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Abstract

In this paper, we introduce type-3 slant helix adaog to parallel transport
frame in 4-dimensional Euclidean Spacé &hd we use a constant angje
between a unit and fixed direction vector field ddahe last relatively parallel
vector field M of the curve, that is,

(M, X) = cosg = const

where(,) is Euclidean inner product. Since the relativetyallel vector field M
of the curve makes a constant angle with the umit faxed direction vector field
X we call this curve as a type-3 slant helix inidwensional Euclidean Spacé.E
Also we define new harmonic curvature functions aedgive a vector field D
which we call Darboux vector field for type-3 slarelix. And then we obtain
some characterizations for type-3 slant helix inmg of the harmonic curvature
functions and the Darboux vector field D.

Keywords: Slant Helices, Harmonic Curvature Functions, Cugrvén
Euclidean Space.
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1 Introduction

A helix is a curve that lies on the surface witlc@nstant distance between
adjacent coils. There are many examples of helidesy are even more common,
both in natural and artificial situations. A coilegring is a helix that could be
wrapped around a cylinder and while the vortex edusy water going down a
plughole is a helix that could be wrapped arourdr@e. Perhaps the best known
helix of all is the double helix of DNA. It is caell a double helix because it has
two strands wound around each other, each of wisich helix. Some bacteria,
such as spirochetes are helical in shape and meowéada helical wave moving
along their length and some bacteria have hellagkfla to move them forward.
The filamentous green algae spirogyra has a halldaroplast running the length
of each cylindrical cell... Thus, this curve is wamportant for understand to
nature. So, lots aduthor interested in the helices and they publishady papers
in Euclidean3 and 4 space. Such as, in [7, 8], a classical consequénrce
necessary and sufficient condition noted by M. Antret and B. de Saint Venant
first proved that a curve is a general hefix the ratio curvature to torsion be
constant. Then, In [6], harmonic curvature funcsi@me defined by Ozdamar and
Hacisalihglu by using these harmonic curvature functions tlgsneralized
inclined (general helix) curves & to E" and gave a characterization for the

inclined curves InE" “ if a curve a is an inclined curve, then:
n-2
Z H? = constant” After them, in [3], Izumiya and Takeuchi considéeat the
i=1
principle normal vector field of the curve insteaidthe tangent vector field and
they defined a new kind of helix which is calledrdl helix. Also, they gave some
characterizations for the slant helix in 3-dimensioEuclidean spac&®. In
2008, Onder et al. defined a new kind of slanthigliEuclidean 4-spac&* and

it is called B, —slant helix [5]. And then, GOk et al. generalized tBg slant

helix of E* to E" in 2009 [4]. Then, many studies have been repoited
Euclidean space using the Frenet frame. Howeverf-tanet frame is constructed
for k times continuously differentiable non-degeneratees. Curvatures may be
zero at some points on the curve. That is,ithéh (1<i <Kk) curvature of the

curve may be zero. In this situation, we need drrradtive frame inE" .
Therefore in [1], Bishop defined a new frame fazusve and he called it Bishop
frame which is well defined even when the curve Vesshing second derivative
in 3—dimensional Euclidean space. Then, in [2] Gokcelilal. defined a new
frame which is well defined even when the curve Vasishingi —th (1<i<4)

derivative inE* .

In this paper, we give type-3 slant helix accordiagparallel transport frame in
4 - dimensional Euclidean spad&’ where we use the constant angldetween
a unit and fixed directiorX and the last parallel vector fieM , of the curve,

that is, (M, X) = cosp=constant. Wheré,) is standard inner product. Since the
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last parallel vector fieldV; of a curve makes a constant angle with the fixed
direction vector fieldX, we call this curve type-3 slant helix #—dimensional

Euclidean spac&*. Moreover, if parallel vector fieldv, (resp.M, ) of a curve
makes a constant angle with the fixed directiontarefield X, we call this curve

type-2 (resp. type-1) slant helix - dimensional Euclidean spade® We
know that the parallel transport frame on a hefiilnsalong the helix. Thus, unit
and fixed direction vector fielK of the type-3 slant helix may makes a constant

angle with the parallel transport franh®, and M, . So, the type-3 slant helix can

be type-1 and type-2 slant helix. Also we definevnkarmonic curvature
functions and we give a vector field which we call Darboux vector field for
type-3 slant helix. And then we obtain some charations for type-3 slant
helix in terms of the harmonic curvature functi@msl the Darboux vector field.

