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Abstract 

     In this paper, we introduce type-3 slant helix according to parallel transport 
frame in 4-dimensional Euclidean Space E4 and we use a constant angle φ  
between a unit and fixed direction vector field X and the last relatively parallel 
vector field M3 of the curve, that is,  

                                                 .cos,3 constXM == φ  

where ,  is Euclidean inner product. Since the relatively parallel vector field M3 
of the curve makes a constant angle with the unit and fixed direction vector field 
X we call this curve as a type-3 slant helix in 4-dimensional Euclidean Space E4. 
Also we define new harmonic curvature functions and we give a vector field D 
which we call Darboux vector field for type-3 slant helix. And then we obtain 
some characterizations for type-3 slant helix in terms of the harmonic curvature 
functions and the Darboux vector field D.  

     Keywords: Slant Helices, Harmonic Curvature Functions, Curves in 
Euclidean Space. 
 
 



A New Approach on Type-3 Slant Helix in E4                                                  41 

1 Introduction  
 
A helix is a curve that lies on the surface with a constant distance between 
adjacent coils. There are many examples of helices. They are even more common, 
both in natural and artificial situations. A coiled spring is a helix that could be 
wrapped around a cylinder and while the vortex caused by water going down a 
plughole is a helix that could be wrapped around a cone. Perhaps the best known 
helix of all is the double helix of DNA. It is called a double helix because it has 
two strands wound around each other, each of which is a helix. Some bacteria, 
such as spirochetes are helical in shape and move due to a helical wave moving 
along their length and some bacteria have helical flagella to move them forward. 
The filamentous green algae spirogyra has a helical chloroplast running the length 
of each cylindrical cell... Thus, this curve is very important for understand to 
nature. So, lots of author interested in the helices and they published many papers 
in Euclidean 3  and 4 space. Such as, in [7, 8], a classical consequence for 
necessary and sufficient condition noted by M. A. Lancret and B. de Saint Venant 
first proved that a curve is a general helix iff  the ratio curvature to torsion be 
constant. Then, In [6], harmonic curvature functions are defined by Özdamar and 
Hacisalihoğlu by using these harmonic curvature functions they generalized 
inclined (general helix) curves of 3E  to nE  and gave a characterization for the 
inclined curves in nE  “ if a curve α  is an inclined curve, then: 
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” After them, in [3], Izumiya and Takeuchi consider that the 

principle normal vector field of the curve instead of the tangent vector field and 
they defined a new kind of helix which is called slant helix. Also, they gave some 
characterizations for the slant helix in 3-dimensional Euclidean space .3E  In 
2008, Önder et al. defined a new kind of slant helix in Euclidean 4-space 4E  and 
it is called slantB −2  helix [5]. And then, Gök et al. generalized the 2B  slant 

helix of 4E  to nE  in 2009 [4]. Then, many studies have been reported in 
Euclidean space using the Frenet frame. However, the Frenet frame is constructed 
for k  times continuously differentiable non-degenerate curves. Curvatures may be 
zero at some points on the curve. That is, the thi −  ( )1 ki <<  curvature of the 

curve may be zero. In this situation, we need an alternative frame in .nE  
Therefore in [1], Bishop defined a new frame for a curve and he called it Bishop 
frame which is well defined even when the curve has vanishing second derivative 
in −3 dimensional Euclidean space. Then, in [2] Gökçelik et al. defined a new 
frame which is well defined even when the curve has vanishing thi −  )41( << i  

derivative in 4E  . 
 
In this paper, we give type-3 slant helix according to parallel transport frame in 

−4 dimensional Euclidean space ,4E  where we use the constant angle φ  between 

a unit and fixed direction X  and the last parallel vector field 3M  of the curve, 

that is, == φcos,3 XM constant. Where ,  is standard inner product. Since the 
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last parallel vector field 3M  of a curve makes a constant angle with the fixed 

direction vector field ,X  we call this curve type-3 slant helix in −4 dimensional 

Euclidean space .4E  Moreover, if parallel vector field 2M  (resp. 1M  ) of a curve 
makes a constant angle with the fixed direction vector field X, we call this curve 
type-2 (resp. type-1) slant helix in −4 dimensional Euclidean space .4E  We 
know that the parallel transport frame on a helix spin along the helix. Thus, unit 
and fixed direction vector field X  of the type-3 slant helix may makes a constant 
angle with the parallel transport frame 1M  and 2M . So, the type-3 slant helix can 
be type-1 and type-2 slant helix. Also we define new harmonic curvature 
functions and we give a vector field D  which we call Darboux vector field for 
type-3 slant helix. And then we obtain some characterizations for type-3 slant 
helix in terms of the harmonic curvature functions and the Darboux vector field D.  
 

