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Abstract
In this paper, we show the uniqueness of polynomial of best approximation

of a function f ∈ E = C0([a, b]) by a polynomial of degree ≤ n and to char-
acterize it. Then introduce the algorithm of Remez and prove its convergence.
Illustrations and numerical simulations are given to prove the efficiency of our
work.
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1 Historical Introduction

Much of the work in approximation theory concerns the approximation of
a given function f on some compact set I in the real or complex plane by
polynomials. Classical results in this area deal with the best approximation
problem

min
p∈Pn

‖f − p‖I , (1)

where ‖g‖I = max
x∈I
|g(x)|, Pn denotes the set of polynomials of degree at most

n. (Note that since in (1) we seek an approximation from a finite dimensional
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subspace, the minimum is indeed attained by some polynomial p∗ ∈ Pn).
Scalar approximation problems of the form (1) have been studied since the

mid 1850s. Accordingly, numerous results on existence and uniqueness of the
solution as well as estimates for the value of (1) are known.

Consider the following best polynomial approximation problem: Given a
continuous function f defined on an interval I = [a, b], find a function p∗ in
the space Pn of polynomials of degree less or equal to n such that

‖f − p∗‖ ≤ ‖f − p‖ for all p ∈ Pn,

where ‖.‖ is the supremum norm ‖g‖= max
x∈I
|g(x)|. The approximation p∗

exists and is unique, and is known as the best, uniform, Chebyshev or minimax
approximation to f .

Discussions of this problem can be found in almost every book on approxi-
mation theory Cheney ([2]), Davis ([5]), Laurent ([7]), Lorentz ([8]), Meinardus
([9]), Mhaskar and Pai ([10]), Powell ([13]), Remez ([15]) and Rice ([19]).

Starting with Chebyshev himself, the best approximation problem was
studied from the second half of the 19th century to the early 20th century,
and by 1915 the main results had been established (see Steffens [20]). A sec-
ond wave of interest came in the 1950s and 1960s when computational aspects
were investigated. The focus of much of this work was the algorithm intro-
duced by Evgeny Yakovlevich Remez in a series of three papers published in
1934 ([16], [17] and [18]), and in this period were developed a deep understand-
ing of its theoretical properties as well as numerous variations for its practical
implementation.

A good introduction and another vision on this subject is in R. Pachón and
L.N. Trefethen ([11])

In the 1970s the Remez algorithm also became a fundamental tool of digital
signal processing, where it was introduced by Parks and McClellan ([12]) in
the context of filter design.

Theorem 1.1 (Equioscillation Property): A polynomial p ∈ Pn is the best
approximation to f (that is, p = p∗) if and only if there exists a set of n + 2
distinct points {x}n+1

i=0 such that

f(xi)− p(xi) = λσi ‖f − p∗‖ , i = 0, ..., n+ 1, (2)

where σi := (−1)i and λ = 1 or λ = −1 is fixed.

A set of points E∗ := {x}n+1
i=0 that satisfies (2) is called a reference. Anal-

ogous properties hold for other types of approximations such as best rational,
CF and Padé (see Trefethen [21]).

Theorem 1.1 can be generalized for approximations that satisfy the Haar
condition (see Laurent [7] and Powel [13], p. 77), of which polynomials are a
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special case. This allows us to look for best approximations in other sets of
functions, for example trigonometric polynomials, which are the ones used for
the Parks-McClellan algorithm. This paper works only with polynomials, but
we believe that our methods can be carried over to the trigonometric case.

The second theorem, proved by de la Vallee Poussin in 1910 (de la Vallée
Poussin [6]), establishes an inequality between the alternating error of a trial
polynomial and the error of the best approximation (see Cheney [2], p. 77 and
Powell [13], Thm. 7.7).