2 Preliminaries

Leta : | OR - E* be an arbitrary curve iE*. Recall that the curve is said to
be a unit speed curve (or parameterized by arc therfgnctions) if
(a'(s),a'(s)) =1, where(,) denotes the standard inner produc&df given by

(X,Y) = XY1+ XY, + X5 + XY,

for eachX = (X, %,, X5, %X, ) Y =(Y,, Y5, Y5, ¥,) DE®. In particular, the norm of a
vector X OE* is given by|X|=(X,X). Let {T,N,B,,B,} be the moving

Frenet frame along the unit speed cuaueThen, Frenet frame formulas are given
by
T'=kN, N'=-kT +k,B,, B, =-k,N +k,B,, B, =-k,B,

wherek, (i = 1,2,3) denotes the —th curvature function of the curve . The

Frenet frame is constructed for the curvedefime continuously differentiable
non-degenerate curves. Curvature may vanish at gminés on the curve. That
is, i —th (1<i < 4) derivative of the curve may be zero. In this gitug we need

an alternative frame. Thus, in [2], GOkcelik etddfined a new frame for a curve
it is called as parallel transport frame which islivdefined even when the curve
has vanishing —th (L<i < 4) derivative in4 —dimensional Euclidean space. Let

a(s) be a arbitrary curve parameterized by arc lersgindV € ) be any normal
vector field which is perpendicular to the tangeattor fieldT &) of the curve
a(s) said to be relatively parallel vector field if ilerivative is tangential along
the curvea ¢ ) If T(s) is an unique vector field for a given curve, wa choose
any convenient arbitrary bas{sV,(s),M,(s),M; s ( Bf the frame, they are
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perpendicular tdr' (s) at each point. The relation between the Frenehdrand
parallel transport frame may be expressed as:

N = cosf(s) cosy(s)M, + (—cosg(s)sing(s) + sing(s)sind(s) cosy(s))M,
+ (sing(s)siny/(s) + cosp(s)sinéd(s) cosy(s))M,

B, =cosf(s)sing/(s)M, + (cosg(s) cosy(s) +sing(s)siné(s)sing(s))M,
+ (—sing(s) cosy(s) + cosp(s)sind(s)sing/(s))M,

B, = -sing(s)M, +sing(s) cosf(s)M , + cos¢(s) cosd(s)M ,
Then, the alternative parallel frame equationgyaren as
T' =kM, +k,M, +k,M,, M, =-KkT, M, =-k,T, M, =—-kT (1)

wherek,k,,k, are principal curvature functions according toafiat transport
frame of the curver . They defined as follows:

k, = R cosdcosy, k, = =k, L (—cosgsiny + singsindcosy),
k, =k, (singsing + cosgsingcosy),

K (8) = kZ +IC +KZ , Ky(9) = ~4/(9) + # (S)SinB(S), Ky(9) =)
sing/(s)
_—d'(s)coty(s)
PO=" e
where

JkZ-g7 k2 (9-6(9? ks (9)
= —(k, +k, = 09 = 3 '
W'(s) =—(k, + \/7) o) = cosé(s) ® ki (s) +k7(s)

Definition 2.1: Let ¢ : | OR - E* be a unit speed curve with nonzero
curvaturesk. (i=12,...,n) in E". Then, we say that is aW - curve if it has

constant curvatures (|el<1 IZZ, k3 ..... k are constant) [4].

Theorem 2.1: Let o : IOR - E* be a unit speed curve with nonzero
curvaturesk (i=123) in E*. Then,a lies on the on3- sphere S* iff
ak +bk, +ck, +1=0 wherea, b andc are constant [2].
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3 A New Approach on Type-3 Slant Helix

In this section, we give same characterizations er a type-3 slant helix
according to parallel transport frame by usinghbemonic curvature functions in

E*.

Definiton 3.1: Let ¢ : | OR — E* be a unit speed curve with nonzero
curvaturesk, (i=123) in E*. Let{T,M;,M,,M,} be the parallel transport
frame along the unit speed curee We calla is a type-3 slant helix iM,
makes a constant angleg with the fixed direction X, that s

(M3, X) = cosp(# g), @ = constantalong the curver .

Definition 3.2: Let a be a unit speed curve with nonzero curvatukes
(i=1,23) in E*. Then harmonic curvature functions of the cusvere defined

as follows:H, =0, H, = —(ﬁ) /(ﬁ) , Hy = ‘(ﬁ) /(ﬁ)

ko ko ks ks

Theorem 3.1: Let a : | OR - E* be a unit speed curve with nonzero
curvatures k. (i=123) in E* and X be a unit vector field ofE".
{T,Ml,MZ,MS} be the parallel transport frame along theand{Ho,Hl,Hz}

denote the harmonic curvature of the cuwvelf @ : | OR - E* is a type-3
slant helix with axisX, then following equations are satisfied:

(T.X) =Ho(Mg, X),(My, X) = H,(Mg, X),(M,, X) = H,(Mj, X) 2)

Proof: Sincea is a type-3 slant helix with fixed ax , then(M,, X) = cosp
( ¢ = constant). If we differentiating this equation witlespect tos, then
<M'3,X>:O, from parallel transport frame we obtaink,(T,X)=0, where
k, # 0, then

(T,X)=0 (3)
So, we have (T,X)=Hy(M,, X).

