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Abstract

In the present paper we study lightlike submanifolds of almost paracontact
metric manifolds. We define invariant lightlike submanifolds. We study radical
transversal lightlike submanifolds of para-Sasakian manifolds and investigate
the geometry of distributions. Also we introduce a general notion of paracontact
Cauchy-Riemann (CR) lightlike submanifolds and we derive some necessary
and sufficient conditions for integrability of various distributions of paracontact
CR-lightlike submanifold of a para-Sasakian manifold.
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1 Introduction

Given a semi-Riemannian manifold, one can consider its lightlike submanifold
whose study is important from application point of view and difficult in the
sense that the intersection of normal vector bundle and tangent bundle of these
submanifolds is nonempty. This unique feature makes the study of lightlike
submanifolds different from the study of non-degenerate submanifolds. The
general theory of lightlike submanifolds was developed by D. N. Küpeli [2], K.
L. Duggal and A. Bejancu [1]. Since then many authors have studied lightlike
submanifolds of semi-Riemannian manifolds and especially indefinite Sasakian
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manifolds ([4], [5], [6], [7]). For differential geometry of lightlike submanifolds
we refer the book [3].

The study of paracontact geometry was initiated by S. Kaneyuki and M.
Konzai in [8]. The authors defined almost paracontact structure on a pseudo-
Riemannian manifold M of dimension (2n + 1) and constructed the almost
paracomplex structure on M2n+1×R. Recently, S. Zamkovoy [9] studied para-
contact metric manifolds and some remarkable subclasses like para-Sasakian
manifolds. Especially, in the recent years, many authors ([10], [11], [12], [13],
[14]) have pointed out the importance of paracontact geometry, and in par-
ticular of para-Sasakian geometry, by several papers giving the relationships
with the theory of para-Kähler manifolds and its role in pseudo-Riemannian
geometry and mathematical physics.

These circumstances motivated us to initiate the study of lightlike geom-
etry of almost paracontact metric manifolds. In the present paper we study
the lightlike submanifolds of para-Sasakian manifolds and obtain several ge-
ometric results. The paper is organized as follows. Section 1 is devoted to
some basic definitions for almost paracontact metric manifolds and lightlike
submanifolds, respectively. In section 2, we define invariant lightlike subman-
ifolds of a para-Sasakian manifold and prove that if a lightlike submanifold of
a para-Sasakian manifold is totally umbilical, then it is totally geodesic and
invariant. In section 3, we introduce paracontact CR-lightlike submanifolds of
a para-Sasakian manifold and investigate integrability conditions for certain
natural distributions arising on paracontact CR-lightlike submanifolds. Sec-
tion 4 contains definition of radical transversal lightlike submanifolds of para-
Sasakian manifolds and an example. It is proved that there exist no isotropic
or totally lightlike radical transversal lightlike submanifold of a para-Sasakian
manifold. Moreover, we obtain some necessary and sufficient conditions for
the radical distrubiton and screen distrubiton of a radical transversal lightlike
submanifold to be integrable.

2 Preliminaries

2.1 Almost Paracontact Metric Manifolds

A differentiable manifold M̄ of dimension (2n+1) is called almost paracontact
manifold with the almost paracontact structure (φ̄, ξ, η) if it admits a tensor
field φ̄ of type (1, 1), a vector field ξ, a 1−form η satisfying the following
conditions [8]:

φ̄2 = I − η ⊗ ξ, (1)

η(ξ) = 1, (2)

φ̄ξ = 0, (3)
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η ◦ φ̄ = 0, (4)

where I denotes the identity transformation. Moreover, the tensor field φ̄
induces an almost paracomplex structure on the paracontact distribution D =
ker η, i.e. the eigendistributions D± corresponding to the eigenvalues ±1 of φ̄
are both n−dimensional.

If a (2n+ 1)−dimensional almost paracontact manifold M̄ with an almost
paracontact structure (φ̄, ξ, η) admits a pseudo-Riemannian metric ḡ such that
[9]

ḡ(φ̄X, φ̄Y ) = −ḡ(X, Y ) + η(X)η(Y ), X, Y ∈ Γ(TM̄), (5)

then we say that M̄ is an almost paracontact metric manifold with an almost
paracontact metric structure (φ̄, ξ, η, ḡ) and such metric ḡ is called compatible
metric. Any compatible metric ḡ is necessarily of signature (n+ 1, n).

From (5) it can be easily seen that [9]

ḡ(φ̄X, Y ) = −ḡ(X, φ̄Y ), (6)

ḡ(X, ξ) = η(X), (7)

for any X, Y ∈ Γ(TM̄). The fundamental 2-form of M̄ is defined by

Φ(X, Y ) = ḡ(X, φ̄Y ).

An almost paracontact metric structure becomes a paracontact metric structure
if ḡ(X, φ̄Y ) = dη(X, Y ), for all X, Y ∈ Γ(TM̄), where dη(X, Y ) = 1

2
{Xη(Y )−

Y η(X)− η([X, Y ])}.
For a (2n+1)−dimensional manifold M̄ with an almost paracontact metric

structure (φ̄, ξ, η, ḡ), one can also construct a local orthonormal basis which is
called φ̄−basis (Xi, φ̄Xi, ξ) (i = 1, 2, ..., n) [9].

An almost paracontact metric structure (φ̄, ξ, η, ḡ) is a para-Sasakian man-
ifold if and only if [9]

(∇̄X φ̄)Y = −ḡ(X, Y )ξ + η(Y )X, X, Y ∈ Γ(TM̄), (8)

where X, Y ∈ Γ(TM̄) and ∇̄ is a Levi-Civita connection on M̄ .
From (8), it can be seen that

∇̄Xξ = −φ̄X. (9)

Example 2.1 Let M̄ = R2n+1 be the (2n + 1)−dimensional real number
space with standard coordinate system (x1, y1, x2, y2, ..., xn, yn, z). Defining

φ
∂

∂xα
=

∂

∂yα
, φ

∂

∂yα
=

∂

∂xα
, φ

∂

∂z
= 0,

ξ =
∂

∂z
, η = dz, (10)

g = η ⊗ η +
n∑

α=1

dxα ⊗ dxα −
n∑

α=1

dyα ⊗ dyα,
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where α = 1, 2, ..., n, then the set (φ̄, ξ, η, ḡ) is an almost paracontact metric
structure on R2n+1.

