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Abstract

The paper studies combined effects of MHD and radiation on unsteady tran-
sient free convection flow of a viscous, incompressible, electrically conducting
and radiating fluid between two long vertical parallel plates with constant tem-
perature and mass diffusion, under the assumption that the induced magnetic
field is negligible. The Laplace transform method has been used to find the so-
lutions for the velocity, temperature and concentration profiles. The velocity,
temperature, concentration and skin-friction are studied for different parame-
ters like Prandtl number, Schmidt number, magnetic parameter, buoyancy ratio
parameter and time.

Keywords: Heat and Mass Transfer, MHD, Mass Diffusion, Thermal
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1 Introduction

MHD is related to engineering problems such as plasma confinement,
liquid-metal cooling of nuclear reactors, magnetic control of molten iron flow
in steel industry and electromagnetic casting (among others). The fluid core of
the Earth and other planets is theorized to be a huge MHD dynamo that gen-
erates the Earth’s magnetic field due to the motion of liquid iron. On the other
hand, radiation in free convection has been studied by many authors because
of its applications in many engineering and industrial processes such as nuclear
power plant, solar power technology, steel industry, fossil fuel combustion, etc.
Ostrach[24] has studied laminar free convection flow of a viscous incompressible
fluid between two vertical walls with constant wall temperature. Ostrach[25]
and Sparrow et al.[11] have studied the combined effect of a steady free and
forced convection laminar flow and heat transfer between two vertical paral-
lel walls. Bodoia and Osterle[14], Aung[26] and Aung et al.[27], Miyatake and
Fujii[20-22], Miyatake et al.[23], Lee and Yan[16], Higuera and Ryazantsev[12],
Campo et al.[3], Pantokratoras[4] have presented their results for a steady free
convection flow between vertical parallel plates by considering different condi-
tions on the wall tenperature. Kettleborought[15] has described numerically
the transient laminar two-dimensional motion of a viscous incompressible fluid
between two heated vertical plates in which the motion is generated by a tem-
perature gradient perpendicular to the direction of the body force.

Nelson and Wood[8-10] have presented numerical analysis of develop-
ing laminar flow between vertical parallel plates for combined heat and mass
transfer natural convection with uniform wall temperature/concentration and
uniform heat/mass flux boundary conditions. They also have presented an
analytical solution for the fully developed combined heat and mass transfer
natural convection between vertical parallel plates with asymmetric boundary
conditions. Unsteady free convection couette flow between two vertical parallel
plates has been studied by Singh[1]. Singh et al.[2] have studied the transient
free convection flow of a viscous incompressible fluid between two vertical par-
allel plates when the walls are heated asymmetrically. Lee[17] has studied a
combined numerical and theoretical investigation of laminar natural convection
heat and mass transfer in open vertical parallel plates with unheated entry and
unheated exit for various thermal and concentration boundary conditions. Un-
steady MHD free convection couette flow between two vertical parallel plates
has been studied by Jha.[6].

Desrayaud and Lauriat[13] have studied the heat and mass transfer anal-
ogy for condensation of humid air in a vertical parallel plate channel. Narahari
et al.[18] have studied the transient free convection flow between two vertical
parallel plates with constant heat flux at one boundary and the other main-
tained at constant temperature. Jha et al.[7] have presented the transient free
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convection flow in a vertical channel as a result of symmetric heating of the
channel walls. Sing and Paul[5] have presented the transient free convection
flow of a viscous and incompressible fluid between two vertical parallel walls as
a result of asymmetric heating or cooling of the walls. Narahari[19] has stud-
ied the transient free convection flow of a viscous incompressible fluid between
two infinite vertical parallel plates in the presence of constant temperature and
mass diffusion.

The object of the present work is to study the combined effects of MHD and
radiation on unsteady transient free convection flow between two long vertical
parallel plates with constant temperature and mass diffusion, when the fluid
is viscous, incompressible and electrically conducting.