2 Preliminaries 
 
Let 4R: EI →⊂α  be an arbitrary curve in 4E . Recall that the curve is said to 
be a unit speed curve (or parameterized by arc length functions) if 

,1)(),( =′′ ss αα  where ,  denotes the standard inner product of 4E  given by 

  

44332211, yxyxyxyxYX +++=  

  
for each ),,,( 4321 xxxxX = , 4

4321 ),,,( EyyyyY ∈= . In particular, the norm of a 

vector X 4E∈  is given by ., XXX =  Let { }21,,, BBNT  be the moving 

Frenet frame along the unit speed curve .α  Then, Frenet frame formulas are given 
by 

13223211211 ,,, BkBBkNkBBkTkNNkT −=+−=+−=′=′ ′′  

 
where ik  )3,2,1( =i  denotes the thi −  curvature function of the curve α . The 

Frenet frame is constructed for the curve of 4 -time continuously differentiable 
non-degenerate curves. Curvature may vanish at some points on the curve. That 
is, thi −  )41( << i  derivative of the curve may be zero. In this situation, we need 
an alternative frame. Thus, in [2], Gökçelik et al. defined a new frame for a curve 
it is called as parallel transport frame which is well defined even when the curve 
has vanishing thi −  )41( << i  derivative in −4 dimensional Euclidean space. Let 

)(sα  be a arbitrary curve parameterized by arc length s and )(sV  be any normal 
vector field which is perpendicular to the tangent vector field )(sT  of the curve 

)(sα  said to be relatively parallel vector field if its derivative is tangential along 
the curve )(sα . If )(sT  is an unique vector field for a given curve, we can choose 

any convenient arbitrary basis )}(),(),({ 321 sMsMsM  of the frame, they are 
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perpendicular to )(sT  at each point. The relation between the Frenet frame and 
parallel transport frame may be expressed as: 
  

3
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3212 )(cos)(cos)(cos)(sin)(sin MssMssMsB θφθφθ ++−=  

 
Then, the alternative parallel frame equations are given as 
 

TkMTkMTkMMkMkMkT 332211332211 ,,, −=−=−=++=′ ′′′                      (1) 

 
where 321 ,, kkk  are principal curvature functions according to parallel transport 

frame of the curve α . They defined as follows: 
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 Definition 2.1: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  ),...,2,1( ni =  in .nE  Then, we say that α  is a −W curve if it has 

constant curvatures (i.e.,  ,1k    ,2k    ,...,3k    nk   are constant) [4]. 

  
Theorem 2.1: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in .4E  Then, α  lies on the on −3 sphere 3S  iff   

01321 =+++ ckbkak  where ,a  b  and c   are constant [2]. 
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3 A New Approach on Type-3 Slant Helix 
 
In this section, we give same characterizations for be a type-3 slant helix 
according to parallel transport frame by using the harmonic curvature functions in 

.4E   
 
Definition 3.1: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in .4E  Let { }321 ,,, MMMT  be the parallel transport 

frame along the unit speed curve .α  We call α  is a type-3 slant helix if 3M  

makes a constant angle φ with the fixed direction X, that is 

constant ,)
2

( cos,3 =≠= φπφXM  along the curve α . 