2.2 Lightlike Submanifolds

We recall notations and fundamental equations for lightlike submanifolds [1].

Let (M̄, ḡ) be a real (n+m)−dimensional semi-Riemannian manifold with
index q, such that m,n ≥ 1, 1 ≤ q ≤ m+n−1 and (M, g) be an m−dimensional
submanifold of M̄ , where g is the induced metric of ḡ on M . If ḡ is degenerate
on the tangent bundle TM of M then M is called a lightlike submanifold of
M̄. For a degenerate metric g on M

TM⊥ = ∪{u ∈ TxM̄ : ḡ(u, v) = 0,∀v ∈ TxM,x ∈M}, (11)

is a degenerate n−dimensional subspace of TxM̄ . Thus, both TxM and TxM
⊥

are degenerate orthogonal subspaces but no longer complementary. In this
case, there exists a subspace RadTxM = TxM ∩ TxM⊥ which is known as
radical (null) space. If the mapping RadTM : x ∈ M → RadTxM , defines a
smooth distribution, called radical distribution, on M of rank r > 0 then the
submanifold M of M̄ is called an r−lightlike submanifold.

Let S(TM) be a screen distribution which is a semi-Riemannian comple-
mentary distribution of RadTM in TM. This means that

TM = S(TM)⊥RadTM, (12)

and S(TM⊥) is a complementary vector subbundle to RadTM in TM
⊥

. Let
tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles
to TM in TM̄ |M and RadTM in S(TM⊥)⊥, respectively. Then, we have

tr(TM) = ltr(TM)⊥S(TM⊥), (13)

TM̄ |M= TM ⊕ tr(TM) = {RadTM ⊕ ltr(TM)}⊥S(TM)⊥S(TM⊥). (14)

Theorem 2.2 [1] Let (M, g, S(TM), S(TM⊥)) be an r−lightlike submani-
fold of a semi-Riemannian manifold (M̄, ḡ). Suppose U is a coordinate neigh-
bourhood of M and Ei, i ∈ {1, ..., r} is a basis of Γ(RadTM))|U .Then, there
exist a complementary vector subbundle ltr(TM) of RadTM in S(TM⊥)⊥ and
a basis {Ni}, i ∈ {1, ..., r} of Γ(ltr(TM) |U such that

ḡ(Ni, Ej) = δij, ḡ(Ni, Nj) = 0, (15)

for any i, j ∈ {1, ..., r}.
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We say that a submanifold (M, g, S(TM), S(TM⊥)) of M̄ is
Case 1: r−lightlike if r < min{m,n},
Case 2: Coisotropic if r = n < m; S(TM⊥) = {0},
Case 3: Isotropic if r = m < n; S(TM) = {0},
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM⊥).
Let ∇̄ be the Levi-Civita connection on M̄ . Then, according to the decom-

position (14), The Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (16)

∇̄XU = −AUX +∇t
XU, ∀X ∈ Γ(TM), U ∈ Γ(tr(TM)), (17)

where {∇XY,AUX} and {h(X, Y ),∇t
XU} belong to Γ(TM) and Γ(tr(TM)),

respectively. ∇̄ and ∇t are linear connections on M and on the vector bundle
tr(TM), respectively. According to (13), considering the projection morphisms
L and S of tr(TM) on ltr(TM) and S(TM⊥), respectively, (16) and (17)
become

∇̄XY = ∇XY + hl(X, Y ) + hs(X, Y ), (18)

∇̄XN = −ANX +∇l
XN +Ds(X,N), (19)

∇̄XW = −AWX +∇s
XW +Dl(X,W ), (20)

for any X, Y ∈ Γ(TM), N ∈ Γ(ltr(TM)), and W ∈ Γ(S(TM⊥)), where
hl(X, Y ) = L(h(X, Y )), hs(X, Y ) = S(h(X, Y )),∇l

XN,D
l(X,W ) ∈ Γ(ltr(TM)),

∇s
XW,D

s(X,N) ∈ Γ(S(TM⊥)) and ∇XY,ANX,AWX ∈ Γ(TM).
Let P be a projection of TM on S(TM). Then, using the decomposition

in (12) we can write

∇XPY = ∇∗XPY + h∗(X,PY ), (21)

∇XE = −A∗EX +∇∗tXE, (22)

for any X, Y ∈ Γ(TM) and E ∈ Γ(RadTM), where {∇∗XPY,A∗EX} and
{h∗(X,PY ),∇∗tXE} belong to Γ(S(TM)) and Γ(RadTM), respectively.

By using the equtions given above, we obtain

ḡ(hl(X,PY ), E) = ḡ(A∗EX,PY ), (23)

ḡ(h∗(X,PY ), N) = ḡ(ANX,PY ), (24)

ḡ(hl(X,E), E) = 0, A∗EE = 0. (25)

In general, the induced connection ∇ on M is not metric connection. Since
∇̄ is a metric connection, by using (18), we get

(∇Xg)(Y, Z) = ḡ(hl(X, Y ), Z) + ḡ(hl(X,Z), Y ). (26)

However, it is important to note that ∇∗ is a metric connection on S(TM).
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3 Invariant Submanifolds

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of (M̄, ḡ). For any
vector field X tangent to M , we put

φ̄X = PX + FX, (27)

where PX and FX are tangential and transversal components of φ̄X, respec-
tively. It is known that [15] if the structure vector field ξ is tangent to the
submanifold M , then ξ ∈ S(TM). It follows that M is called invariant in M̄
if φ̄X ∈ Γ(TM), that is, φ̄X = PX, for all X ∈ Γ(TM).

For any U ∈ Γ(tr(TM)), we put

φ̄U = tU + fU, (28)

where tU and fU are tangential and transversal components of φ̄U , respec-
tively. Clearly, the submanifold M which is tangent to the structure vector
field ξ is invariant in M̄ if φ̄U = fU . Therefore, if M is an invariant subman-
ifold of a para-Sasakian manifold M̄ , then we have

F = 0 and t = 0.

