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Abstract
In this paper, we introduce and investigate some weak separation axioms by
using the notions of Bc-open sets and the Be-closure operator.
Keywords: Bc-open, b-open.

1 Introduction

Throughout this paper, (X,7) and (Y, o) stand for topological spaces with
no separation axioms assumed unless otherwise stated. For a subset A of X,
the closure of A and the interior of A will be denoted by CI(A) and Int(A),

respectively.

Definition 1.1 [1] A subset A of a space X is said to be b-open if A C
Int(Cl(A)) U Cl(Int(A)). The family of all b-open subsets of a topological
space (X, 7) is denoted by BO(X,T) or (Briefly. BO(X)).

Definition 1.2 /2] A subset A of a space X is called Bc-open if for each
x € A C BO(X), there exists a closed set F such that x € F C A. The family
of all Be-open subsets of a topological space (X, T) is denoted by BcO(X,T) or
(Briefly. BcO(X)).

Definition 1.3 /2] For any subset A in the space X, the Be-closure of
A, denoted by BcCl(A), is defined by the intersection of all Be-closed sets

containing A.



46 Hariwan Z. Ibrahim

2 Bc-g.Closed Sets

In this section, we define and study some properties of Be-g.closed sets.

Definition 2.1 A subset A of X is said to be a Bc-generalized closed (briefly,
Be-g.closed) set if BcCl(A) C U whenever A C U and U is a Bc-open set in
(X, 7). A subset A of X is Bec-g.open if its complement X \ A is Be-g.closed
mn X.

It is clear that every Bce-closed set is Be-g.closed. But the converse is not true
in general as it is shown in the following example.

Example 2.2 Consider X = {a,b,c} with the topology
T = {¢,{a},{b},{a,b},{a,c}, X}. Now, if we let A = {a}, since the only
Bc-open supersets of A are {a,c} and X, then A is Be-g.closed. But it is easy
to see that A is not Bc-closed.

Proposition 2.3 If A is Bc-open and Bc-g.closed then A is Be-closed.

Proof. Suppose that A is Bc-open and Be-g.closed. Since A is Bc-open and
A C A, we have BeCl(A) C A, also A C BcCI(A), therefore BeCl(A) = A.
That is A is Be-closed.

Proposition 2.4 The intersection of a Bc-g.closed set and a Bc-closed set
18 always Bc-g.closed.

Proof. Let A be Be-g.closed and F' be Be-closed. Assume that U is Be-open set
such that ANF C U, set G = X\ F. Then A C UUG, since G is Be-open, then
U UG is Be-open and since A is Be-g.closed, then BeCl(A) C UUG. Now by
Theorem 3.17 (10) [2], BcCl(ANF) C BeCl(A)N BeCIl(F) = BeCl(A)NF C
(VUGINF=UNF)UGNF)=UNF)Uep CU.

Proposition 2.5 If a subset A of X is Be-g.closed and A C B C BceCl(A),
then B is a Bc-g.closed set in X.

Proof. Let A be a Be-g.closed set such that A C B C BeCl(A). Let U
be a Bc-open set of X such that B C U. Since A is Be-g.closed, we have
BeCl(A) CU. Now BeCl(A) C BeCl(B) C BeCl[BeCl(A)] = BeCl(A) C U.
That is BcCl(B) C U, where U is Be-open. Therefore B is a Be-g.closed set
in X.

Proposition 2.6 For each v € X, {z} is Bc-closed or X \ {x} is Be-
g.closed in (X, ).
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Proof. Suppose that {z} is not Be-closed, then X \ {z} is not Bc-open. Let
U be any Be-open set such that X \ {z} C U, implies U = X. Therefore
BeCl(X \ {z}) CU. Hence X \ {x} is Be-g.closed.

Proposition 2.7 A subset A of X is Bc-g.closed if and only if BeCl({x})N
A # ¢, holds for every x € BeCl(A).

Proof. Let U be a Bc-open set such that A C U and let « € BcCl(A). By
assumption, there exists a point z € BeCl({z}) and 2 € A C U. Then,
Un{xz} # ¢, hence x € U, this implies BcCl(A) C U. Therefore A is Be-
g.closed.

Conversely, suppose that © € BeCl(A) such that BeCl({z}) N A = ¢. Since,
BeCl({z}) is Be-closed. Therefore, X \ BcCl({x}) is a Bc-open set in X.
Since A C X \ (BcCl({z})) and A is Be-g.closed implies that BeCl(A) C X\
BceCl({z}) holds, and hence x ¢ BcCl(A). This is a contradiction. Therefore
BeCl({z}) N A # ¢.

Proposition 2.8 A set A of a space X is Bc-g.closed if and only if BcCl(A)\
A does not contain any non-empty Bc-closed set.