  
Definition 3.2: Let α  be a unit speed curve with nonzero curvatures ik    

)3,2,1( =i  in .4E  Then harmonic curvature functions of the curve α  are defined 

as follows: ( ) ( ) ( ) ( )′′′′
−=−==
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Theorem 3.1: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in 4E  and X  be a unit vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the α  and { }210 ,, HHH  

denote the harmonic curvature of the curve .α  If 4R: EI →⊂α  is a type-3 
slant helix with axis ,X  then following equations are satisfied: 
          
      XMHXMXMHXMXMHXT ,,,,,,,, 32231130 ===             (2) 

 
Proof: Since α  is a type-3 slant helix with fixed axis X , then φcos,3 =XM  

( =φ constant). If we differentiating this equation with respect to ,s  then 

,0,3 =′ XM  from parallel transport frame we obtain 0,3 =− XTk , where 

,03 ≠k  then  

                                                     0, =XT                                                          (3) 

 So, we have                               .,, 30 XMHXT =  

 
If we differentiating Eq. (3) with respect to s  and if we use parallel transport 
frame, then we obtain 
  
                          0,,, 332211 =++ XMkXMkXMk                                     (4) 
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If we differentiating Eq. (4) with respect to s  and if we use parallel transport 
frame, then we obtain 
 
                        0,,, 332211 =++ ′′′ XMkXMkXMk                                       (5) 

  
From Eq. (4) and Eq. (5) we get following equations 
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and using the Definition 3.2 we have  
 
                         XMHXM ,, 311 =  and .,, 322 XMHXM =  

  
Corollary 3.2: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  Then, 
4R: EI →⊂α  is a type-3 slant helix with axis X  iff  the harmonic curvatures 
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k  of the curve α  are constant ( 0≠ ). 

 
Proof: If we differentiate last following equation with respect to s and if we use 
parallel transport frame and Eq.(3) we have 0,, 311 ==− ′ XMHXTk . Since 

0,3 ≠XM , ′
1H  must be zero. So, 1H  is a constant function. Conversely, let 1H  

be constant, then if we differentiate the equation XMHXM ,, 311 =  with 

respect tos we get ( ) 0,,, 31311 =+=− ′′ XMHXMHXTk .  If we consider 

1H  is a non-zero constant then via Eq.(3) we obtain  

constant.cos, 33 == φXMXM Similarly, we can easily see that 2H  is a 

constant function. 
  
Corollary 3.3: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  Then, the axis of the 

type-3 slant helix can be written as φcos}{ 32211 MMHMHX ++=  

 
Proof: If the axis of type-3 slant helixα  in 4E  is X, then we can write 
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,3423121 McMcMcTcX +++=  then using Theorem 3.1 we have 

 

φcos,,,,

,,,0,,

343223

3112301

====

=====

XMcXMHXMc

XMHXMcXMHXTc
 

  
Therefore easily we obtain .cos}{ 32211 φMMHMHX ++=  

  
Theorem 3.4: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α Then, the axis X  of 

the type-3 slant helix  α   makes a constant angle with the vector fields { }., 21 MM  

That is, .,1 constXM =  and .,2 constXM =   

 
Proof: From Theorem 3.1 we know that φcos, 11 HXM =  and 

.cos, 22 φHXM =  Also, we know that from Corollary 3.2 the harmonic 

curvatures { }21,HH  of the type-3 slant helix α  are constant. So, if we 

differentiate the last two equations we get ( ) 0cos, 11 == ′′ φHXM  and 

( ) .0cos, 22 == ′′ φHXM  Therefore  XM ,1   and  XM ,2   are constant. 

  
Corollary 3.5: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik )3,2,1( =i  in 4E  and X  be a unit vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  Then, α  is a type-3 

slant helix then the curve α  is type-1 and type-2 slant helix. 
 
Proof: It is obvious from the last theorem. 
  
Definition 3.3: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  Then, the Darboux 

vector of the type-3 slant helix α  is given by .32211 MMHMHD ++=  

  
Theorem 3.6: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in 4E  and X  be a unit vector field of .4E   

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 
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{ }210 ,, HHH  denote the harmonic curvature of the curve .α Then, α  is a type-3 

slant helix iff D is constant vector field. 
 
Proof: Let 4R: EI →⊂α  be a type-3 slant helix with axis X. From Corollary 

3.3 we know .cos}{ 32211 φMMHMHX ++=  Conversely, let D  be a constant 

vector field. Then we have 1, 3 =MD . So, 1cos =φD . Thus, we get 

D
1cos =φ , where φ  is a constant angle between D  and 3M . In this case we can 

define a unique axis of the type-3 slant helix as DX φcos= , where 

φcos, 1
3 ==

D
XM . Thus, X  is a fixed vector and α  is a type-3 slant helix. 