Theorem 1.2 (de la Vallée Poussin) Let p ∈ Pn and {yi}n+1
i=0 be a set of

n+ 2 distinct points in I such that

sign(f(yi)− p(yi)) = λσi, i = 0, ..., n+ 1,

with σi and λ defined as in Theorem 1.1. Then, for every q ∈ Pn,

min
i
|f(yi)− p(yi)| ≤ max

i
|f(yi)− q(yi)| (3)

and in particular,

min
i
|f(yi)− p(yi)| ≤ ‖f − p∗‖ ≤ ‖f − p‖ (4)

Theorem 1.2 asserts that a polynomial p ∈ Pn whose error oscillates n+ 2
times is near-best in the sense that

‖f − p‖ ≤ C ‖f − p∗‖ , C =
‖f − p‖

min
i
|f(yi)− p(yi)|

≥ 1.

The Remez algorithm constructs a sequence of trial references {Ek} and
trial polynomials {pk} that satisfy this alternation condition in such a way
that C −→ 1 as k −→ 1. At the kth step the algorithm starts with a trial
reference Ek and then computes a polynomial pk such that

f(xi)− pk(xi) = σihk, xi ∈ Ek (5)

where hk is the levelled error (positive or negative), defined as

hk := f(xi)− pk(xi) for all xi ∈ Ek.

Then, a new trial reference Ek+1 is computed from the extrema of f− pk in
such a way that |hk+1| ≥ |hk| is guaranteed. This monotonic increase of the
levelled error is the key observation in showing that the algorithm converges
to p∗ (Powell [13], Thm 9.3).

In Section 2.1 we explain how to compute a trial polynomial and levelled
error from a given trial reference, and in Section 2.2 we show how to adjust
the trial reference from the error of the trial polynomial.
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2 Main Results

Denote Pn the set of functions or one variable polynomials, with real coeffi-
cients, of degree at most n.

Consider a closed and bounded interval [a, b] of R.
Denote Cm([a, b]) the space of the real functions m time continuously dif-

ferentiables on [a, b].
We are going to show the uniqueness of polynomial of the best approxi-

mation of a function f ∈ E = C0([a, b]) by a polynomial of degree ≤ n and
characterize it. Then introduce Remez algorithm and prove its convergence.
Illustrations and numerical simulations are given to prove the effectiveness of
our work.

2.1 The Chebyshev Best Uniform Polynomial Approx-
imation

Let us to place in the case where E = C0([a, b]) provided with the uniform
convergence norm,

‖f‖∞ = max
x∈[a, b]

|f(x)| .

We are going to show the uniqueness of polynomial of the best approxima-
tion of a function f ∈ E by a polynomial of degree ≤ n and and characterize
it.

First let us show the following lemma :

Lemma 2.1 Let us given a function f ∈ E and (n + 2) reals x0 < x1 <
... < xn+1 belonging to [a, b], there exists a unique polynomial p ∈ Pn such that

∀i = 1, 2, ..., n+ 1, f(xi)− p(xi) = (−1)i(f(x0)− p(x0)) ; (6)

it is the polynomial p ∈ Pn such that

∀q ∈ Pn with q 6= p, max
0≤i≤n+1

|f(xi)− p(xi)| < max
0≤i≤n+1

|f(xi)− q(xi)| . (7)

Proof. We have

• equations (6) form a linear system of (n + 1) equations with (n + 1)
unknowns, (the coefficients of p).

• To prove the existence, it is enough to prove the uniqueness, therefore it
is enough to show that (6) implies (7). Let q ∈ Pn and suppose p verifies
(6) and that

n+1
max
i=0
|f(xi)− q(xi)| ≤

n+1
max
i=0
|f(xi)− p(xi)| ;
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even if it means multiplying at the need f, p and q by (−1), we can
suppose

f(x0)− p(x0) ≥ 0.

Then we have

(−1)i(q(xi)−p(xi)) ≥ |f(xi)− p(xi)|−|f(xi)− q(xi)| ≥ 0, (0 ≤ i ≤ n+1)

hence

(−1)i
xi+1∫
xi

(q
′
(s)− p′

(s))ds ≤ 0, (0 ≤ i ≤ n).

