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Abstract

In this paper, we consider the convergence of three-step fixed point itera-
tive processes for multivalued nonexpansive mapping with errors, under some
different conditions, the sequences of three-step fixed point iterates strongly or
weakly converge to a fixed point of the multivalued nonexpansive mapping. Our
results extend and improve some recent results.
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1 Introduction

Let X be a Banach space and K a nonempty subset of X. We shall denote by
2% the family of all subsets of X, C'B(X) the family of all nonempty closed
bounded subsets of X and denote C'(X) by the family of nonempty compact
subsets of X. A multivalued mapping T : K — 2% is said to be nonexpansive
(resp, contractive) if

H(T.’L’,Ty) S H‘r_yH7 z,y S Ka

(resp, H(Txz,Ty) < kllz —y||, for some k€ (0,1)).
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where H(-,-) denotes the Hausdorff metric on C'B(X) defined by

H(A, B) := max{sup inf ||z —y||, supinf ||x —y|}, A,Be€ CB(X).
rcAYEB yEB €A

A point x is called a fixed point of T if x € T'x.

Since Banach’s Contraction Mapping Principle was extended nicely to mul-
tivalued mappings by Nadler in 1969 (see [7]), many authors have studied the
fixed point theory for multivalued mappings (e.g. see[l, 3, 4, 5, 14]). For
single-valued nonexpansive mappings, Mann [6] and Ishikawa [2] respectively
introduced a new iteration procedure for approximating its fixed point in a
Banach space as follows:

Tpi1 = (1 —ap)x, + Ty, (1)
and
Tpy1 = (1 - O‘n)mn + QnYn, Yn = (1 - bn)xn + bann, (2)

where {a,} and {b,}are sequences in [0,1]. Obviously, Mann iteration is a
special case of Ishikawa iteration. Recently Song in [11] and [12] introduce the
following algorithms for multivalued nonexpansive mapping,

Tor1 = (1 — apn)xy + ansp, (3)
where s,, € Tz, such that ||s,11 — sp|| < H(Tzpi1, Txy).
Lptl = (1 - O‘n)xn + AnTn, Yn = (1 - bn)zn + bnsna (4)

where ||s,—7,|| < H(Tz,, Ty,) and ||s,11—70|| < H(Tzpy1, Ty,) for s, € Tz,
and r, € Ty,. He show some strongly or weakly convergence results of the
above iterates for multivalued nonexpansive mapping 7' under some appropri-
ate conditions. In this paper, we introduced the following algorithm, which
can be generalized as the above algorithms (3), (4):

Algorithm. For a given 2o € K and sy € T'xzg. Let
z0 = (1 — ao — 70)To + aoso + Youo.
There exists to € Tz such that ||ty — so|| < H(T20, T'xo). Let
Yo = (1 —bo — co — po)xo + boto + coso + Hovo.

There exists 19 € Tyo such that ||ro — to|| < H(Tyo,T2) and |19 — so| <
H(Ty(),TIO). Let

T = (1 — Qp — ﬂo — )\0)1’0 + QT + Boto + )\owo.
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There exists s; € Ty such that ||s; — ro|| < H(Tz1,Tyo) and ||s; — to]] <
H(Txy,Tz2). Inductively, we can get the sequence {x,} as follows:

Zn = (1 — Qp — ’Yn)xn + apsSy + YnUn
Yn = (1 - bn — Cp — Mn)xn + bntn + CpSp + HnUn (5)
Tpy1 = (1 — O — /Bn - >\n>xn + anTp + ﬁntn + )\nwna

where {a,}, {0}, {cn}, {an}, {5}, {7}, {tn}, {\n} are appropriate sequence
in [0,1] and {u,},{v,}, and {w,} are bounded sequence in K, furthermore

