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Abstract

In this paper, numerical solution of tenth and twelfth order linear and non
linear boundary value problems are presented using weighted residual via parti-
tion method (WRM). A trial function is assumed which is made to satisfy the
boundary conditions given, and used to generate the residual to be minimised.
To investigate the effectiveness of the method, numerical examples were consid-
ered which were compared with both the exact solution and the solution obtained
by other methods in the literature. The proposed method proves very accurate,
better, efficient and appropriate.

Keywords: Tenth and Twelfth order boundary value problems, Weighted
residual method, Trial function Partition method.

1 Introduction

Tenth and Twelfth order boundary value problems arise in the study of fluid
dynamics, Hydromagnetic stability, beam and long wave theory, engineering
and applied sciences. Owing to their mathematical significance and applica-
tions, several methods such as finite difference method, polynomial spline and
decomposition method have been used to solve these set of problems.
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In S.T Mohyud-din etal[7], Exp-function method which was developed by
He and Wu was used to solve this class of problems, S.T. Mohyud-din[8] and
H. Mirmoradi etal[5] used Homotopy perturbation method to solve Tenth or-
der and Twelfth order boundary value problems respectively. Detail solutions
of lower order boundary value problems are also found in [1,2,3,4] and other
references therein.

In this article, a trial function of the form

y =
n∑
i=0

aix
i (1)

is used in the weighted residual method[6] where the domain [c− d] are subdi-
vided into smaller sub domain within which the residual obtained is minimised
using Simpson 1

3
quadrature.

2 Analysis of the Method

Suppose we have a differential equation

L[u(x)] = f in the domain Ω (2)

Bµ[u] = Ω on ∂Ω (3)

where L[u] denotes a general differential operator (linear or non-linear) in-
volving spatial derivatives of dependent variable u, f is a known function of
position, Bµ[u] represents the appropriate number of boundary conditions and
Ω is the domain with the boundary ∂Ω

The following steps are followed in solving this type of problems:

• We assumed a trial function of the form in equation (1).

• Substitute the trial function into the differential equation to generate the
residual.

• The domain within [0 − 1] is sundivided to [0 − 0.1], [0.1 − 0.2], [0.2 −
0.3], ...[0.9 − 1.0]

• Impose the boundary conditions(3) on the trial function in step 1 to
generate set of equations(10 equations for tenth order and 12 equations
for twelfth order), including the condition that the residual should be
zero at all points.
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• Minimised the residual in step 2 by integrating it within the sub-division
points in step 3 using Simpson 1

3
rule which gives another sets of equa-

tions.

• Number of equations obtained equals the number of constants to be
determined and so solve the equations to obtain the constants ai, i =
0..22 which are substituted back into the trial function and hence the
solution.

3 Numerical Examples

Example1[8]:
y(x) = −8ex + y′′(x), 0 < x < 1 (4)

subject to the boundary conditions y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) =
−2, y(iv) = −3, y(1) = 0, y′(1) = −e, y′′(1) = −2e, y′′′(1) = −3e, y(iv) =
−4e

Exact solution is
y(x) = (1 − x)ex

Using procedure itemised in section two we have

y = 1.0−0.500000000000000x2−0.333333333333334x3−0.125000000000000x4−
0.0333333333331242x5−0.00694444444514969x6−0.00119047618956445x7−
0.00017361111164485x8−0.0000220458552624184x9−0.00000248015873015873x10−
0.0000002505209782x11−0.00000002296500179x12−0.000000001925770536x13−

0.0000000001507279581x14−9.622351157 × 10−12 x15−1.089487853 × 10−12 x16

Table 1 shows the results of weighted residual method and the error ob-
tained for example 1 when compared with the exact solution.
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Table 1

x Exact WRM WRM error
0.0 1.0 1.0 0
0.1 0.994653826268085 0.994653826268084 1. ∗ 10−15

0.2 0.977122206528136 0.977122206528137 1. ∗ 10−15

0.3 0.944901165303200 0.944901165303202 2. ∗ 10−15

0.4 0.895094818584762 0.895094818584764 2. ∗ 10−15

0.5 0.824360635350065 0.824360635350065 0
0.6 0.728847520156204 0.728847520156205 1. ∗ 10−15

0.7 0.604125812241144 0.604125812241145 1. ∗ 10−15

0.8 0.445108185698494 0.445108185698494 0
0.9 0.245960311115695 0.245960311115697 2. ∗ 10−15

1.0 0 −6.892119075 ∗ 10−17 6.892119075 ∗ 10−17

Example2 [7,8]:

y(x)(x) = e−xy2(x), 0 < x < 1 (5)

subject to the boundary conditions

y(0) = 1, y′′(0) = y(iv)(0) = y(vi)(0) = y(viii)(0) = 1,

y(1) = e, y′′(1) = y(iv)(1) = y(vi)(1) = y(viii)(1) = e

Exact solution is
y(x) = ex

Using procedure itemised in section two we have

y = 1.0+0.999999999999329x+0.500000000000000x2+0.166666666667767x3+
0.0416666666666667x4 +0.00833333333281123x5 +0.00138888888888889x6 +
0.000198412698519703x7+0.0000248015873015873x8+0.00000275573191352611x9+
0.0000002755731922x10+0.00000002505210192x11+0.000000002087710502x12+