We deduct from it that :

a) q
′ − p

′ ≡ 0, hence q − p = c (constant) and, since q − p alters at
least (n+ 1) times of sign, q − p ≡ 0 ;

b) or ∃ ξi ∈ ]xi, xi+1[ with (−1)i(q
′
(ξi) − p

′
(ξi)) < 0, (for 0 ≤ i ≤ n) ;

according to the intermediate value theorem, the polynomial q
′ − p′

has
a root on every interval ]ξi, ξi+1[, therefore q

′ − p′
has at least n roots

what is incompatible with the fact that

deg(q
′ − p′

) ≤ n− 1.

Definition 2.2 We call a function f is equioscillated on (k + 1) points of
[a, b] if there exist (k + 1) reals x0 < x1 < x2 < ... < xk belonging to [a, b]
such that

∀i = 0, 1, ..., k, |f(xi)| = ‖f‖∞ and ∀i = 0, 1, ..., k− 1, f(xi) = −f(xi+1).

Proposition 2.3 Let p ∈ Pn be a polynomial such that f − p equioscillates
in (n+ 2) points of [a, b]. Then we get, according to (7),

q ∈ Pn, with q 6= p, implies ‖f − p‖∞ < ‖f − q‖∞ .

Proof. Indeed,

‖f − p‖∞ =
n+1
max
i=0
|f(xi)− p(xi)| <

n+1
max
i=0
|f(xi)− q(xi)| ≤ ‖f − q‖∞ .

The polynomial p is then the best approximation of f in the Chebyshev mean-
ing and this best approximation is then unique.

We are going to show that really there is a polynomial p ∈ Pn such that f−p
equioscillates in (n+ 2) points of [a, b] ; this polynomial will be obtained as a
limit of sequence of polynomials constructed by means of the second Remez’s
algorithm.
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Since the best approximation is unique, we can define the operator that
assigns to each continuous function its best polynomial approximation of fixed
degree. It is well known that this operator, although continuous, is nonlinear
(for an example see Lorentz [8], p. 33), and so we need iterative methods
to compute p∗. The Remez algorithm is one such method. Other important
algorithms are the differential correction algorithms, which rely on ideas of
linear programming (see Rabinowitz [14]).

A good discussion of the Remez’s algorithm is doing by recalling two theo-
rems that are essential to it. The first was first proved by Borel in 1905 (Borel
[1], Cheney [2], p. 75 and Powell [13], p. 77).

2.2 Remez’s Algorithm

Step 0 : Initialization.
Let us given (n+ 2) distinct points x00 < x01 < ... < x0n+1.

Step k : (of the algorithm)
Assume known (n + 2) points xk0 < xk1 < ... < xkn+1. Associate to

them the polynomial pk ∈ Pn such that

∀i = 1, 2, ..., n+ 1, f(xki )− pk(xki ) = (−1)i(f(xk0)− pk(xk0)) ;

such polynomial exists according to the Lemma 2.1. Then there are two pos-
sible cases :

Case 1 :

‖f − pk‖∞ =
∣∣f(xki )− pk(xki )

∣∣ ;

in this case f − pk equioscillates on the (n+ 2) points xki .
pk achieves then the best approximation in the Chebyshev meaning; we

stop the algorithm.
Case 2 : There exists y ∈ [a, b] such that

‖f − pk‖∞ = |f(y)− pk(y)| >
∣∣f(xki )− pk(xki )

∣∣ , for i = 0, 1, ..., n+ 1.

Construct a new sequence of points xk+1
0 < xk+1

1 < ... < xk+1
n+1 by exchanging

in the previous sequence one of the points xki with y in such a way that

∀j = 1, 2, ..., n+ 1, (f(xk+1
j )− pk(xk+1

j ))(f(xk+1
j−1)− pk(xk+1

j−1)) ≤ 0.

Having said there are six possibilities :
1) y ∈

[
a, xk0

[
and

(f(xk0)− pk(xk0))(f(y)− pk(y)) ≥ 0.
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One takes

xk+1
0 = y and ∀j = 1, 2, ..., n+ 1, xk+1

j = xkj .

2) y ∈
[
a, xk0

[
and

(f(xk0)− pk(xk0))(f(y)− pk(y)) < 0.

One takes

xk+1
0 = y and ∀j = 1, 2, ..., n+ 1, xk+1

j = xkj−1.