Sp € Txy, t, € Tzy, 1 € Ty, such that ||t, — s,|| < H(Tz,, Txy), |1 — ta|| <
H(TYn, T2y), 10 — sull < H(Tyn, Tp), |Sns1 — 7|l < H(Twpq1, Tyn) and
|Sn+1—tn|| < H(Txpi1, T2,). The iterative scheme (5) is called the three-step
multivalued iterative scheme with errors. If a, = v, = ¢, =ty = B = My =0,
then iterative scheme (5) reduces to (4). If a, = v, = b, = ¢ = pi = Bn =
An = 0, then iterative scheme (5) reduces to (3). In fact let v, = pu, = A, =0
or ¢, = Brn = Yn = tn = Ay = 0, we also have the following Algorithms:

zn = (1 —ap)z, + ansy
Yn = (1 = by — cp)xp + bty + sy (6)
Tny1 = (1 — Qp — ﬁn)mn + o,y + ﬁntn;

zn = (1 —ap)z, + ansy
Tni1 = (1 — ap)x, + apry;

We consider the convergence of iterative scheme (5) for multivalued nonexpan-
sive mapping with errors, under some different conditions, we show that the
sequences of iterative scheme (5) strongly or weakly converge to a fixed point
of the multivalued nonexpansive mapping 7. In particular, we extend some
results in [12], and also give some new results are different from the [11]. The
following definition was introduced in [10].

Definition 1.1 A multivalued mapping T : K — CB(K) is said to satisfy
Condition (A) if there is a nondecreasing function f : [0,00) — [0,00) with
f(0) =0, f(z) >0 for z € (0,00) such that

d(xz,Tz) > f(d(x, F(T)) for all x € K.

Where F(T) # () is the fixed point set of the multivalued mapping 7. From
now on, F(T) stands for the fixed point set of the multivalued mapping 7.
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2 Preliminaries

A Banach space X is said to be satisfy Opial’s condition [9] if, for any sequence
{z,} in X, z, — x(n — o0) implies the following inequality

limsup ||z, — z|| < limsup ||z, — y||
n—oo n—oo
for all y € X with y # x. We know that Hilbert spaces and [,(1 < p < 00)

have the Opial’s condition.
The following Lemmas will be useful in this paper.

Lemma 2.1 (see [13]) Let {a,},{bn} and {0,} be sequence of nonnegative
real numbers satisfying the inequality

an1 < (14 6,)an + by, Y =0,1,2,...
If >0 0, < oo and Y02 b, < oo, then
(1) lim, s a, exists.
(2) lim, s a, = 0 whenever liminf,_,,, a, = 0.

Lemma 2.2 (see [8]) Let X be a uniformly convex Banach space and B, =
{z € X :||z]| <r},r > 0. Then there exists a continuous, strictly increasing,
and convex function g : [0,00) — [0,00), g(0) = 0, such that

law + By + pz + Mwll* < allz]|* + Bllyll* + ull2l* + Allwl* — aBg(llz — yll),

for all z,y,z,w € B,, and all o, B, u, A € [0,1] with a+ S+ u+ X\ = 1.

3 Main results

Lemma 3.1 Let X be a real Banach space and K be a nonempty closed,
bounded and conver subset of X. Let T : K — CB(K) be a multivalued
nonexpansive mapping for which F(T) # O and for which T (p) = {p} for any
fizred point p € F(T). Let {an}, {bn}, {cn}, {an}, {Bn}, {1} {1tn} and {A.} be
real sequences in [0,1] such that a, + Yn, by + ¢ + i and o, + B, + A, are
in [0,1] for allm > 0, and X020 370 < 00,300 o iy < 00,202 o Ay < 00, and
{un}, {vn}, and {w,} be the bounded sequence in K. For a given xy € K,
let {zn},{yn}, and {z,} be the sequence defined as in (5), then we have the
following conclusions:

lim |z, —pl| exists for any p € F(T)
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Proof. Let p € F(T), from iterative scheme (5), note that T'(p) = {p} for any
fixed point p € F(T'), we have

Iz = pll

llyn — pll

and so we have

[yl

IA A IA

IN I

IN

IN IN IN

IN

IA A

(1 = an — W)l — pll + anllsn — pll + vallun — pll

(1= an = )llzn = pll + and(sn, Tp) + nlun — pll

(1 = an = v)llwn — pll + anH(T2y, Tp) + Yallun — p||
(1 =) lzn — pll + yallun — pll,