  
Theorem 3.7: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E  

{ }321 ,,, MMMT  be the parallel transport frame along the curveα and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  If α  is a type-3 

slant helix, then .tan)/()()/()( 2
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 where φ  is a constant angle between X  and .3M   

 
Proof: Let α  be a type-3 slant helix, since the axis X  of the curve α  is a unit 
vector field ( ) =++ φφ 222
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1 coscosHH 1 . Then, 

 

.tan
cos

cos1
)/()()/()( 2

2

22

1

2

1

3

2

2

1

2

32
2

2
1 const

k

k

k

k

k

k

k

k
HH ==−=







 ′′+






 ′′=+ φ
φ

φ
 

  
Theorem 3.8: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik )3,2,1( =i  in 4E  and X  be a unit and fixed vector field of .4E  

{ }321 ,,, MMMT  be the parallel transport frame along the curve α  and 

{ }210 ,, HHH  denote the harmonic curvature of the curve .α  Then, α  is a type-3 

slant helix  iff  .032211 =++ kHkHk  

 
Proof: Differentiating the Darboux vector D  along the type-3 slant helix ,α  we 

obtain .0322221111 =++++=′ ′′′′′ MMHMHMHMHD  Then, using the parallel 

transport frame and Corollary 3.2, easily we get .032211 =++ kHkHk  

Conversely, if ,032211 =++ kHkHk  then 0=′D , i.e, =D  constant. Thus, from 

Theorem 3.6 α  is a type-3 slant helix. 
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Theorem 3.10: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in .4E  { }321 ,,, MMMT  be the parallel transport frame 

along the curve α  and { }210 ,, HHH  denote the harmonic curvature of the curve 

.α  The parallel transport frame matrix )(3 sM  is given as 
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Then, α  is a type-3 slant helix iff  [ ] 3

1210 R1 ∈= HHHD  satisfies the 

following equation: 

                         [ ] [ ].11)( 2102103 HHH
ds

d
HHHsM T =  

Proof: Using the Corollary 3.2 and Theorem 3.8 direct substitution shows that 
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Corollary 3.11: Let 4R: EI →⊂α  be a unit speed curve with non-zero 

curvatures ik  )3,2,1( =i  in .4E  { }321 ,,, MMMT  be the parallel transport frame 

along the curve α  and { }210 ,, HHH  denote the harmonic curvature of the curve 

.α  Then, the curve α   is a type-3 slant helix iff  the Darboux vector D  lies in the 

kernel of the parallel transport frame matrix )(3 sM  in .4E   

  
Theorem 3.12: Let 4R: EI →⊂α  be a unit speed curve with non-zero 

curvatures ik  )3,2,1( =i  in .4E  If α  is a type-3 slant helix then α  cannot be a 

W-curve in E4. 
 
Proof: Let the curve type-3 slant helix α  be a −W curve. Then, from Eq. (6) we 
know that 
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 So, we get 
2

1

k
k  and 

2

3

k
k  cannot be constant. On the other hand if α  is a −W curve 

then ,1k  ,2k  3k  are constant then we get .
2

1 constk
k =  Since 2

πφ ≠  using the Eq. 

(7) α  cannot be a −W curve. 
  
Theorem 3.13: Let 4R: EI →⊂α  be a unit speed curve with nonzero 

curvatures ik  )3,2,1( =i  in .4E  If α  is a type-3 slant helix then α  cannot lie on 

−3  sphere .3S   
  
Proof: Let α  lies on a sphere with center P  and radius r  then from Theorem 2.1 
{ }321 ,, kkk  satisfies the equation 01321 =+++ ckbkak  where ,a  b  and c   are 

constant. But we know from Theorem 3.8 if α  is a type-3 slant helix with 
nonzero curvatures ik  )3,2,1( =i  in 4E  iff  032211 =++ kHkHk  where 1H , 2H  

are constant, that is, { }321 ,, kkk  don't satisfies the equation .01321 =+++ ckbkak  

So, α  cannot lie on −3  sphere  .3S  
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