

Gen. Math. Notes, Vol. 10, No. 2, June 2012, pp. 30-35 ISSN 2219-7184; Copyright © ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

A-Quasi Normal Operators in Semi

Hilbertian Spaces

S. Panayappan¹ and N. Sivamani²

¹Department of Mathematics, Government Arts College, Coimbatore- 641018, Tamilnadu, India E-mail: panayappan@gmail.com ²Department of Mathematics, Tamilnadu College of Engineering, Coimbatore- 641659, Tamilnadu, India E-mail: sivamanitce@gmail.com

(Received: 22-5-12 / Accepted: 6-6-12)

Abstract

In this paper we introduce the concept of A-quasinormal operators acting on semi Hilbertian spaces H with inner product \langle , \rangle_A . The object of this paper is to study conditions on T which imply A-quasi normality. If S and T are A-quasi normal operators, we shall obtain conditions under which their sum and product are A-quasi normal.

Keywords: A -adjoint, A -Normal, Semi inner product, and Moore-Penrose inverse and quasinormal.

1 Introduction

Throughout this paper *H* denotes a complex Hilbert space with inner product $\langle .,. \rangle$ and the norm $\| . \| . L(H)$ stands the Banach algebra of all bounded linear operators

on $H \cdot I = I_H$ being the identity operator and if $V \subset H$ is a closed subspace, P_V is the orthogonal projection onto V.

 $L(H)^+$ is the cone of positive operators,

i.e.
$$L(H)^+ = \{A \in L(H) : \langle Ax, x \rangle \ge 0, \forall x \in H\}.$$

Any positive operator $A \in L(H)^+$ defines a positive semi-definite sesquilinear form

$$\langle ... \rangle_A : H \times H \to C, \langle x, y \rangle_A = \langle Ax, y \rangle.$$

By $\|\cdot\|_A$ we denote the semi norm induced by $\langle ... \rangle_A$ i.e. $\|x\|_A = \langle x, x \rangle_A^{\frac{1}{2}}$. Note that $\|x\|_A = 0$ if and only if $x \in N(A)$. Then $\|\cdot\|_A$ is a norm on H if and only if A is an injective operator, and the semi - normed space $(L(H), \|\cdot\|_A)$ is complete if and only if R(A) is closed. Moreover $\langle ... \rangle_A$ induces a semi norm on the subspace $\{T \in L(H) | \exists c > 0, \|Tx\|_A \le c \|x\|_A, \forall x \in H \}$. For this subspace of operators it holds

$$\left\|T\right\|_{A} = \sup_{x \in \overline{R(A)}} \frac{\left\|Tx\right\|_{A}}{\left\|x\right\|_{A}} < \infty$$

Moreover $||T||_A = \sup \{ |\langle Tx, y \rangle_A |; x, y \in H \text{ and } ||x||_A \le 1, ||y||_A \le 1 \}.$ For $x, y \in H$, we say that x and y are A-orthogonal if $\langle x, y \rangle_A = 0$. The following theorem due to Douglas will be used (for its proof refer [5].)

Theorem 1.1 Let $T, S \in L(H)$. The following conditions are equivalent.

- (*i*) $R(S) \subset R(T)$.
- (ii) There exists a positive number λ such that $SS^* \leq \lambda TT^*$.
- (iii) There exists $W \in L(H)$ such that TW = S.

From now on, A denotes a positive operator on H (i.e. $A \in L(H)^+$).

Definition 1.2 Let $T \in L(H)$, an operator $W \in L(H)$ is called an A-adjoint of T if $\langle Tu, v \rangle_A = \langle u, Wv \rangle_A$ for every $u, v \in H$, or equivalently $AW = T^*A$, T is called A - selfadjoint if $AT = T^*A$ and T is called A -positive if AT is positive.

By Douglas Theorem, an operator $T \in L(H)$ admits an *A*-adjoint if and only if $R(T^*A) \subset R(A)$ and if *W* is an *A*-adjoint of *T* and AZ=0 for some $Z \in L(H)$ then

W + Z is also an A -adjoint of T. Hence neither the existence nor the uniqueness of an A -adjoint operator is guaranteed. In fact an operator $T \in L(H)$ may admit none, one or many A -adjoints.