3) y ∈
]
xki , x

k
i+1

[
and

(f(xki )− pk(xki ))(f(y)− pk(y)) ≥ 0.

One takes

xk+1
i = y and ∀j 6= i, xk+1

j = xkj .

4) y ∈
]
xki , x

k
i+1

[
and

(f(xki )− pk(xki ))(f(y)− pk(y)) < 0.

One takes

xk+1
i+1 = y and ∀j 6= i+ 1, xk+1

j = xkj .

5) y ∈
]
xkn+1, b

]
and

(f(xkn+1)− pk(xkn+1))(f(y)− pk(y)) ≥ 0.

One takes

xk+1
n+1 = y and ∀j ≤ n, xk+1

j = xkj .

6) y ∈
]
xk+1
n+1, b

]
and

(f(xkn+1)− pk(xkn+1))(f(y)− pk(y)) < 0.

We take

xk+1
n+1 = y and ∀j ≤ n, xk+1

j = xkj+1.

When the Remez algorithm stops at the end of a finite number of steps,
we acquire directly the best approximation of f .

We are now going to be situated in the case where the algorithm continues
indefinitely and study its convergence.
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Lemma 2.4 Suppose that Remez algorithm does not stop at the end of a
finite number of steps ; then we get that

∀k ≥ 0, εk < εk+1 ≤ inf
q∈Pn

‖f − q‖∞ ,

where
εk =

n+1
max
i=0

∣∣f(xki )− pk(xki )
∣∣ .

Proof. The inequality

εk+1 ≤ inf
q∈Pn

‖f − q‖∞

is an immediate consequence of the Lemma 2.1. It is thus enough to show that
εk < εk+1.

Let i0 be an index such that xk+1
i0

be the new point of the sequence xk+1
i

in comparison with the sequence xki . Even if it means multiplying at the need
f, pk and pk+1 by (−1), we can suppose that

f(xk+1
i0

)− pk(xk+1
i0

) = ‖f − pk‖∞ .

Then we have

∀i 6= i0, f(xk+1
i )− pk(xk+1

i ) = (−1)i−i0 εk,

(according to the property of alternation of the signs).
Also, we have

∀i, f(xk+1
i )− pk+1(x

k+1
i ) = (−1)i−i0 ε̃k+1,

by putting
ε̃k+1 = f(xk+1

i0
)− pk+1(x

k+1
i0

), (= ±εk+1),

we deduct from it that

pk+1(x
k+1
i0

)− pk(xk+1
i0

) = ‖f − pk‖∞ − ε̃k+1, (8)

and
∀i 6= i0, pk+1(x

k+1
i )− pk(xk+1

i ) = (−1)i−i0 (εk − ε̃k+1).

The polynomial pk+1 − pk thus spells under the form

pk+1 − pk = (ε̃k+1 − εk) qk,

where qk is the unique polynomial of Pn such that

∀i 6= i0, qk(xk+1
i ) = (−1)i−i0+1. (9)
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Remark that
qk(xk+1

i0
) > 0,

else, or qk would change (n + 1) time of sign points xk+1
i , or qk would change

(n−1) time of sign and would have a double zero at xk+1
i0

, what is incompatible
with the fact that qk ∈ Pn.

By returning to (6), we obtain,

(ε̃k+1 − εk) qk(xk+1
i0

) = ‖f − pk‖∞ − ε̃k+1 ≥ inf
q∈pn
‖f − q‖∞ − εk+1 ≥ 0,

we deduct that
ε̃k+1 − εk ≥ 0,

hence
εk+1 = ε̃k+1 and εk+1 ≥ εk.

Equality εk+1 = εk implies

‖f − pk‖∞ = εk+1 = εk,

the algorithm would stop then to the kth step.

Remark 2.1 We proved that

0 ≤ ‖f − pk‖∞ − εk+1 ≤ ‖qk‖∞ (εk+1 − εk). (10)

Lemma 2.5 there exists η > 0 such that

∀k ≥ 0, ∀i ∈ {0, 1, ..., n} ,
∣∣xki+1 − xki

∣∣ ≥ η.