2 Mathematical Analysis

We consider an unsteady transient free convection flow of a viscous,
incompressible, electrically conducting and radiating fluid between two long
vertical parallel plates with constant temperature and mass diffusion in the
presence of transverse magnetic field. In the present problem, we assume that
the magnetic Reynolds number is so small that the induced magnetic field can
be neglected in comparison to the applied one. A magnetic field (fixed relative
to the plates) of uniform strength B0 is assumed to be applied transversely to
the plates. The x

′
- axis is considered along one of the vertical plates and the

y
′
- axis is taken normal to the plates. Initially, the temperature of the fluid

and the plates are same as T
′
d and the concentration of the fluid is C

′
d. At time

t
′
> 0, the temperature of the plate and concentration of the fluid at y

′
= 0 are

raised to T
′
w and C

′
w respectively, causing the flow of free convection currents.

The governing equations under the usual Boussinesq’s approximation are as
follows:

∂u
′

∂t′
= gβ

(
T
′ − T ′d

)
+ gβ∗

(
C
′ − C ′d

)
+ ν

∂2u
′

∂y′2
− σβ2

0u
′

ρ
, (1)

ρCp
∂T

′

∂t′
= k

∂2T
′

∂y′2
− ∂qr
∂y′

, (2)

∂C
′

∂t′
= D

∂2C
′

∂y′2
. (3)

The initial and boundary condition are as follows:

t
′ ≤ 0 : u

′
= 0, T

′
= T

′
d, C

′
= C

′
d for 0 ≤ y

′ ≤ d,
t
′
> 0 : u

′
= 0, T

′
= T

′
w, C

′
= C

′
w at y

′
= 0,

u
′
= 0, T

′
= T

′
d, C

′
= C

′
d at y

′
= d.

 (4)
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Where u
′

is the velocity of the fluid, g-the acceleration due to gravity,
β-volumetric coefficient of thermal expansion, t

′
-time, d-the distance between

two vertical plates, T
′
-the temperature of the fluid, T

′
d-the temperature of the

plate at y
′
= d, β∗-volumetric coefficient of concentration expansion, C

′
-species

concentration in the fluid, C
′
d-species concentration at the plate y

′
= d, ν-the

kinematic viscosity, y
′
-the coordinate axis normal to the plates, ρ-the density,

Cp- the specific heat at constant pressure, k-the thermal conductivity of the
fluid, D- the mass diffusion coefficient, T

′
w- temperature of the plate at y

′
= 0,

C
′
w-species concentration at the plate y

′
= 0, B0-the uniform magnetic field,

σ-electrical conductivity and qr-radiative heat flux.

The local radiant in case of an optically thin gray fluid is expressed by

∂qr
∂y′

= −4a∗σ(T
′4
d − T

′4) (5)

It is assumed that the temperature difference within the flow are sufficiently
small, so that T

′4 may be expressed as a linear function of the temperature.
Thus expanding T

′4 in a Taylar’s series about T
′
d and neglecting higher order

terms, we obtain

T
′4 = 4T

′3
d T

′ − 3T
′4
d (6)

Using the equations (5) and (6), equation (2) becomes

ρCp
∂T

′

∂t′
= k

∂2T
′

∂y′2
− 16a∗σT

′3
d (T

′ − T ′d) (7)

Introducing the following non-dimensional quantities:

y = y
′

d
, t = t

′
ν
d2
, u = u

′
ν

d2gβ(T ′w−T
′
d
)

= u
′
d

νGr
, Gr =

gβ(T
′
w−T

′
d)d

3

ν2
,

θ =
T
′−T ′d

T ′w−T
′
d

, P r = µCp

k
, C =

C
′−C′d

C′w−C
′
d

, Gm =
gβ∗(C

′
w−C

′
d)d

3

ν2
,

Sc = ν
D
, N = Gm

Gr
,M =

σB2
0d

2

µ
, µ = ρν, F =

16a∗σd2T
′3
d

k
.