For any vector fields U,U
′ ∈ Γ(tr(TM)), we have ḡ(φ̄U, U

′
) = ḡ(fU, U

′
), which

shows that ḡ(fU, U
′
) = −ḡ(U, fU

′
). Also, for any X ∈ Γ(TM), we have

ḡ(FX,U) + ḡ(X, tU) = 0. (29)

Now, define covariant derivatives of P , T , F and f , respectively as

(∇XP )Y = ∇XPY − P∇XY, (30)

(∇Xt)U = ∇XtU − t∇t
XU, (31)

(∇XF )Y = ∇t
XFY − F∇XY, (32)

(∇Xf)U = ∇t
XfU − f∇t

XU. (33)

From (8) we have

−ḡ(X, Y )ξ + η(Y )X = ∇̄X φ̄Y − φ̄∇̄XY

= ∇XPY + h(X,PY )− AFXY +∇t
XFY

−P∇XY − F∇XY − th(X, Y )− fh(X, Y ).

Using (30), (32) and comparing the tangential and transversal components, we
get

(∇XP )Y = −ḡ(X, Y )ξ + η(Y )X + AFXY + th(X, Y ), (34)

(∇XF )Y = −h(X,PY ) + fh(X, Y ). (35)
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Lemma 3.1 Let M be an invariant lightlike submanifold of a para-Sasakian
manifold (M̄, φ̄, ξ, η, ḡ). Then we have

hl(X, ξ) = 0, hs(X, ξ) = 0, ANξ = 0, AW ξ = 0, (36)

φ̄h(X, Y ) = h(φ̄X, Y ) = h(X, φ̄Y ), (37)

for all X, Y ∈ Γ(TM).

Proof. For an invariant lightlike submanifold, from (9) and (18) we have

∇Xξ = −PX, hl(X, ξ) = 0, hs(X, ξ) = 0. (38)

Now, let N ∈ Γ(ltr(TM)), then −ḡ(N, φ̄X) = ḡ(N, ∇̄Xξ). Since M is tangent
to the structure vector field ξ and ∇̄ is a metric connection, we have

ḡ(∇̄XN, ξ) + ḡ(N, ∇̄Xξ) = 0.

Then, we write
ḡ(N, φ̄X) = ḡ(∇̄XN, ξ) = ḡ(ANX, ξ). (39)

Also, using (18) we have

ḡ(N, φ̄X) = −ḡ(N, ∇̄Xξ)− ḡ(hl(X, ξ), N). (40)

Therefore, from (39) and (40), we obtain

ḡ(ANX, ξ) = ḡ(N, ∇̄Xξ) + ḡ(hl(X, ξ), N). (41)

Using (38) in (41), we get

ḡ(ANX, ξ) = −ḡ(N,PX). (42)

Replacing X by ξ gives
ANξ = 0. (43)

Similarly, let W ∈ Γ(S(TM⊥)). Then, we obtain

ḡ(W, φ̄X) = −ḡ(AWX, ξ), (44)

and
ḡ(W, φ̄X) = ḡ(hs(X, ξ),W ). (45)

Thus, from (44) and (45), we have

ḡ(AWX, ξ) = −ḡ(hs(X, ξ),W ). (46)

By using (38) in (46), we get

AWX = 0.

In particular, we have
AW ξ = 0.

For an invariant lightlike submanifold, since F = 0, then (32) implies (37).
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Proposition 3.2 Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike sub-
manifold of a para-Sasakian manifold M̄ . If the second fundamental forms hl

and hs of M are parallel, then M is totally geodesic.

Proof. Assume that hl is parallel. Then, we have

(∇t
Xh

l)(Y, ξ) = ∇Xh
l(Y, ξ)− hl(∇XY, ξ)− hl(Y,∇Xξ) = 0. (47)

Using (36) and (9), we get hl(Y, PX) = 0. Similarly, we have hs(Y, PX) = 0,
which completes the proof.

Definition 3.3 [16] A lightlike submanifold (M, g) of a semi-Riemannian
manifold (M̄, ḡ) is totally umbilical in M̄ if there is a smooth transversal vector
field H ∈ Γ(tr(TM)) on M , called the transversal curvature vector field of M ,
such that for all X, Y ∈ Γ(TM),

h(X, Y ) = Hg(X, Y ). (48)

Using (18) and (48), it is easy to see that M is totally umbilical if and
only if on each coordinate neighborhood U , there exist smooth vector fields
H l ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)) such that

hl(X, Y ) = H lg(X, Y ), hs(X, Y ) = Hsg(X, Y ), Dl(X,W ) = 0, (49)

for all X, Y ∈ Γ(TM) and W ∈ Γ(S(TM⊥)).

Theorem 3.4 Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a
para-Sasakian manifold M̄ such that the structure vector field ξ is tangent to
M . If M is totally umbilical, then M is totally geodesic and invariant.

Proof. Using (9), (18), (27) and taking into account the transversal parts, we
get

hl(X, ξ) + hs(X, ξ) = FX, ∀X ∈ Γ(TM). (50)

φ̄ξ = 0 implies that Pξ = 0 and Fξ = 0. Thus, from (50) we have hl(ξ, ξ) =
0 and hs(ξ, ξ) = 0. Since ξ is nonnull, if M is totally umbilical, then (49)
implies that hl = 0 and hs = 0, which show that M is totally geodesic. Also,
hl(X, ξ) + hs(X, ξ) = FX implies that M is invariant in M̄ , which completes
the proof.
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4 Paracontact CR-Lightlike Submanifolds

Definition 4.1 Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a
para-Sasakian manifold (M̄, ḡ) such that the structure vector field ξ is tangent
to M . Then M is said to be a paracontact CR-lightlike submanifold of M̄ if
the following conditions are satisfied:

i) Rad TM is a distribution on M such that RadTM ∩ φ̄Rad TM = {0}.
ii) There exist vector bundles D0 and D′ over M such that

S(TM) = {φ̄Rad TM ⊕D′}⊥D0⊥{ξ}, (51)

φ̄D0 = D0, φ̄D′ = L1⊥ltr(TM), (52)

where D0 is nondegenerate and L1 is a vector subbundle of S(TM⊥).