Proof. By the absurd. If it was not true, according to the compactness of
[a, b], we could find an increasing sequence of integers (ks)s∈N, such that

∀i = 0, 1, ..., n+ 1, lim
(s−→+∞)

xksi = xi ∈ [a, b] ,

and such that xi, i = 0, 1, ..., n + 1, are not all distinct. In this case, there
exists a polynomial p ∈ Pn such that

∀i = 0, 1, ..., n+ 1, p(xi) = f(xi).

We have then, for all s ≥ 1, according to (7)

0 ≤ ε0 < ε1 ≤ εks =
n+1
max
i=0

∣∣f(xksi )− pks(xksi )
∣∣ ≤ n+1

max
i=0

∣∣f(xksi )− p(xksi )
∣∣

which is incompatible with the fact that

lim
(s−→+∞)

n+1
max
i=0

∣∣f(xksi )− pks(xksi )
∣∣ =

n+1
max
i=0
|f(xi)− p(xi)| = 0.

We have the following theorem :
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Theorem 2.6 There exists an unique polynomial pn of degree ≤ n such
that

∀i = 0, 1, ..., n, pn(xi) = f(xi).

This polynomial spells

pn(x) =
n∑

i=0

f(xi) `i(x),

where we put

`i(x) =
n∏

j=0, j 6=i

x − xj
xi − xj

.

Now we are liable to prove the following theorem :

Theorem 2.7 Let us given a function f ∈ C0([a, b]), there exists one and
only one polynomial of best approximation of f by a polynomial of degree ≤ n
in the sense of the norm of the uniform convergence in [a, b].

This polynomial of best approximation p is characterized by the fact that
f − p equioscillates in (n+ 2) points of [a, b].

Moreover, Remez algorithm provides a sequence of polynomials pk which
converge uniformly to p on [a, b].

Proof. According to Lemma 2.1, the sequence (εk) is increasing and
bounded, thus it is convergent. Let

ε = lim
(k−→+∞)

εk.

According to expression (7) and Theorem 2.6, we get that

qk(x) =
∑
i 6=i0

(−1)i−i0+1
∏

j 6=i, j 6=i0

x − xk+1
j

xk+1
i − xk+1

j

;

using a Lemma 2.4, we deduct that

‖qk‖∞ ≤
(n+ 1)(b− a)n

ηn
= cn (independently of k) ,

which gives us by putting back in (8),

lim
(k−→+∞)

‖f − pk‖∞ = ε (11)

The sequence of polynomials (pk) is thus bounded in the finite dimensional
space Pn.
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By using the compactness of [a, b], we deduct that there exists an increasing
sequence of integers (ks)s∈N, and a polynomial p ∈ Pn such that

lim
(s−→+∞)

pks = p

and
∀i = 0, 1, ..., n+ 1, lim

(s−→+∞)
xksi = xi ∈ [a, b] .

According to Lemma 2.1,

x0 < x1 < ... < xn+1.

Moreover, passing to the limit in the relations, (with k = ks),

εk =
∣∣f(xki )− pk(xki )

∣∣ and f(xki+1)− pk(xki+1) = −(f(xki )− pk(xki )),

we obtain

ε = |f(xi)− p(xi)| and (f − p)(xi+1) = −(f − p)(xi).

Moreover, according to (9),

ε = ‖f − p‖∞ .

The function f − p equioscillates then on (n+ 2) points xi. Therefore p is the
unique polynomial which achieves the best approximation of f .

Moreover, according to expression (9), all limit point of the sequence (pk)
achieves the best approximation of f . The sequence (pk) has thus an unique
limit point. As it belongs to a compact (the sequence is bounded in a finite
dimensional space), it is convergent.

Example 2.8 We know that the (n+ 2)th Chebyshev polynomial is

pn+1(x) = 2−n tn+1(x),

with
tn(x) = cos(narc cosx).