(1 = bn — o — ) |70 — pl| + bulltn — pll + cullsn — Pl
+inl[on = pll

(1 = bn — cn — ) ||Tn — pll + bnd(tn, Tp) + cnd(s,, Tp)
+nlvn —

(1= by — ¢o — o) |z — pl| + bu H(T 2, Tp) + coH (T, Tp)
+inlvn —

(1 = bn = pn) |zn — pll + bullzn — pIl + pnllon — pll,

(1 —an = Bn — Aa)llzn — pll + anllrn — pll

+Bnlltn = pll + Anllwn — pll

(1 —an = Bn = Aa)llzn — pll + an H(Tyn, T'p)

+BnH (Tzn, Tp) + Anl|wn — |

(1= am = Bn = A)llzn — pll + anllyn — pll

+Bnllzn — pll + Anllw, — pl|

(1= = Bn = Aa)llzn — pll + an[(1 = by — ) ||z — p|
+bn ||z = pll + tnllve — Pl + Bullzn — pll + Anllwn — pl|
(1= = Bn — Aa)llzn — pll + an(l — by — pn) |20 — p|
+anbn (1 = )l — pll + anbpynllun — pll + anpinllve — pll
+8a(1 = va)llzn = pll + Banlltn — pll + Aallwn = pl|

|20 = pll = (Bayn + Qnpin + @nbpyn + M) |20 — pl|

+(Bnvn + anbpyn)[un — pll + anpin]|on = pll + Anflwn — p|
12 = pll + ¥ (Bn + anbn) [un — Pl + anpnllvn — pll + Anllws — pl
|20 = pll + 29m[lun — pll + pnlvn = pll + Anlwn — pl.

From the assumption we have

201 = pll < llzn = pll 4 Ly + Mpn + NAs,
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where L = sup{2|u, — p|,n > 0}, M = sup{||v, — pll,n > 0} and N =
sup{||w, — p||,n > 0}. If we let K = max{L, M, N} then we get that

l2n 1 = pll < llzn = pll 4+ K (9 A+ i + An). (8)
It follows from Lemma 2.1 that lim,, ||z, — p|| exists for any p € F(T).

Lemma 3.2 Let X be a uniformly convexr Banach space and K be a nonempty
closed, bounded and convex subset of X. LetT : K — CB(K) be a multivalued
nonexpansive mapping for which F(T) # O and for which T (p) = {p} for any
Jized point p € F(T) Let {an}’ {bn}v {Cn}’ {an}v {ﬁn}v {P)/n}7 {/Ln} and {/\n}
be real sequences in [0,1] such that an + Y, by + oy + pn and o, + By + Ay
are in [0,1] for all n > 0, and Y00 o Yn < 00,2 00 g fn < 00, > 00 g Ap < 00,
and {u,},{v,},{w,} be the bounded sequence in K. For a given xo € K, let
{zn},{yn}, and {z,} be the sequence defined as in (5).

(i) If iminf, o,, > 0 and 0 < liminf, b, < limsup,,(b, + ¢, + p,) < 1, then
lim,, d(z,, Tz,) = 0.

(ii) If 0 < liminf, v, <limsup, (o, +B,+\,) < 1, then lim,, d(x,, Ty,) = 0.

(iii) If 0 < liminf, b, < limsup,(b, + ¢, + p,) < 1 and 0 < liminf, a;, <
limsup,, (., + B + \n) < 1, then lim, d(z,, Tx,) = 0.

Proof. (i) It is well known that 7" has a fixed point p € K (see [5]). By lemma
3.1, we know that lim,, ||z,, — p|| exists for any p € F(T), then it follows that
{sn — p}, {t, — p}, and{r, — p} are all bounded and from the assumption we
known that {u, —p}, {v, —p}, {w, — p} are all bounded. We may assume that
these sequences belong to B, where r > 0. Note that T'(p) = {p} for any fixed
point p € F(T). By Lemma 2.2, we get

Iz = pI* < (1= an = w)llzn = plI* + anllsn = plI* + Yallun — p?
—an(1 = an = 7n)g(2n — snll)

= (1—=an—)llzn — pH2 + and(5n>Tp)2 + Yo llun — pH2
—a,(1 = an — ) g([|7n — snl|)