If we differentiating Eqg. (3) with respect ®and if we use parallel transport
frame, then we obtain

k(M X) +ky(M,, X) +ky(M;, X) =0 (4)
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If we differentiating Eqg. (4) with respect ®and if we use parallel transport
frame, then we obtain

ki (M1, X) +ky(M,, X) +Kky(M;, X) =0 (5)

From Eqg. (4) and Eg. (5) we get following equations

) () k) (k)
o0 =1 12 [ i x) 0= 1w @
and using the Definition 3.2 we have
(M, X)=H (M, X) and(M,, X) =H,(M;, X).

Corollary 3.2: Let @ : I OR - E* be a unit speed curve with nonzero
curvaturesk, (i=123) in E* and X be a unit and fixed vector field &®.
{T.M,,M,,M.} be the parallel transport frame along the curee and
{H,,H,,H,} denote the harmonic curvature of the cuna Then,

a : 1 OR - E* is atype-3 slant helix with axiX iff the harmonic curvatures

1 ' i

le—[l':_gj/[kk_ﬂ, H, :—[i_ij /[kk_f] of the curve @ are constant (%0 ).

Proof: If we differentiate last following equation withgect tos and if we use
parallel transport frame and Eq.(3) we havie(T,X)=H, (M, X)=0. Since

<M3, X> # 0, H, must be zero. Sdi, is a constant functiofConversely, letH,

be constant, then if we differentiate the equatidh, X)=H,(M,, X) with
respect t& we get- k,(T,X)=H (M, X)+H,(M,,x)) =0. If we consider

H, is a non-zero constant then via EQ.(3) we obtain
(M, X) = |[M,||[|X| cosp= constantSimilarly, we can easily see that, is a
constant function.

Corollary 3.3: Let @ : I OR - E* be a unit speed curve with nonzero
curvaturesk (i =1,2,3) in E* and X be a unit and fixed vector field &*.
{T.M,,M,,M.} be the parallel transport frame along the curee and
{H,.H,,H,} denote the harmonic curvature of the cueThen, the axis of the
type-3 slant helix can be written as<x ={H,M,+H,M, +M,}cosp

Proof: If the axis of type-3 slant helix in E* is X, then we can write
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X =c¢T+c,M, +c;M, +c,M,, then using Theorem 3.1 we have

¢, =(T,X)=Hy(M;,X)=0, ¢, =(M,, X) =H,(M;, X)
c ,X)=H,(My, X), ¢, =(M,;, X) = cosp

w
I
—
<
N

Therefore easily we obtaiX ={H,M, + H,M, + M ,} cosg

Theorem 3.4: Let a : | OR - E* be a unit speed curve with nonzero
curvaturesk. (i=123) in E* and X be a unit and fixed vector field &*.
{T,Ml,MZ,MS} be the parallel transport frame along the curee and
{HO, H,, H2} denote the harmonic curvature of the cuvd hen, the axisX of
the type-3 slant helixa makes a constant angle with the vector figMds, M},
That is,(M,, X) = const and (M, X) = const

Proof: From Theorem 3.1 we know thatM,,X)=H, cosp and

(M,,X)=H,cosp. Also, we know that from Corollary 3.2 the harmonic
curvatures{H,,H,} of the type-3 slant helixx are constant. So, if we

differentiate the last two equations we gé¥l,,X) =(H,cosp) =0 and
(M,,X) =(H,cosp) =0. Therefore (M, X) and (M,,X) are constant.

Corollary 3.5: Let @ : I OR - E* be a unit speed curve with nonzero
curvatures k, (i=123) in E* and X be a unit vector field ofE*
{T,Ml,MZ,MS} be the parallel transport frame along the curee and
{HO,Hl,HZ} denote the harmonic curvature of the cutveThen,a is a type-3
slant helix then the curvea is type-1 and type-2 slant helix.

Proof: It is obvious from the last theorem.

Definition 3.3: Let @ : | OR - E* be a unit speed curve with nonzero
curvaturesk, (i=123) in E* and X be a unit and fixed vector field &*.
{T,Ml,MZ,MS} be the parallel transport frame along the curee and
{HO, H,, H2} denote the harmonic curvature of the cuveThen, the Darboux
vector of the type-3 slant helix is given byD =H,M, +H,M, + M.

Theorem 3.6: Let a : | OR - E* be a unit speed curve with nonzero
curvatures k. (i=123) in E* and X be a unit vector field ofE".
{T.M,,M,,M.} be the parallel transport frame along the curge and
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{H,.H,,H,} denote the harmonic curvature of the cuxdhen,a is a type-3
slant helix iff D is constant vector field.

