT
−1gp(N) − u0T−1gp(1),

consequently

‖f − f̃‖ ≤
N−1∑
i=1

δ

2
‖T−1‖‖gp(i) − gp(i+1)‖

+ |uN |‖T−1‖‖gp(N)‖+ |u0|‖T−1‖‖gp(1)‖

= ‖T−1‖
(δ

2
σ(G, p) + |uN |‖gp(N)‖+ |u0|‖gp(1)‖

)
.
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(ii) If F and G are duals, then T = IdH and the result follows from part (i).
(iii) If F is an R-controlled frame, then

f =
N∑
i=1

cp(i)S
−1
R Rfp(i), cp(i) = 〈f, fp(i)〉,

so {S−1R Rfi}Ni=1 is a dual for F and by part (ii), we have

‖f − f̃‖ ≤ σ({S−1R Rfi}Ni=1, p)
δ

2
+ |uN |‖S−1R Rfp(N)‖

+ |u0|‖S−1R Rfp(1)‖

≤ ‖S−1R R‖
(
σ(F, p)

δ

2
+ |uN |‖fp(N)‖+ |u0|‖fp(1)‖

)
.

(iv) Let (m,G, F ) be an m-pair frame and m = {mi}Ni=1. Then it is easy to
see that m.G is a Bessel sequence and

f =
N∑
i=1

cp(i)S
−1
mGFmp(i)gp(i), cp(i) = 〈f, fp(i)〉,

and the result follows from part (i).
(v) If (m,G, F ) is an m-pair dual, then SmGF = IdH and the result follows
from part (iv).
(vi) Since ‖IdH − aSmGF‖ < 1, then aSmGF is invertible, so SmGF is invertible
and the result follows from part (i).

The following corollary considers normalized frames which are very impor-
tant in frame theory:

Corollary 2.8. Suppose that f ∈ Rd, F and G are two frames in Rd such
that G is normalized and for each 1 ≤ i ≤ N − 1, |ui| ≤ δ

2
. Then

(i) ‖f − f̃‖ ≤ ‖T−1‖
(
σ(G, p) δ

2
+ |uN |+ |u0|

)
.

(ii) If F and G are duals, then

‖f − f̃‖ ≤ σ(G, p)
δ

2
+ |uN |+ |u0|.

(iii) If F is an R-controlled frame and F is normalized, then

‖f − f̃‖ ≤ ‖SR−1R‖
(
σ(F, p)

δ

2
+ |uN |+ |u0|

)
.
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(iv) If (m,G,F) is an m-pair frame and m = {mi}Ni=1, then

‖f − f̃‖ ≤ ‖S−1mGF‖
(
σ(m.G, p)

δ

2
+ |uN ||mp(N)|+ |u0||mp(1)|

)
,

where m.G = {migi}Ni=1.

(v) If (m,G, F ) is an m-pair dual and m = {mi}Ni=1, then

‖f − f̃‖ ≤ σ(m.G, p)
δ

2
+ |uN ||mp(N)|+ |u0||mp(1)|,

where m.G = {migi}Ni=1.

(vi) If (m,G, F ) is an a-near identity pair frame, then

‖f − f̃‖ ≤ ‖S−1mGF‖
(
σ(m.G, p)

δ

2
+ |uN ||mp(N)|+ |u0||mp(1)|

)
.

Corollary 2.9. Suppose that f ∈ Rd, F and G are two frames in Rd such
that G is normalized and for each 0 ≤ i ≤ N , |ui| ≤ δ

2
. Then

(i) ‖f − f̃‖ ≤ ‖T−1‖ δ
2

(
σ(G, p) + 2

)
.

(ii) If F and G are duals, then

‖f − f̃‖ ≤ δ

2

(
σ(G, p) + 2

)
.

(iii) If F is an R-controlled frame and F is normalized, then

‖f − f̃‖ ≤ ‖SR−1R‖
δ

2

(
σ(F, p) + 2

)
.

(iv) If (m,G,F) is an m-pair frame and m = {mi}Ni=1, then

‖f − f̃‖ ≤ ‖S−1mGF‖
δ

2

(
σ(m.G, p) + |mp(N)|+ |mp(1)|

)
,

where m.G = {migi}Ni=1.

(v) If (m,G, F ) is an m-pair dual and m = {mi}Ni=1, then

‖f − f̃‖ ≤ δ

2

(
σ(m.G, p) + |mp(N)|+ |mp(1)|

)
,

where m.G = {migi}Ni=1.
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(vi) If (m,G, F ) is an a-near identity pair frame, then

‖f − f̃‖ ≤ ‖S−1mGF‖
δ

2

(
σ(m.G, p) + |mp(N)|+ |mp(1)|

)
.

Note that parts (i) of the above results generalize Theorem 3.4 and Corol-
lary 3.6 in [2].
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