The polynomial pn+1 is then equioscillating at (n+ 2) points,

xk = cos
k π

n + 1
, k = 0, 1, ..., n+ 1,

of [−1, +1].
We deduct from the previous theorem that the polynomial qn of degree n,

qn(x) = xn+1 − pn+1(x),

achieves the best approximation of the function xn+1 on [−1, +1] in Pn in the
uniform convergence meaning.
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2.3 Numerical Experiments

In this section, we apply the above algorithm to several test examples. The
proposed algorithm is programmed in Fortran 95 for working on the windows
XP system. Numerical result prove that the method is efficient.

The computations of best approximations of
√
x in [0, 1] and |x| in [−1, 1]

are equivalent.
Remez himself used his algorithm and this equivalence to compute the best

approximations to |x| by polynomials of odd degrees up to 11 with an accuracy
of 10−5.

Figure (1.Left): Polynomial approximation pn(x) of the function f(x) =√
x on [0, 1] with an accuracy of 10−5 by the Remez algorithm.

Figure (2.Right): Polynomial approximation pn(x) of the function f(x) = |x|
with an accuracy of 10−5 on [−1, 1] by the Remez algorithm.
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Figure (3.Left): Polynomial approximation pn(x) of the function f(x) =
|x|+ exp(−x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.

Figure (4.Right): Polynomial approximation pn(x) of the function f(x) =√
|x|+ exp(x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.

Figure (5.Left): Polynomial approximation pn(x) of the function f(x) =
√
|x|+

exp(−x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.

Figure (6.Right): Polynomial approximation pn(x) of the function f(x) =√
x+ log(x) with an accuracy of 10−5 on [1, 2] by the Remez algorithm.

Figure (7.Left): Polynomial approximation pn(x) of the function f(x) =
sin(x)+exp(−x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.
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Figure (8.Right): Polynomial approximation pn(x) of the function f(x) =
cos(x)+exp(−x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.

Figure (9.Left): Polynomial approximation pn(x) of the function f(x) =
sin(x)+exp(−x) with an accuracy of 10−10 on [−1, 1] by the Remez algorithm.

Figure (10.Right): Polynomial approximation pn(x) of the function f(x) =
log(x) + 5x+ 1 with an accuracy of 10−4 on [1, 2] by the Remez algorithm.

3 Conclusion

The computations of best approximations of our functions in these examples
are best and give best results.
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Paris, (1905).

[2] E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill,
(1966).

[3] W.J. Cody, A survey of practical rational and polynomial approximation
of functions, SIAM Review, 12(3) (1970), 400-423.

[4] N. Daili, Functional Numerical Analysis: Theory and Algorithms, (Chap-
ter: Uniform approximations), Book in Preparation, (2013).



30 N. Daili et al.

[5] P.J. Davis, Interpolation and Approximation, Dover Publications, New
York, (1975).

[6] C.J. de la Vallée Poussin, Sur les polynomes d’approximation et la
représentation approchée d’un angle, Académie royale de belgique, Bul-
letins de la Classe des Sciences, 12(1910), 808-844.

[7] J.P. Laurent, Approximation et Optimisation, Hermann Paris, (1970).

[8] G.G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston,
(1966).

[9] G. Meinardus, Approximation of Functions: Theory and Numerical Meth-
ods, Springer, Heidelberg, (1967).

[10] H.N. Mhaskar and D.V. Pai, Fundamentals of Approximation Theory,
Narosa Publishing House, New Delhi, (2000).

[11] R. Pachón and L.N. Trefethen, Barycentric-Remez algorithms for test
polynomial approximation in the chebfun system, BIT Numer. Math.,
49(2009), 721-741.

[12] T.W. Parks and J.H. McClellan, Chebyshev approximation for nonre-
cursive digital filters with linear phase, IEEE Trans. Circuit Theory,
19(1972), 189-194.

[13] M.J.D. Powell, Approximation Theory and Methods, Cambridge Univer-
sity Press, Cambridge, UK, (1981).

[14] P. Rabinowitz, Applications of linear programming to numerical analysis,
SIAM Review, 10(1968), 121-159.

[15] E.Y. Remez, Fundamentals of Numerical Methods for Chebyshev Approx-
imations, Naukova Dumka, Kiev, (1969).
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