(8)

Where u is the dimensionless velocity, y-dimensionless coordinate axis
normal to the plates, t-dimensionless time, θ-the dimensionless temperature,
C-the dimensionless concentration, Gr-thermal Grashof number, Gm-mass
Grashof number, µ-the coefficient of viscosity, Pr-the Prandtl number, Sc-
the Schmidt number, N -the buoyancy ratio parameter, M -magnetic parame-
ter, a∗-absorption coefficient and F -radiation parameter. Then the model is
transformed in to the following non-dimensional form of equations:

∂u

∂t
= θ +NC +

∂2u

∂y2
−Mu, (9)
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∂θ

∂t
=

1

Pr

∂2θ

∂y2
− F

Pr
θ, (10)

Sc
∂C

∂t
=
∂2C

∂y2
. (11)

The initial and boundary conditions become:

t ≤ 0 : u = 0, θ = 0, C = 0 for 0 ≤ y ≤ 1,
t > 0;u = 0, θ = 1, C = 1 at y = 0,

u = 0, θ = 0, C = 0 at y = 1.

 (12)

The final solution of equations (9), (10) and (11) with boundary condition (12)
is as under:

Case I : Pr 6= 1, Sc 6= 1

u(t, y) =
∑∞
n=0[

eRt

2L
{F1(a, 1, c1, t)− F1(b, 1, c1, t)}

+ NeQt

2M
{F1(a, 1, c2, t)− F1(b, 1, c2, t)} −

(
1
2L

+ N
2M

)
{F1(a, 1,M, t)

− F1(b, 1,M, t)} − eRt

2L
{F1(a, Pr, c3, t)− F1(b, Pr, c3, t)}

+ 1
2L
{F1(a, Pr, Z, t)− F1(b, Pr, Z, t)} − NeQt

2M
{F1(a, Sc,Q, t)

−F1(b, Sc,Q, t)}+ N
2M
{F1(a, Sc, 0, t)− F1(b, Sc, 0, t)}], (13)

θ(t, y) =
∑∞
n=0[

1
2
{F1(a, Pr, Z, t)− F1(b, Pr, Z, t)}], (14)

C(t, y) =
∑∞
n=0[

1
2
{F1(a, Sc, 0, t)− F1(b, Sc, 0, t)}]. (15)

Case II : Pr 6= 1, Sc = 1

u(t, y) =
∑∞
n=0[

eRt

2L
{F1(a, 1, c1, t)− F1(b, 1, c1, t)}

−
(

1
2L

+ N
2M

)
{F1(a, 1,M, t)− F1(b, 1,M, t)} − eRt

2L
{F1(a, Pr, c3, t)

− F1(b, Pr, c3, t)}+ 1
2L
{F1(a, Pr, Z, t)− F1(b, Pr, Z, t)}

+ N
2M
{F1(a, 1, 0, t)− F1(b, 1, 0, t)}], (16)

θ(t, y) =
∑∞
n=0[

1
2
{F1(a, Pr, Z, t)− F1(b, Pr, Z, t)}], (17)

C(t, y) =
∑∞
n=0[

1
2
{F1(a, 1, 0, t)− F1(b, 1, 0, t)}]. (18)

Case III : Pr = 1, Sc 6= 1

u(t, y) =
∑∞
n=0[

NeQt

2M
{F1(a, 1, c2, t)− F1(b, 1, c2, t)}

−
(

1
2L

+ N
2M

)
{F1(a, 1,M, t)− F1(b, 1,M, t)}+ 1

2L
{F1(a, 1, F, t)

− F1(b, 1, F, t)} − NeQt

2M
{F1(a, Sc,Q, t)− F1(b, Sc,Q, t)}
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+ N
2M
{F1(a, Sc, 0, t)− F1(b, Sc, 0, t)}], (19)

θ(t, y) =
∑∞
n=0[

1
2
{F1(a, 1, F, t)− F1(b, 1, F, t)}], (20)

C(t, y) =
∑∞
n=0[

1
2
{F1(a, Sc, 0, t)− F1(b, Sc, 0, t)}]. (21)

Case IV : Pr = 1, Sc = 1

u(t, y) =
∑∞
n=0[

(
1
2L

+ N
2M

)
{F1(b, 1,M, t)− F1(a, 1,M, t)}

+ 1
2L
{F1(a, 1, F, t)− F1(b, 1, F, t)}+ N

2M
{F1(a, 1, 0, t)− F1(b, 1, 0, t)}], (22)

θ(t, y) =
∑∞
n=0[

1
2
{F1(a, 1, F, t)− F1(b, 1, F, t)}], (23)