< (1 =an —)llzn = pl* + anH (T, Tp)* + yulun — pll?
—n(1 = an = Yn)g([|2n = snl])
< (=)@ — 2l + mllun — plI* = an(1 = an — vn)g(|lzn — sull),
< (L= )llzn = plI* + Ynllun — plI?,
lyn —pI? < (1= by — o = pn)llzn — DI + balltn = plI* + callsn — plI?
aalltn = DI = bl — by — n — gl — tal)
< (1 =bp = o = pn)||2n = plI* + 0o H(T20, Tp)? + cn H(Tp, Tp)*
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+ i || Vn _p||2 — b (1 — by — cn — ptn)g(|| 70 — tal])
< (1= bn — pn) |20 — pII* + Iz — plI?
][ vn = plI* = bp(1 = by — = pin)g (2 — tall),

and therefore we have

|Znt1 — pH2 < (T—an—=Ba—M)llzn — p”2 + al|rn — p”2 + Bulltn — p||2
+Anllwn — pH2 —ap(l —an = By — A)g([|zn —7all)
< (1= =B = X)ll2n = plI* + anH(Tyn, Tp)* + BuH(T 20, Tp)*
Fallwn = plI* = an(l = an = B = A)g(llan — 7all)
(1 = an = Bu = A)llzn = pII* + anllyn — plI* + Ball2n — pII?
+Anllwn — pH2 —ap(l—an = B = A)g(llzn — 7all)

(1= — B = ) ||l7p — p”2 + ap [(1 = by — Mn)”xn - p||2

IN

IN

+bn |20 — pH2 + finl|vn — p”2 —bn(1 = by — cn — ) g(||70 — t0])

+Bnllzn _pH2 + Anllw, — pH2 —an(1 —an — B — M) g(||Tn — 74al|)
2 = Pl + [ (L = by = ) = @ = B = Aalll2n — pl|?
(anbn + Bu)[(1 = ) lzn — pH2 + Yo llun — pH2] + Qi || — pH2
+Anl[wn — pH2 — apbp(1 = by — ¢ — pn)g([|zn — t0l])
—a(1 = an — B — An)g(llTn — 7all)
= Nz = pl* = (anptn + An + @nbuyn + Buva)llzn — ]
+(nbn + Bn)ynllun — pH2 + appin || v — p”2 + Anlwn — pH2
—apby (1 = by, — ¢ — 1) g([| 70 — tal[)
—an(l = an — By — An)g(lzn — 7all)

IA

< lzw = plI* + (anbn + Ba)vallun = plI* + npnllvn = plI* + Aallwn — plf?
— b (1 = by — 0 — ) g (|70 — tall)
—an(1 = ap = B = An)g([lzn = nll)

< Ml = plI* + 2%llun = plI* + pallvn = plI* + Anllwn — pl®

—n(1 =y = B = An)g([|wn — 74al])

From the assumption we have

by (1 = by — cp = pn) g (|20 — tall) < |lzn — 2lI* = 201 — 2|7 ()
+ S(Yn + pn + M),
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O‘ﬂ(l — oy, — By — )‘n)gmmn - THH) < Hxn _pH2 - Hxn+1 _pH2 (10)
+S(7n + Hn "‘)\n)a

where S = max{sup{2||u, — pl|*,n > 0},sup{|jv, — p[|*,n > 0}, sup{|jw, —
pll*>,n > 0}}. In the sequence we prove the (i). If liminf, a, > 0 and 0 <
liminf, b, < limsup,,(b, + ¢, + 1,) < 1, then there exist a positive integer ny
and v, 7,0 € (0,1) such that

O<v<a,and 0<n<b, and b, +c, + p, <0 <1, for all n > ny.
From (9)we get that

vi(1—0)g(||z, — tal]) < llzn — plI* = |2ns1 — pI? (11)
+ S(Yn + fin + An)

for all n > ng. It follows from (11) that for m > ny,

m 1 m
3 ollan—tal) < vn(l—e)(n;%(”x" o2 — mer — pl?)
S Z(%+un+An))
n=ng
1 m
S — 2 )
N Vn(1—9)<’|$”° Pl +5n;0(%+un+kn)

Let m — oo in above inequality we get that >-°2, g(||lz, — t.||) < oo and
hence lim,, o g(||x,, — t,||) = 0. Since g is strictly increasing and continuous
at 0 with g(0) = 0, it follows that lim, . ||z, — t,|| = 0, therefore we have
0 < limy, oo d(xy, Tz) < limy, o0 ||, — ta]| = 0.