In this case, we have the following decompositions:

TM = {D ⊕D}⊥{ξ}, (53)

D = RadTM⊥φ̄Rad TM⊥D0. (54)

A paracontact CR-lightlike submanifold is said to be proper ifD0 6= {0} and
L1 6= {0}. If D0 = {0}, then M is said to be totally real lightlike submanifold.

Example 4.2 Let M be a lightlike hypersurface of M̄ . Then, for E ∈
Γ(RadTM) we have ḡ(φ̄E,E) = 0, which implies φ̄E ∈ Γ(TM). Thus, we
get a distribution φ̄TM⊥ of rank 1 on M such that φ̄TM⊥∩ TM⊥ = {0}. So,
we have φ̄TM⊥ ∈ S(TM). Now, let N ∈ Γ(ltr(TM)) such that ḡ(φ̄N,E) =
−ḡ(N, φ̄E) = 0 and ḡ(φ̄N,N) = 0. Then, it is obvious that φ̄N ∈ Γ(S(TM)).
Assume that D′ = φ̄(tr(TM)). Thus, we obtain

S(TM) = {φ̄TM⊥ ⊕D′}⊥D0,

where D0 is a nondegenerate distribution and φ̄D′ = tr(TM). Hence, M is a
paracontact CR-lightlike hypersurface.

Also, using (1), (27) and (28) we have

P 2 = I − η ⊗ ξ − tF, (55)

FP + fF = 0, (56)

f 2 = I − Ft, (57)

Pt+ tf = 0. (58)
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Lemma 4.3 In a paracontact CR-lightlike submanifold M of a para-Sasakian
manifold M̄ , a vector field X tangent to M belongs to D ⊕ {ξ} if and only if
FX = 0.

Lemma 4.4 The distribution D ⊕ {ξ} in a paracontact CR-lightlike sub-
manifold of a para-Sasakian manifold has an almost paracontact metric struc-
ture (P, ξ, η, g).

Proof. From (55) we have

P 2X = X − η(X)ξ − tFX.

Let X belongs to D ⊕ {ξ}. Then, we obtain

P 2X = X − η(X)ξ. (59)

Since φ̄ξ = 0, then we have
Pξ = 0 (60)

and
g(PX,PY ) = ḡ(φ̄X, φ̄Y ) = −g(X, Y ) + η(X)η(Y ), (61)

for any X, Y ∈ D ⊕ {ξ}. Hence, (59)-(61) complete the proof.
Define the orthogonal complement subbundle to the vector subbundle L1

in S(TM⊥) by L⊥1 . Then, we write

tr(TM) = φ̄D′ ⊕ L⊥1 . (62)

For a paracontact CR-lightlike submanifold M , we put

φ̄X = PX + FX, ∀X ∈ Γ(TM), (63)

where PX ∈ Γ(D) and FX ∈ Γ(L1⊥ltr(TM)). Similarly, we write

φ̄W = BW + CW, ∀W ∈ Γ(S(TM⊥)), (64)

where BW ∈ Γ(φ̄L1) and CW ∈ Γ(L⊥1 ).

Lemma 4.5 For a paracontact CR-lightlike submanifold of a para-Sasakian
manifold, the subbundle L⊥1 has an almost paracomplex structure.

Proof. For any X ∈ Γ(L⊥1 ), from (57) we have

f 2X = X − FtX,

which completes the proof.
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Lemma 4.6 If tU = 0, then we have U ∈ Γ(L⊥1 ), for any U ∈ Γ(tr(TM)).

Proof. For any U ∈ Γ(tr(TM)), put

φ̄U = tU + fU,

and let tU = 0. Then, for X ∈ Γ(D
′
) we have

ḡ(φ̄X, U) = −ḡ(X, φ̄U) = −ḡ(X, fU) = 0.

This completes the proof.

Lemma 4.7 The almost paracontact structure (P, ξ, η, g) in a paracontact
CR-lightlike submanifold of a para-Sasakian manifold is para-Sasakian if and
only if either th(X, Y ) = 0 or h(X, Y ) ∈ Γ(L⊥1 ), for any X, Y ∈ Γ(D).

Proof. By virtue of Lemma 5 and equation (34), the proof follows.

Proposition 4.8 Let M be a paracontact CR-lightlike submanifold of a
para-Sasakian manifold M̄ . Then, D and D ⊕D′

are not integrable.

Proof. Suppose that D is integrable. Then, we have g([X, Y ], ξ) = 0, for any
X, Y ∈ Γ(D). Also, we derive

g([X, Y ], ξ) = ḡ(∇̄XY, ξ)− ḡ(∇̄YX, ξ).

Since ∇̄ is a metric connection, by using (9) we get

g([X, Y ], ξ) = ḡ(Y, φ̄X)− ḡ(X, φ̄Y ),

which gives

g([X, Y ], ξ) = 2ḡ(Y, φ̄X).

It is well known that, there exist no isotropic and totally lightlike paracontact
CR-lightlike submanifolds. So, M is proper and D0 is nondegenerate. Then,
we can choose nonnull vector fields X, Y ∈ Γ(D) such that ḡ(Y, φ̄X) 6= 0,
which is a contradiction. Hence, D is not integrable. By a similar way it is
easy to see that D ⊕D′

is not integrable. This completes the proof.

Proposition 4.9 Let M be a paracontact CR-lightlike submanifold of a
para-Sasakian manifold M̄ . Then, D⊥{ξ} is integrable if and only if

h(X, φ̄Y ) = h(φ̄X, Y ), ∀X, Y ∈ Γ(D⊥{ξ}).
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Proof. From (18), (27), (64) and (8) we obtain

F (∇XY ) = −Chs(X, Y ) + h(X, φ̄Y ),

for all X, Y ∈ Γ(D⊥{ξ}). Replacing X by Y in the last equation, we get

F (∇YX) = −Chs(X, Y ) + h(φ̄X, Y ).

Consequently, we have

F [X, Y ] = h(X, φ̄Y )− h(φ̄X, Y ),

which completes the proof.