0.0000000001605099908x13+1.156925448 × 10−11 x14+6.982160464 × 10−13 x15+

7.074894973 × 10−14 x16

Table 2 shows the results of weighted residual method and the error ob-
tained for example 2 when compared with the exact solution.
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Table 2

x Exact WRM WRM error
0.0 1.0 1.0 0
0.1 1.10517091807565 1.10517091807558 7. ∗ 10−14

0.2 1.22140275816017 1.22140275816005 1.2 ∗ 10−13

0.3 1.34985880757600 1.34985880757583 1.7 ∗ 10−13

0.4 1.49182469764127 1.49182469764109 1.8 ∗ 10−13

0.5 1.64872127070013 1.64872127069991 2.2 ∗ 10−13

0.6 1.82211880039051 1.82211880039032 1.9 ∗ 10−13

0.7 2.01375270747048 2.01375270747031 1.7 ∗ 10−13

0.8 2.22554092849247 2.22554092849235 1.2 ∗ 10−13

0.9 2.45960311115695 2.45960311115689 6. ∗ 10−14

1.0 2.71828182845905 2.71828182845905 0

Example3 [5]:

y(xii)(x) + xy(x) = −(120 + 23x + x3)ex (6)

subject to the conditions

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −3, y(iv)(0) = −8, y(v)(0) = −15,

y(1) = 0, y′(1) = −e, y′′(1) = −4e, y′′′(1) = −9e, y(iv)(1) = −16e, y(v)(1) = −25e

Exact solution is
y(x) = x(1 − x)ex

Using procedure itemised in section two we have

y = 1.0x−0.500000000000001x3−0.333333333333334x4−0.125000000000000x5−

0.0333333333323412x6−0.00694444444887511x7−0.00119047618246354x8−
0.000173611118420438x9−0.00002204585202134x10−0.00000248015935138512x11−

0.0000002505210839x12−0.00000002296441877x13−0.000000001927149499x14−

0.0000000001489911209x15−1.084355228 × 10−11 x16−6.352723637 × 10−13 x17−

6.985565274 × 10−14 x18

Table 3 shows the results of weighted residual method and the error ob-
tained for example 3 when compared with the exact solution.
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Table 3

x Exact WRM WRM error
0 0 0 0
0.1 0.0994653826268085 0.0994653826268084 1. ∗ 10−16

0.2 0.195424441305627 0.195424441305628 1. ∗ 10−15

0.3 0.283470349590960 0.283470349590960 0
0.4 0.358037927433905 0.358037927433907 2. ∗ 10−15

0.5 0.412180317675032 0.412180317675033 1. ∗ 10−15

0.6 0.437308512093722 0.437308512093723 1. ∗ 10−15

0.7 0.422888068568801 0.422888068568802 1. ∗ 10−15

0.8 0.356086548558795 0.356086548558796 1. ∗ 10−15

0.9 0.221364280004126 0.221364280004127 1. ∗ 10−15

1.0 0 6.33029146870 ∗ 10−17 6.33029146870 ∗ 10−17

Example 4 [7]:

y(xii)(x) =
1

2
e−xy(x)2 (7)

subject to the conditions

y(0) = y′′(0) = y(iv)(0) = y(vi)(0) = y(xiii)(0) = y(x)(0) = 2

y(1) = y′′(1) = y(iv)(1) = y(vi)(1) = y(xiii)(1) = y(x)(1) = 2e

Exact solution is
y(x) = 2ex

Using procedure itemised in section two we have

y = 2.0+2.00000000000001x+1.0x2+0.333333333333335x3+0.0833333333333333x4+
0.0166666666666667x5+0.00277777777777778x6+0.000396825396825398x7+
0.0000496031746031746x8+0.00000551146384479720x9+0.0000005511463845x10+
0.00000005010421677x11+0.000000004175351398x12+0.0000000003211808767x13+
2.294149120 × 10−11 x14+1.529432729 × 10−12 x15+9.558958162 × 10−14 x16+
5.622865620 × 10−15 x17+3.124328437 × 10−16 x18+1.640662945 × 10−17 x19+
8.392600419 × 10−19 x20 + 3.351645334 × 10−20 x21 + 2.846489658 × 10−21 x22

Table 4 shows the results of weighted residual method and the error ob-
tained for example 4 when compared with the exact solution.



On the Numerical Solution of Tenth and Twelfth... 23

Table 4

x Exact WRM WRM error
0 2.0 2.0 0
0.1 2.21034183615130 2.21034183615130 0
0.2 2.44280551632034 2.44280551632034 0
0.3 2.69971761515200 2.69971761515199 1. ∗ 10−14

0.4 2.98364939528254 2.98364939528254 0
0.5 3.29744254140026 3.29744254140025 1. ∗ 10−14

0.6 3.64423760078102 3.64423760078104 2. ∗ 10−14

0.7 4.02750541494096 4.02750541494097 1. ∗ 10−14

0.8 4.45108185698494 4.45108185698495 1. ∗ 10−14

0.9 4.91920622231390 4.91920622231390 0
1.0 5.43656365691810 5.43656365691810 0

4 Conclusion

This paper presents an account of how weighted residual via partition methos
is used to solve tenth and twelfth order two point boundary value problems
with a single trial function for different problems. Computational procedure
and results of numerical examples considered shows that the method is simple,
effective and straightforward, and hence make the method suitable for this class
of problems.
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