C(t, y) =
∑∞
n=0[

1
2
{F1(a, 1, 0, t)− F1(b, 1, 0, t)}]. (24)

3 Skin-Friction

The skin-friction has been studied for Sc 6= 1 and Pr 6= 1. Therefore using the
expressions (13) the skin-friction τ0 and τ1 in non-dimensional form are given
by:

τ0 =
τ
′
0ν

dgβ(T ′w−T
′
d
)

=
(
du
dy

)
y=0

=
∑∞
n=0[− eRt

2L
{F2(d1, 1, c1, t) + F2(d2, 1, c1, t)}

− NeQt

2M
{F2(d1, 1, c2, t) + F2(d2, 1, c2, t)}+

(
1
2L

+ N
2M

)
{F2(d1, 1,M, t)

+ F2(d2, 1,M, t)}+ eRt

2L
{F2(d1, P r, c3, t) + F2(d2, P r, c3, t)}

− 1
2L
{F2(d1, P r, Z, t) + F2(d2, P r, Z, t)}+ NeQt

2M
{F2(d1, Sc,Q, t)

+ F2(d2, Sc,Q, t)} − N
2M
{F2(d1, Sc, 0, t) + F2(d2, Sc, 0, t)}],

τ1 = −
(
du
dy

)
y=1

=
∑∞
n=0[

eRt

L
F2(d3, 1, c1, t) + NeQt

M
F2(d3, 1, c2, t)−

(
1
L

+ N
M

)
F2(d3, 1,M, t)

− eRt

L
F2(d3, P r, c3, t)+

1
L
F2(d3, P r, Z, t)−NeQt

M
F2(d3, Sc,Q, t)+

N
M
F2(d3, Sc, 0, t)].

Where a = 2n + y, b = 2 + 2n − y, d1 = 2n, d2 = 2 + 2n, d3 = 1 + 2n, L =
M−F,R = L

Pr−1 , Q = M
Sc−1 , Z = F

Pr
, c1 = M+R, c2 = M+Q, and c3 = Z+R.

Other symbols/expressions are defined in appendix.
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4 Result and Discussions

The numerical values of the velocity, concentration, temperature and
skin-friction are computed for different parameters like Prandtl number Pr,
Schmidt number Sc, magnetic parameter M , buoyancy ratio parameter N ,
time t and Radiation parameter F . When N = 0, there is no mass transfer
and the buoyancy force is due to the thermal diffusion only. N > 0 means
that mass buoyancy force acts in the same direction of thermal buoyancy
force, while N < 0 means that mass buoyancy force acts in the opposite di-
rection. The values of the main parameters considered are: the magnetic
parameter M = 1.0, 2.0, 3.0; time t = 0.2, 0.4, 0.6; buoyancy ratio parameter
N = 0.2, 0.4,−0.2,−0.4; Prandtl number Pr = 0.71(for air), 7 (for water) and
3 (for the saturated liquid Freon at 273.3K); Schmidt number Sc = 0.22 (for
Hydrogen), 0.78 (for Ammonia) and 2.01 (for Ethyl Benzene) and radiation
parameter F = 2.0, 3.0, 4.0, 7.0, 10. Graphs have been plotted for the velocity,
concentration and temperature profiles to show the effects of different param-
eters.

Figure 1 and 2 show the effect of time t and Schmidt number Sc on
the concentration of fluid respectively. It is observed that the concentration
increases with decrease of Schmidt number, but it increases with increase of
time t.

Figure 3, 4 and 5 show the effect of time t, Prandtl numberPr and Radia-
tion parameter F on the temperature of fluid respectively. It is observed that
the temperature increases when Prandtl number and Radiation Parameter are
decreased, but it increases with increase of time t.

Figure 6, 7, 8, 9, 10 and 11 show the effect of Prandtl numberPr, buoy-
ancy ratio parameter N , time t, Radiation Parameter F , magnetic parameter
M and Schmidt number Sc on the velocity of fluid respectively. It is observed
that velocity increases when Prandtl number, Radiation Parameter, magnetic
parameter and Schmidt number are decreased, but it increases with increase
of time t. It is also observed that velocity increases in case of aiding flows
(N > 0) and decreases in case of opposing flows (N < 0).