Proposition 4.10 Let M be a paracontact CR-lightlike submanifold of a
para-Sasakian manifold M̄ . Then, D⊥{ξ} defines a totally geodesic foliation
if and only if

hl(X, φ̄Y ) = 0 and hs(X, Y ) has no components in L1. (65)

Proof. By the definition of paracontact CR-lightlike submanifold, D⊥{ξ}
defines a totally geodesic foliation if and only if

g(∇XY, φ̄E) = g(∇XY,W ) = 0,

for X, Y ∈ Γ(D⊥{ξ}) and W ∈ Γ(φ̄L1). Then, from (18) we have

g(∇XY, φ̄E) = −ḡ(φ̄∇̄XY,E).

Using (8) and (18), we get

g(∇XY, φ̄E) = −ḡ(hl(X, φ̄Y ), E). (66)

Similarly, we derive

g(∇X φ̄Y,W ) = −ḡ(hs(X, Y ), φ̄W ). (67)

Thus, from (66) and (67), we obtain (65), which completes the proof.

Proposition 4.11 Let M be a paracontact CR-lightlike submanifold of a
para-Sasakian manifold M̄ . Then, D

′
defines a totally geodesic foliation if

and only if ANZ and Aφ̄WZ have no components in φ̄L1⊥φ̄(RadTM) and

D0⊥φ̄Rad TM , respectively, for any Z,W ∈ Γ(D
′
).
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Proof. D
′

defines a totally geodesic foliation if and only if

ḡ(∇ZW,N) = g(∇ZW, φ̄N) = g(∇ZW,X) = g(∇ZW, ξ) = 0, (68)

for Z,W ∈ Γ(D
′
), N ∈ Γ(ltr(TM)) and X ∈ Γ(D0). From (8) and (19), we

get
g(∇ZW, ξ) = 0. (69)

On the other hand, ∇̄ is a metric connection and (7) implies that

ḡ(∇ZW,N) = g(W,AZN). (70)

By using (8) and (53), we obtain

g(∇ZW, φ̄N) = g(Aφ̄WZ,N). (71)

By a similar way, we have

g(∇ZW, φ̄X) = g(Aφ̄WZ,X). (72)

From (69)-(72), we complete the proof.

Proposition 4.12 In a paracontact CR-lightlike submanifold of a para-
Sasakian manifold, the distribution D

′
is integrable.

Proof. For any X,Z ∈ Γ(D
′
), from (8), we get

φ̄([X,Z]) = Aφ̄XZ − Aφ̄ZX +∇t
X φ̄Z −∇t

Z φ̄X. (73)

Let Y ∈ D′
. Then, we get

ḡ(Aφ̄ZX̂, Y ) = ḡ(∇̄X̂Z, φ̄Y ),

for any X̂ ∈ Γ(TM), Z ∈ Γ(D
′
). From the last equation we obtain

ḡ(Aφ̄ZX̂, Y ) = ḡ(Aφ̄Y X̂, Z). (74)

Also, from (21), we write

ḡ(h∗(PX,PY ), N) = ḡ(ANPX,PY ). (75)

Since h∗ is bilinear and symmetric, then we have

ḡ(ANPX,PY ) = ḡ(PX,ANPY ). (76)

Choose X̂ ∈ Γ(D0). Then, from (74) and (76), we obtain

ḡ(X̂, Aφ̄ZY ) = ḡ(X̂, Aφ̄YZ).

Thus, non-degeneracy of D0 implies that

Aφ̄ZY = Aφ̄YZ,

for any Y, Z ∈ Γ(D
′
). This completes the proof.
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Theorem 4.13 Let M be a paracontact CR-lightlike submanifold of a para-
Sasakian manifold M̄ . Then, D0 is integrable if and only if

i) ḡ(h∗(X, φ̄Y ), N) = ḡ(h∗(Y, φ̄X), N),

ii) g(∇∗XY, φ̄E) = g(∇∗YX, φ̄E),

iii) ḡ(hs(X, φ̄Y ),W ) = ḡ(hs(Y, φ̄X),W ),

iv) ḡ(∇∗XY, ξ) = ḡ(∇∗YX, ξ),

v) ḡ(h∗(X, Y ), N) = ḡ(h∗(Y,X), N),

for any X, Y ∈ Γ(D0), N ∈ Γ(ltr(TM)) and E ∈ Γ(RadTM).

Proof. Using (8), (18) and (21) we have

ḡ([X, Y ], φ̄N) = −ḡ(∇̄X φ̄Y,N) + ḡ(∇̄Y φ̄X,N)

= −ḡ(∇X φ̄Y,N) + ḡ(∇Y φ̄X,N)

= −ḡ(h∗(X, φ̄Y ), N) + ḡ(h∗(Y, φ̄X), N). (77)

From (18) and (21) we get

ḡ([X, Y ], φ̄E) = ḡ(∇̄XY, φ̄E)− ḡ(∇̄YX, φ̄E)

= g(∇XY, φ̄E)− g(∇YX, φ̄E)

= g(∇∗XY, φ̄E)− g(∇∗YX, φ̄E). (78)

On the other hand (8), (18) and (21) give

ḡ([X, Y ], φ̄W ) = −ḡ(∇̄X φ̄Y,W ) + ḡ(∇̄Y φ̄X,W )

= −ḡ(∇X φ̄Y,W ) + ḡ(∇Y φ̄X,W )

= −ḡ(hs(X, φ̄Y ),W ) + ḡ(hs(Y, φ̄X),W ). (79)

Finally, from (21) we obtain

ḡ([X, Y ], ξ) = ḡ(∇̄XY, ξ)− ḡ(∇̄YX, ξ)

= ḡ(∇∗XY, ξ)− ḡ(∇∗YX, ξ), (80)

ḡ([X, Y ], N) = ḡ(∇̄XY,N)− ḡ(∇̄YX,N)

= ḡ(h∗(X, Y ), N)− ḡ(h∗(Y,X), N). (81)