Proof: Let @ : | OR - E* be a type-3 slant helix with ax¥ From Corollary
3.3 we knowX ={H,M,; +H,M, + M }cosp. Conversely, letD be a constant
vector field. Then we havéD,M;)=1. So, |[D|cosp=1. Thus, we get
cos¢=m, whereg¢ is a constant angle betwe@nand M. In this case we can
define a unique axis of the type-3 slant helix Xs=cos¢gD , where
<M3, X> =m =cosy. Thus, X is a fixed vector andr is a type-3 slant helix.
Theorem 3.7: Let o : I OR -~ E* be a unit speed curve with nonzero
curvaturesk (i =1,23) in E* and X be a unit and fixed vector field &*.
{T,Ml,MZ,MS} be the parallel transport frame along the cureand
{HO,Hl,HZ} denote the harmonic curvature of the cuwelf a is a type-3

slant helix, ther{(%)'/(%)} +[(§

2
K ) /(%)’} = tan’ ¢ = const
2 2 1

whereg¢ is a constant angle betweet and M.

Proof: Let a be a type-3 slant helix, since the aXsof the curvea is a unit
vector field (H? + H2)cos g+ cos ¢=1. Then,

2 2
H +HZ {(ﬁ)'/(ﬁ)'} +{(ﬁ)'/(ﬁ)’} :m:tanzqo:const
k,” 'k, k'’ Tk cos’ @
Theorem 3.8: Let a : | OR - E* be a unit speed curve with nonzero
curvaturesk, (i=123) in E* and X be a unit and fixed vector field &*.
{T,Ml,Mz,MS} be the parallel transport frame along the curee and
{HO, H,, H2} denote the harmonic curvature of the cutveThen,a is a type-3
slant helix iff kH, +k,H, +k, =0.

Proof: Differentiating the Darboux vectdd along the type-3 slant helix, we
obtain D' =H,M, +H,M, +H,M, +H,M, + M, =0. Then, using the parallel
transport frame and Corollary 3.2, easily we deH,+k,H,+k; = 0.
Conversely, ifk,H, +k,H, +k, = OthenD’'=0, i.e, D = constant. Thus, from
Theorem 3.6 is a type-3 slant helix.



48 Zehra Ozdemir et al.

Theorem 3.10: Let a : I OR - E* be a unit speed curve with nonzero
curvaturesk, (i =1273) in E*. {T,M,,M,,M,} be the parallel transport frame
along the curvex and{HO, H,, HZ} denote the harmonic curvature of the curve
a. The parallel transport frame matriki,(s) is given as

0 k k, kg
-k, 0 0 0
M@=y o o |PRS
2
-k, 0 0 O

Then, a is a type-3 slant helix iff D:[HO H, H, 1]DRf satisfies the
following equation:

d
Ms(s)[Ho H1 Hz 1]T :E[Ho H1 Hz 1]
Proof: Using the Corollary 3.2 and Theorem 3.8 direct stuigon shows that

0 k k k]H,

T 00 O L tiGH, k=S [H, H, H, 1=0
_k2 O O O H2 1" 1 2772 3 dS 0 1 2

-k, 0 0 0] 1

Corollary 3.11: Let a : | OR — E* be a unit speed curve with non-zero
curvaturesk; (i =123) in E*. {T,M,,M,,M.} be the parallel transport frame
along the curvex and{HO, H,, H2} denote the harmonic curvature of the curve
a. Then, the curver is a type-3 slant helix iff the Darboux vectorlies in the
kernel of the parallel transport frame matrM,(s) in E*.

Theorem 3.12: Let ¢ : | OR - E* be a unit speed curve with non-zero

curvaturesk; (i =1,273) in E*. If a is a type-3 slant helix them cannot be a
W-curve in B

Proof: Let the curve type-3 slant helix be aw - curve. Then, from Eg. (6) we
know that

) 7)
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So, we get and> cannot be constant. On the other hand ils aw - curve

thenk,, k,, k; are constant then we gft=const Sincep# 4 using the Eq.
(7) a cannot be &V - curve.

Theorem 3.13: Let @ : | OR - E* be a unit speed curve with nonzero
curvaturesk, (i =123) in E*. If a is a type-3 slant helix them cannot lie on
3- sphereS®.

Proof: Let a lies on a sphere with centér and radiug then from Theorem 2.1
{kl,kz,kg} satisfies the equationk +bk, +ck,+1= ®@herea, b andc are

constant. But we know from Theorem 3.8afis a type-3 slant helix with
nonzero curvaturek, (i =123) in E* iff kH,+k,H,+k, =0 whereH,, H,
are constant, that i$k,k,,k,} don't satisfies the equatiaak, +bk, +ck, +1= 0.
So,a cannot lie or3- sphere S® .
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