The numerical values of skin-friction τ0 and τ1 are presented in Table
-1. From Table, it is observed that the skin-friction on the both plates decrease
with of increase of magnetic parameter M , Prandtl number Pr, Schmidt num-
ber Sc and Radiation Parameter F , but it increases with increase of time t.
It is also observed that skin-friction increases in the presence of aiding flows
(N > 0) and decreases in the presence of opposing flows (N < 0).



32 U.S. Rajput et al.

Figure 1: Concentration profiles

Table 1: Skin-friction for Pr 6= 1 and Sc 6= 1
M N Sc Pr F t τ0 τ1
1.0 0.2 0.22 7.0 2.0 0.2 0.191118 0.0335431
1.0 0.2 0.22 3.0 2.0 0.2 0.232295 0.0497192
1.0 0.2 0.22 0.71 2.0 0.2 0.296192 0.1047280
1.0 0.4 0.22 0.71 2.0 0.2 0.353273 0.1290260
1.0 −0.2 0.22 0.71 2.0 0.2 0.182029 0.0561312
1.0 −0.4 0.22 0.71 2.0 0.2 0.124948 0.0318331
1.0 0.2 0.22 7.0 2.0 0.4 0.243912 0.0626498
1.0 0.2 0.22 7.0 2.0 0.6 0.274312 0.0858964
1.0 0.2 0.22 0.71 10.0 0.2 0.247005 0.0722934
1.0 0.2 0.22 0.71 7.0 0.2 0.261847 0.0814779
1.0 0.2 0.22 0.71 4.0 0.2 0.280637 0.0938945
1.0 0.2 0.22 0.71 3.0 0.2 0.288058 0.0990061
3.0 0.2 0.22 7.0 4.0 0.2 0.180857 0.0288656
2.0 0.2 0.22 7.0 4.0 0.2 0.184936 0.0310091
1.0 0.2 0.22 7.0 4.0 0.2 0.189322 0.0333807
1.0 0.2 2.01 7.0 2.0 0.2 0.174576 0.0177436
1.0 0.2 0.78 7.0 2.0 0.2 0.184792 0.0272370
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Figure 2: Concentration profiles

Figure 3: Temperature profiles

Figure 4: Temperature profiles



34 U.S. Rajput et al.

Figure 5: Temperature profiles

Figure 6: Velocity profiles

Figure 7: Velocity profiles
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Figure 8: Velocity profiles

Figure 9: Velocity profiles

Figure 10: Velocity profiles
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Figure 11: Velocity profiles

5 Conclusion

In the present paper, a theoretical analysis has been done to study the
combined effects of MHD and radiation on unsteady transient free convec-
tion flow of a viscous, incompressible, electrically conducting fluid between
two long vertical parallel plates with constant temperature and mass diffusion.
The solutions for the model have been determined by using Laplace transform
method. The conclusions of the study are as follows:

• The cocentration and Temperature of the fluid increase with increase of
time t.

• The cocentration of the fluid increases with decrease of Schmidt number
Sc.

• The Temperature of the fluid increases with decrease of Prandtl number
Pr and radiation parameter F .

• The velocity and skin-friction of the fluid increase in case of aiding flows
(N > 0) and decrease with opposing flows (N < 0).

• The velocity and skin-friction of the fluid increase with increasing the
value of time t.

• The velocity and skin-friction of the fluid increase with decrease of Prandtl
numberPr, Schmidt number Sc, magnetic parameter M and radiation
parameter F .
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Appendix:

F1(D1, D2, D3, D4) = e−a3erfc(a1) + ea3erfc(a2),

F2(D1, D2, D3, D4) = 1√
πD4

e−a3−a
2
1
√
D2 + 1√

πD4
ea3−a

2
2
√
D2

+ e−a3
√
D2D3erfc(a1)− ea3

√
D2D3erfc(a2).

Here a1 =
(
D1
√
D2

2
√
D4
−
√
D3D4

)
, a2 =

(
D1
√
D2

2
√
D4

+
√
D3D4

)
and a3 = D1

√
D2D3
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