From the definition of CR-lightlike submanifold, D0 is integrable if and only if

ḡ([X, Y ], φ̄N) = ḡ([X, Y ], φ̄E) = 0,

ḡ([X, Y ], φ̄W ) = ḡ([X, Y ], ξ) = ḡ([X, Y ], N) = 0,

for any X, Y ∈ Γ(D0), N ∈ Γ(ltr(TM)), W ∈ Γ(L1) and E ∈ Γ(RadTM).
Thus, from (77)-(81) the proof is complete.
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Theorem 4.14 Let M be a paracontact CR-lightlike submanifold of a para-
Sasakian manifold M̄ . Then, RadTM is integrable if and only if

i) ḡ(É, hl(Ê, φ̄E)) = ḡ(Ê, hl(É, φ̄E)),

ii) ḡ(hs(É, φ̄Ê),W ) = ḡ(hs(Ê, φ̄É),W ),

iii) g(h∗(É, φ̄Ê), N) = g(h∗(Ê, φ̄É), N),

iv) g(A∗
Ê
É, ξ) = g(A∗

É
Ê, ξ),

v) ḡ(Ê, hl(É,X)) = ḡ(É, hl(Ê,X)),

for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈ Γ(ltr(TM)).

Proof. Using (18) we have

ḡ([É, Ê], φ̄E) = ḡ(∇̄ÉÊ, φ̄E)− ḡ(∇̄ÊÉ, φ̄E)

= Éḡ(Ê, φ̄E)− ḡ(Ê, ∇̄Éφ̄E)− Êḡ(É, φ̄E) + ḡ(É, ∇̄Êφ̄E)

= −ḡ(Ê, ∇̄Éφ̄E) + ḡ(É, ∇̄Êφ̄E)

= −ḡ(Ê, hl(É, φ̄E)) + ḡ(É, hl(Ê, φ̄E)). (82)

From (8), (18) and (21) we get

ḡ([É, Ê], φ̄W ) = −ḡ(∇̄ÉÊ, φ̄W ) + ḡ(∇̄ÊÉ, φ̄W )

= −ḡ(hs(É, φ̄Ê),W ) + ḡ(hs(Ê, φ̄É),W ) (83)

and

ḡ([É, Ê], φ̄N) = −ḡ(∇̄ÉÊ, φ̄N) + ḡ(∇̄ÊÉ, φ̄N)

= −ḡ(h∗(É, φ̄Ê), N) + ḡ(h∗(Ê, φ̄É), N). (84)

Similarly, from (18) and (22) we obtain

ḡ([É, Ê], ξ) = ḡ(∇̄ÉÊ, ξ)− ḡ(∇̄ÊÉ, ξ)

= ḡ(∇ÉÊ, ξ)− ḡ(∇ÊÉ, ξ)

= −g(A∗
Ê
É, ξ) + g(A∗

É
Ê, ξ) (85)

and

ḡ([É, Ê], X) = ḡ(∇̄ÉÊ,X)− ḡ(∇̄ÊÉ,X)

= ḡ(∇ÉÊ,X)− ḡ(∇ÊÉ,X)

= −g(A∗
Ê
É,X) + g(A∗

É
Ê,X)

= −ḡ(Ê, hl(É,X)) + ḡ(É, hl(Ê,X)). (86)
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By the definition of paracontact CR-lightlike submanifold, RadTM is inte-
grable if and only if

ḡ([É, Ê], φ̄E) = ḡ([É, Ê], φ̄W ) = ḡ([É, Ê], φ̄N) = 0,

ḡ([É, Ê], ξ) = ḡ([É, Ê], X) = 0,

for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈ Γ(ltr(TM)) and W ∈ Γ(L1).
Thus, from (82)-(86) the proof is complete.

Theorem 4.15 Let M be a paracontact CR-lightlike submanifold of a para-
Sasakian manifold M̄ . Then, φ̄Rad TM is integrable if and only if

i) ḡ(E, hl(Ê, φ̄É)) = ḡ(E, hl(É, φ̄Ê)),

ii) ḡ(hs(φ̄É, Ê),W ) = ḡ(hs(φ̄Ê, É),W ),

iii) ḡ(AN φ̄É, φ̄Ê) = ḡ(AN φ̄Ê, φ̄É),

iv) g(A∗
Ê
φ̄É, φ̄X) = g(A∗

É
φ̄Ê, φ̄X),

for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈ Γ(ltr(TM)).

Proof. Using (8), (16) and (22), we have

ḡ([φ̄É, φ̄E], φ̄E) = −ḡ(∇̄φ̄ÉÊ, E) + ḡ(∇̄φ̄ÊÉ, E)

= −ḡ(E, hl(φ̄É, Ê)) + ḡ(E, hl(É, φ̄Ê)), (87)

ḡ([φ̄É, φ̄E], φ̄W ) = −ḡ(∇̄φ̄ÉÊ,W ) + ḡ(∇̄φ̄ÊÉ,W )

= −ḡ(W,hs(φ̄É, Ê)) + ḡ(W,hs(É, φ̄Ê)), (88)

ḡ([φ̄É, φ̄E], N) = ḡ(∇̄φ̄Éφ̄Ê, N)− ḡ(∇̄φ̄Êφ̄É, N)

= −ḡ(φ̄Ê, ∇̄φ̄ÉN) + ḡ(φ̄É, ∇̄φ̄ÊN)

= ḡ(AN φ̄É, φ̄Ê)− ḡ(AN φ̄Ê, φ̄É), (89)

ḡ([φ̄É, φ̄Ê], ξ) = −ḡ(φ̄Ê, ∇̄φ̄Éξ) + ḡ(φ̄É, ∇̄φ̄Êξ)

= −ḡ(φ̄Ê, φ̄2É) + ḡ(φ̄É, φ̄2Ê)

= ḡ(φ̄Ê, É)− ḡ(φ̄É, Ê), (90)

and finally

ḡ([φ̄É, φ̄Ê], X) = ḡ(∇̄φ̄Éφ̄Ê,X)− ḡ(∇̄φ̄Êφ̄É,X)

= −ḡ(∇̄φ̄ÉÊ, φ̄X) + ḡ(∇̄φ̄ÊÉ, φ̄X)

= g(A∗
Ê
φ̄É, φ̄X)− g(A∗

É
φ̄Ê, φ̄X). (91)
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Using the definition of paracontact CR-lightlike submanifold, note that φ̄Rad TM
is integrable if and only if

ḡ([φ̄É, φ̄Ê], φ̄E) = ḡ([φ̄É, φ̄Ê], φ̄W ) = ḡ([φ̄É, φ̄Ê], N) = 0,

ḡ([φ̄É, φ̄Ê], ξ) = ḡ([φ̄É, φ̄Ê], X) = 0,

for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈ Γ(ltr(TM)) and W ∈ Γ(L1).
Thus, from (87)-(91) the proof is complete.