From now on, $L_A(H)$ denotes the set of all $T \in L(H)$ which admit an A-adjoint, i.e. $L_A(H) = \{T \in L(H) : R(T^*A) \subset R(A)\}$

 $L_A(H)$ is a subalgebra of L(H) which is neither closed nor dense in L(H). On the other hand the set of all A-bounded operators in L(H) (i.e. with respect the semi norm $\| \cdot \|_A$ is

$$L_{A^{\frac{1}{2}}}(H) = \left\{ T \in L(H) : T^*R(A^{\frac{1}{2}}) \subset R(A^{\frac{1}{2}}) \right\} = \left\{ T \in L(H) : R(A^{\frac{1}{2}}T^*A^{\frac{1}{2}}) \subset R(A) \right\}$$

Note that $L_A(H) \subset L_{A^{\frac{1}{2}}}(H)$, which shows that if *T* admits an *A*-adjoint then it is *A*-bounded.

If $T \in L(H)$ with $R(T^*A) \subset R(A)$, then *T*, admits an *A*-adjoint operator, Moreover there exists a distinguished *A*-adjoint operator of *T*, namely, the reduced solution of the equation $AX = T^*A$, i.e. $T^{\#} = A^+T^*A$, where A^+ is the Moore-Penrose inverse of *T*. The *A*-adjoint operator $T^{\#}$ verifies

$$AT^{\#} = T^{*}A, R(T^{\#}) \subseteq \overline{R(A)} \text{ and } N(T^{\#}) = N(T^{*}A).$$

In the next we give some important properties of $T^{\#}$ without proof (refer [3], [4] and [5]).

Theorem 1.3 Let $T \in L_A(H)$. Then

(1) If AT = TA then $T^{\#} = PT^{*}$. (2) $T^{\#}T$ and $TT^{\#}$ are A-self adjoint and A-positive. (3) $\|T\|_{A}^{2} = \|T^{\#}\|_{A}^{2} = \|T^{\#}T\| = \|TT^{\#}\|$ (4) $\|S\|_{A} = \|T^{\#}\|_{A}$ for every $S \in L(H)$ which is an A-adjoint of T. (5) If $S \in L_{A}(H)$ then $ST \in L_{A}(H)$, $(ST)^{\#} = T^{\#}S^{\#}$ and $\|TS\|_{A} = \|ST\|_{A}$. (6) $T^{\#} \in L_{A}(H), (T^{\#})^{\#} = PTP$ and $((T^{\#})^{\#})^{\#} = T^{\#}$.

Definition 1.4 An operator $T \in L_A(H)$ is called A -normal if $T^*T = TT^*$ (for more details refer [1]).

2 A- Quasinormal Operators

Definition 2.1 An operator $T \in L_A(H)$ is called A-quasinormal if T commutes with $T^{*}T$ i.e. $T(T^{*}T) = (T^{*}T)T$.

Let $T = U + V \in L_A(H)$ where $U = \frac{T + T^{\#}}{2}$ and $V = \frac{T - T^{\#}}{2}$. We shall write $B^2 = TT^{\#}$ and $C^2 = T^{\#}T$ where B and C are non-negative definite. We give necessary and sufficient conditions for an operator to be A -quasinormal [2] and [6].

Theorem 2.2 T is A-quasinormal with N(A) is invariant subspace for T if and only if C commutes with U and V.

Proof. Since N(A) is invariant subspace for T we observe that PT = TP and $T^{\#}P = PT^{\#}$.

Let T be A-quasinormal then

$$T(T^{*}T) = (T^{*}T)T$$

$$T^{*}T^{*}T^{*} = T^{*}T^{*}T^{*}$$

$$T^{*}PTPT^{*} = T^{*}T^{*}PTP$$

$$PT^{*}PTT^{*} = T^{*}PT^{*}PT$$

$$T^{*}TT^{*} = T^{*}T^{*}T$$
Hence $T^{*}TT^{*} = T^{*2}T$.

Now it is easy to see that $C^2 U = UC^2$. Since C is non-negative definite, it follows that CU = UC. Similarly CV = VC.