(i) If 0 < liminf, v, < limsup,, (a4 B,+A,) < 1, then using a similar method,
together with inequality (10), it can be shown that lim,, d(z,, T'y,) = 0.

(iii) If 0 < liminf, b, < limsup,(b, + ¢, + i,) < 1 and 0 < liminf, o, <
lim sup,, (e, + Bn + An) < 1, by (i) and (ii) we have

lim ||z, —t,|| =0 and lim ||z, —r,| = 0. (12)
n—00 n—0o0
From (5) we have
Hyn - xn” < anxn - tn“ + Conn - SnH + :un”%z - Un”
Hence we have that

Hsn - rn” + HTn - In”
H(Tzp, Tyn) + |10 — 24|
|Zn = Ynll + |7 — xn”

anIn - tn” + Cn”xn - Sn” + /~Ln||xn - Un” + ||rn - an

Hsn _"EnH

VAN VAN VAR VAN
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It follows that
(1 - Cn)HSn - an < anxn - tn” + Mn||xn - Un” + ||7"n - xn” (13)

from (12) and lim sup,, ¢,, < 1 we get lim,, ||s,—2,|| = 0, hence 0 < lim,,_, o d(x,,, T'x,,) <
limy, o0 ||Zn — Su|| = 0.

Theorem 3.3 Let X, T and {x,},{y.}, {2z} be the same as in Lemma 3.2,
if K be a nonempty compact convexr subset of a Banach space X and

(i) If 0 < liminf, b, < limsup,, (b, + ¢, + pn) < 1, and
(i) 0 < liminf, o, < limsup, (@, + Bn + ) < 1,

then {x,},{yn}, {2z} converges strongly to a fixed point of T

Proof. By Lemma 3.2, we have lim, d(x,,Tx,) = 0. Since K be a nonempty
compact convex subset, then there exist a subsequence {z,, } of {x, } such that
limyo0 ||n, — ¢|| = 0 for some ¢ € K. Thus,

dq,Tq) < |lg—xn |l +d@n, Ten,) + H(T2y,, Tq)
< 2|lg — xp, || + d(zp,, Txy,) — O.

Hence ¢ is a fixed point of 7. From Lemma 3.1, now on take on ¢ in place of
p, we get that lim,, . ||z, — ¢|| = 0. From Lemma 3.2 we get that

1Y — Zall < balltn — @all + cnllsn — zall + pallvn — 20|l = 0 as n — oo,

and
[2n = all < anllzn = snll + Ynllzn — wnll = 0 as n — oo,

it follows that lim, . ||y — ¢|| = 0 and lim,,,« ||z, — ¢]| = 0. So the desired
conclusion follows.

Theorem 3.4 Let X, T, K and {z,},{yn},{zn} be the same as in Lemma
3.2, if T satisfies Condition (A) with respect to the sequence {z,},

(i) If 0 < liminf, b, < limsup,, (b, + ¢, + p,) < 1, and
(i) 0 < liminf, o, <limsup, (o, + Bn + ) < 1,
then {z,},{yn}, {zn} converges strongly to a fixed point of 7'

Proof. By Lemma 3.2, we have

li7rln d(xp, Tz,) = 0.
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Since T satisfies Condition (A) with respect to {z,}. Then
fld(zn, F(T))) < d(zy, Tz,) — 0.

Thus we get lim,, d(z,, F(T')) = 0. The remainder of the proof is the same as
Theorem 2.4 in [12] and Theorem 3.3, we omit it.

Theorem 3.5 Let X, T and {z,},{yn}, {2z} be the same as in Lemma 3.2
and T : K — C(K). If K be a nonempty weakly compact convex subset of a
Banach space X and X satisfies Opial’s condition,

(i) If 0 < liminf, b, < limsup,, (b, + ¢, + pn) < 1, and

(ii) 0 < liminf, a,, <limsup,(a, + B, + ) < 1,
then {x,} converges weakly to a fixed point of T

Proof. The proof of the Theorem is the same as Theorem 2.5 in [12], we
omit it.

Remark. From iterative scheme (5), Theorem 3.3, Theorem 3.4 and The-
orem 3.5 which generalized the results obtained by Song [12] and also give
some new results are different from the results in [11]. Furthermore the above
conclusions hold for iterative scheme (6), (7).
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