Theorem 4.16 Let M be a paracontact CR-lightlike submanifold of a para-
Sasakian manifold M̄ . Then, each leaf of radical distribution is totally geodesic
if and only if

i) A∗
É
Ê /∈,Γ(D0⊥M1),

ii) ḡ(hs(É, φ̄Ê),W ) = 0,

iii) ḡ(h∗(É, φ̄Ê), N) = 0,

where M1 = φ̄ltr(TM) for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈
Γ(ltr(TM)) and W ∈ Γ(L1).

Proof. By using (18) and (22), we have

g(∇ÉÊ, ξ) = ḡ(∇̄ÉÊ, ξ) = Éḡ(Ê, ξ)− ḡ(Ê, ∇̄Éξ)

= ḡ(Ê, φ̄É) = 0 (92)

and
ḡ(∇̄ÉÊ, φ̄E) = −ḡ(A∗

Ê
É, φ̄E), ḡ(∇ÉÊ,X) = −ḡ(A∗

Ê
É,X). (93)

On the other hand, (8), (18) and (21) give

ḡ(∇̄ÉÊ, φ̄W ) = −ḡ(φ̄∇̄ÉÊ,W )

= −ḡ(∇̄Éφ̄Ê,W )

= ḡ(hs(É, φ̄Ê),W ). (94)

Finally, we get

ḡ(∇̄ÉÊ, φ̄N) = −ḡ(φ̄∇̄ÉÊ, N)

= −ḡ(∇̄Éφ̄Ê, N)

= ḡ(h∗(É, φ̄Ê), N). (95)

From the definition of paracontact CR-lightlike submanifold, each leaf ofRadTM
defines totally geodesic foliation in M if and only if

ḡ(∇̄ÉÊ, φ̄E) = ḡ(∇̄ÉÊ, φ̄W ) = ḡ(∇̄ÉÊ, φ̄N) = ḡ(∇̄ÉÊ, ξ) = ḡ(∇̄ÉÊ,X) = 0,

for any E, É, Ê ∈ Γ(RadTM), X ∈ Γ(D0), N ∈ Γ(ltr(TM)) and W ∈ Γ(L1).
Hence, from (92)-(95) we complete the proof.
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5 Radical Transversal Lightlike Submanifolds

Definition 5.1 Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of
a para-Sasakian manifold (M̄, ḡ) such that ξ ∈ Γ(TM). We say that M is a
radical transversal lightlike submanifold of M̄ if

φ̄Rad TM = ltr(TM), (96)

and
φ̄(S(TM)) = S(TM). (97)

Example 5.2 Let M̄ be a 9−dimensional almost paracontact metric man-
ifold with the structure (φ̄, ξ, η, ḡ) given in Example 2.1. Suppose that M is a
submanifold of M̄ defined by

x1 = y3, x2 = −y4, x3 = y1, x4 = −y2.

Then, the tangent bundle TM of M is spanned by{
Z1 = ∂

∂x3
+ ∂

∂y1
, Z2 = − ∂

∂x4
+ ∂

∂y2
, Z3 = ∂

∂x1
+ ∂

∂y3
,

Z4 = − ∂
∂x2

+ ∂
∂y4
, Z5 = ∂

∂z

}
. (98)

Thus, RadTM = Span{Z1, Z2} and the lightlike transversal bundle ltr(TM)
is spanned by

N1 = − ∂

∂x3

− ∂

∂y1

, N2 = − ∂

∂x1

− ∂

∂y3

.

It follows that φ̄Z1 = −N2 and φ̄Z3 = −N1, which imply that φ̄Rad TM =
ltr(TM). Also, φ̄Z2 = −Z4. Then, we have φ̄(S(TM)) = S(TM). Hence, M
is a radical transversal 2-lightlike submanifold.

Proposition 5.3 There do not exist 1-lightlike radical transversal lightlike
submanifold of a para-Sasakian manifold.

Proof. Let M be an 1-lightlike radical transversal lightlike submanifolds of a
para-Sasakian manifold M̄. Then, we have

RadTM = Span{E},

which implies that ltr(TM) = Span{N}. Using (5) we have

ḡ(φ̄E,E) = −ḡ(φ̄2E, φ̄E) + η(φ̄E)η(E)

= −ḡ(E − η(E)ξ, φ̄E).

Since ξ belongs to S(TM), then we get

ḡ(φ̄E,E) = −ḡ(E, φ̄E),

which implies that ḡ(φ̄E,E) = 0. On the other hand, from (96) we have φ̄E =
N ∈ ltr(TM). Therefore, ḡ(φ̄E,E) = ḡ(N,E) = 1, which is a contradiction.
Hence, M can not be an 1-lightlike radical transversal submanifold.
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Proposition 5.4 There exist no isotropic or totally lightlike radical transver-
sal lightlike submanifolds of a para-Sasakian manifold.

Theorem 5.5 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then, the distribution S(TM⊥) is invariant with
respect to φ̄.

Proof. Let W ∈ Γ(S(TM⊥)), E ∈ Γ(RadTM) and N ∈ Γ(ltr(TM)). From
(5) we have

ḡ(φ̄W,E) = −ḡ(W, φ̄E) = 0, (99)

ḡ(φ̄W,N) = −ḡ(W, φ̄N) = 0, (100)

which imply that
φ̄(S(TM⊥)) ∩RadTM = {0}

and
φ̄(S(TM⊥)) ∩ ltr(TM) = {0}.

Choosing X ∈ Γ(S(TM)) and using (1), (5) and (9), we get

ḡ(φ̄W,X) = −ḡ(W, φ̄X) = 0, (101)

which shows that φ̄(S(TM⊥)) ∩ S(TM) = {0}. Thus, our assertion follows
from (99), (100) and (101).