Conversely, let CU = UC and CV = VC. Then $C^2 U = UC^2$ and $C^2 V = VC^2$. Hence $C^2 T = TC^2$. Therefore $T^{\#}T^2 = TT^{\#}T$.

In the following theorem we give conditions under which an operator T is A-quasi normal.

Theorem 2.3 If T is an operator such that (i) B commutes with U and V (ii) $C^2T = TB^2$. Then T is A -quasinormal.

Proof. Since BU = UB and BV = VB we have $B^2U = UB^2$ and $B^2V = VB^2$ Then $B^2T + B^2T^{\#} = TB^2 + T^{\#}B^2$ $B^2T - B^2T^{\#} = TB^2 - T^{\#}B^2$

This gives $B^2T = TB^2 = C^2T$. Hence T is A -quasinormal.

Theorem 2.4 Let T be A-quasi normal, $C^2 T = TB^2$ and N(A) be an invariant subspace for T. Then B commutes with U and V.

Proof. Since $C^2 T = TB^2$ we have $T^{\#}T^2 = T^2T^{\#}$. Hence $T^{\#^2}T = TT^{\#^2}$. Since *T* is *A* -quasi normal we have

$$B^{2}U = \frac{TT^{*}T + TT^{*2}}{2} = \frac{T^{*}T^{2} + T^{*2}T}{2} = \frac{T^{2}T^{*} + T^{*}TT^{*}}{2} = \frac{T + T^{*}}{2}TT^{*} = UB^{2}.$$

Hence BU = UB. Similarly BV = VB.

Theorem 2.5 Let S and T be two A -quasinormal operators. Then their product ST is A -quasinormal if the following conditions are satisfied (i) ST = TS (ii) $ST^{\#} = T^{\#}S$.

Proof.
$$(ST)(ST)^{\#}(ST)$$

 $= (ST)(T^{\#}S^{\#})(ST)$
 $= (ST)(S^{\#}T^{\#})(ST)$
 $= S(TS^{\#})(T^{\#}S)T$
 $= SS^{\#}(TS)T^{\#}T$
 $= (SS^{\#}S)(TT^{\#}T)$
 $= (S^{\#}S^{2})(T^{\#}T^{2})$
 $= S^{\#}(S^{2}T^{\#})T^{2}$
 $= S^{\#}(T^{\#}S^{2})T^{2}$
 $= (T^{\#}S^{\#})(S^{2}T^{2})$
 $= (ST)^{\#}(ST)^{2}$

Hence ST is A-quasinormal.

Theorem 2.6 Let S and T be two A-quasinormal operators such that $ST = TS = S^{\#}T = T^{\#}S = 0$. Then S + T is A-quasinormal.

Proof.
$$(S + T)(S + T)^{\#}(S + T)$$

= $(S + T)(S^{\#} + T^{\#})(S + T)$
= $(S + T)(S^{\#}S + S^{\#}T + T^{\#}S + T^{\#}T)$
= $(S + T)(S^{\#}S + T^{\#}T)$
= $SS^{\#}S + ST^{\#}T + TS^{\#} + TT^{\#}T$
= $S^{\#}S^{2} + T^{\#}T^{2}$

 $= (S + T)^{\#} (S + T)^{2}$ Hence S + T is A -quasi normal.

References

- [1] A. Saddi, *A*-Normal operators in semi Hilbertian spaces, *AJMAA*, 9(1) (2012), Article 5, 1-2.
- [2] A. Bala, A note on quasinormal operators, *Indian J. Pure App. Math.*, 8 (1977), 463-465.
- [3] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, *Proc. Amer. Math. Soc.*, 17(1966), 413-415.
- [4] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi Hilbertian spaces, *Linear Algebra and its Applications*, 428(2008), 1460-1475.
- [5] M.L. Arias, G. Corach and M.C. Gonzalez, Metric properties of projections in semi Hilbertian spaces, *Integral Equations and Operators Theory*, 62(2008), 11-28.
- [6] O. Ahmed and Md. S. Ahmed, On the class of n-power quasinormal operators on Hilbert space, *Bulletin of Mathematical Analysis and Applications*, 3(2) (2011), 213-228.