Let M be a radical transversal lightlike submanifold of a para-Sasakian
manifold. Let Q and T be the projection morphisms on RadTM and S(TM),
respectively. Then, for any X ∈ Γ(TM), we have

X = TX +QX, (102)

where TX ∈ Γ(S(TM)) and QX ∈ Γ(RadTM). Applying φ̄ to (102), we
obtain

φ̄X = φ̄TX + φ̄QX. (103)

If we put φ̄TX = SX and φ̄QX = LX in (103), we write

φ̄X = SX + LX, (104)

where SX ∈ Γ(S(TM)) and LX ∈ Γ(ltr(TM)). Then, using (8), (18), (19)
and (104), we get

−ḡ(X, Y )ξ + η(Y )X = ∇XSY + hl(X,SY ) + hs(X,SY )

−ALYX +∇l
XLY +Ds(X,LY )

−S∇XY − L∇XY − φ̄hl(X, Y )

−φ̄hs(X, Y ).
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Considering the tangential, lightlike transversal and screen transversal compo-
nents of the above equation, we get

(∇XS)Y = −ḡ(X, Y )ξ + η(Y )X + φ̄hl(X, Y ) + ALYX, (105)

hl(X,SY ) +∇l
XLY − L∇XY = 0, (106)

hs(X,SY ) +Ds(X,LY )− φ̄hs(X, Y ) = 0, (107)

respectively.
It is well known that in general the induced connection of a lightlike sub-

manifold is not a metric connection. Note that the induced connection is a
metric connection if and only if ∇XY ∈ Γ(RadTM), for X ∈ Γ(TM) and
Y ∈ Γ(RadTM) [1].

Theorem 5.6 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then, the induced connection ∇ on M is a metric
connection if and only if Aφ̄YX has no component in S(TM), for X ∈ Γ(TM)
and Y ∈ Γ(RadTM).

Proof. Assume that ∇ is a metric connection. Then, using (18), for any
Z ∈ Γ(S(TM)), we get

ḡ(∇̄XY, Z) = 0.

Taking into account the above equation together with (5), we obtain

ḡ(φ̄∇̄XY, φ̄Z)− η(∇̄XY )η(Z) = 0,

which implies that
ḡ(−(∇̄X φ̄)Y + ∇̄X φ̄Y, φ̄Z) = 0.

By using (8) and (19), we get

ḡ(Aφ̄YX, φ̄Z) = 0.

Conversely, suppose that Aφ̄YX has no component in S(TM), for X ∈ Γ(TM)
and Y ∈ Γ(RadTM). Then from (19), we have

ḡ(∇̄X φ̄Y, Z) = 0.

By using (8) and (18), we get

ḡ(∇XY, φ̄Z) = 0.

This implies that ∇XY ∈ Γ(RadTM), which proves our assertion.
Regarding the integrability of the distributions which are involved in the

definition of a radical transversal lightlike submanifold, we have the following.
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Theorem 5.7 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then, S(TM) is integrable if and only if

hl(X,SY ) = hl(Y, SX),

for all X, Y ∈ Γ(S(TM)).

Proof. By interchanging the roles of X and Y in (106), we get

hl(Y, SX) +∇l
YLX − L∇YX = 0. (108)

Combining (107) together with (108), we get

hl(X,SY )− hl(Y, SX) = L[X, Y ],

from which our assertion follows.

Theorem 5.8 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then RadTM is integrable if and only if

ALXY = ALYX,

for all X, Y ∈ Γ(RadTM).

Proof. Using (105), we get

(∇XS)Y = φ̄hl(X, Y ) + ALYX,

which implies that

−S∇XY = φ̄hl(X, Y ) + ALYX. (109)

By interchanging the roles of X and Y in (109), we get

−S∇YX = φ̄hl(Y,X) + ALXY. (110)

From (109), (110) and the fact that hl is symmetric, we obtain

ALXY − ALYX = S[X, Y ],

which completes the proof.

Theorem 5.9 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then, radical distribution defines a totally geodesic
foliation on M , if and only if Aφ̄YX has no component in S(TM), for X, Y ∈
Γ(RadTM).
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Proof. By the definition of radical transversal lightlike submanifolds, RadTM
defines a totally geodesic foliation if and only if g(∇XY, Z) = 0, for X, Y ∈
Γ(RadTM) and Z ∈ Γ(S(TM)). Using (18) and the fact that ∇̄ is a metric
connection, we get

g(∇XY, Z) = Xḡ(Y, Z)− g(Y, ∇̄XZ),

which implies that
g(∇XY, Z) = −g(Y, ∇̄XZ).

By using (5), (8) and (18), we obtain

g(∇XY, Z) = −g(φ̄Y,X)η(Z) + g(φ̄Y,∇X φ̄Z).

The last equation together with (18) gives

g(∇XY, Z) = g(Aφ̄YX, φ̄Z),

from which our assertion follows.

Theorem 5.10 Let M be a radical transversal lightlike submanifold of a
para-Sasakian manifold M̄ . Then, screen distribution S(TM) defines a totally
geodesic foliation on M , if and only if A∗φ̄NX has no component in S(TM),

for X ∈ Γ(S(TM)), N ∈ Γ(ltr(TM)).

Proof. Let M be a radical transversal lightlike submanifold of a para-Sasakian
manifold M̄ . Then, S(TM) defines a totally geodesic foliation if and only if
g(∇XY,N) = 0 for X, Y ∈ Γ(S(TM)) and N ∈ Γ(ltr(TM)). Hence, by using
(18), we get

g(∇XY,N) = g(∇̄XY,N).

From (5), we obtain

g(∇̄XY,N) = g(∇̄X φ̄Y, φ̄N).

Using (18) and (22) gives

g(∇̄XY,N) = −g(A∗φ̄NX, φ̄Y ),

which completes the proof.

References

[1] K.L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian
manifolds and applications, Mathematics and Its Applications (vol. 364),
Kluwer Academic Publishers, (1996).



44 Bilal Eftal Acet et al.
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