Proof. Necessity. Suppose that A is a Be-g.closed set in X. We prove the
result by contradiction. Let F' be a Be-closed set such that F¥ C BeCl(A) \ A
and F' # ¢. Then F' C X \ A which implies A C X \ F'. Since A is Be-g.closed
and X \ F' is Bc-open, therefore BeCl(A) C X \ F, that is FF C X \ BcCI(A).
Hence F' C BeCl(A)N (X \ BeCl(A)) = ¢. This shows that, F' = ¢ which is a
contradiction. Hence BcCl(A) \ A does not contain any non-empty Be-closed
set in X.

Sufficiency. Let A C U, where U is Bc-open in X. If BcCI(A) is not
contained in U, then BcCl(A) N X \ U # ¢. Now, since BcCl(A)N X \U C
BeCl(A)\ A and BeCl(A)NX\U is a non-empty Be-closed set, then we obtain
a contradication and therefore A is Be-g.closed.

Proposition 2.9 If A is a Be-g.closed set of a space X, then the following
are equivalent:

1. A is Be-closed.
2. BcCl(A) \ A is Be-closed.

Proof. (1) = (2). If A is a Be-g.closed set which is also Be-closed, then,
BcCl(A) \ A = ¢, which is Be-closed.

(2) = (1). Let BcCl(A) \ A be a Be-closed set and A be Be-g.closed. Then
by Proposition 2.8, BeCl(A) \ A does not contain any non-empty Be-closed
subset. Since BeCl(A) \ A is Be-closed and BeCl(A) \ A = ¢, this shows that
A is Be-closed.
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Proposition 2.10 For a space (X, T), the following are equivalent:
1. Fvery subset of X is Bc-g.closed.
2. BcO(X, 1) = BcC(X, 7).

Proof. (1) = (2). Let U € BcO(X, 7). Then by hypothesis, U is Be-g.closed
which implies that BeCl(U) C U, so, BeCl(U) = U, therefore U € BeC'(X, 7).
Alsolet V € BeC(X, 7). Then X \V € BcO(X,7), hence by hypothesis X \ V/
is Be-g.closed and then X \ V' € BeC(X, 1), thus V € BeO(X, 1) according to
the above we have BcO(X, 1) = BcC(X, 7).

(2) = (1). If Ais asubset of a space X such that A C U where U € BcO(X, ),
then U € BeC(X, 1) and therefore BeCl(U) C U which shows that A is Be-
g.closed.

3 BeT) (k=0,1,2)

In this section, some new types of separation axioms are defined and studied
in topological spaces namely, Be-Tj, for k = 0, %, 1,2 and Be-Dy, for k= 0,1, 2,
and also some properties of these spaces are explained.

The following definitions are introduced via Bc-open sets.

Definition 3.1 A topological space (X, T) is said to be:

1. Bce-Ty if for each pair of distinct points x,y in X, there exists a Bc-open
set U such that either x € U andy ¢ U orx ¢ U and y € U.

2. Bc-Ty if for each pair of distinct points x,y in X, there exist two Bc-open
sets U and V' such that x € U buty ¢ U andy € V but x ¢ V.

3. Bc- Ty if for each distinct points x,y in X, there exist two disjoint Bc-
open sets U and V' containing x and y respectively.

4. BC—T% if every Be-g.closed set is Be-closed.

Proposition 3.2 A topological space (X, T) is Be-Ty if and only if for each
pair of distinct points x,y of X, BcCl({x}) # BcCl({y}).

Proof. Necessity. Let (X, 7) be a Be-Tj space and z,y be any two distinct
points of X. There exists a Bc-open set U containing x or y, say « but not y.
Then X \ U is a Be-closed set which does not contain = but contains y. Since
BeCl({y}) is the smallest Be-closed set containing y, BeCl({y}) C X \ U and
therefore x ¢ BeCl({y}). Consequently BeCl({z}) # BcCl({y}).

Sufficiency. Suppose that z,y € X, x # y and BeCl({z}) # BcCl({y}). Let
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z be a point of X such that z € BeCl({z}) but z ¢ BcCl({y}). We claim
that « ¢ BeCl({y}). For, if x € BcCl({y}) then BcCl({x}) C BcCl({y}).
This contradicts the fact that z ¢ BeCl({y}). Consequently x belongs to the
Be-open set X \ BeCl({y}) to which y does not belong.

Proposition 3.3 The following statements are equivalent for a topological
space (X,T) :

1. (X,7) is Be-Th.
2. Each singleton {x} of X is either Bc-closed or Be-open.

Proof. (1) = (2). Suppose {x} is not Be-closed. Then by Proposition 2.6,
X \ {z} is Be-g.closed. Now since (X, 7) is Be-Ty, X \ {z} is Be-closed, that
is {x} is Bc-open.

(2) = (1). Let A be any Be-g.closed set in (X, 7) and = € BcCl(A). By (2),
we have {z} is Be-closed or Be-open. If {z} is Be-closed then x ¢ A will imply
x € BeCl(A) \ A, which is not possible by Proposition 2.8. Hence z € A.
Therefore, BcCl(A) = A, that is A is Be-closed. So, (X, 7) is Be-Ti. On the
other hand, if {z} is Bc-open then as x € BcCIl(A), {x} N A # ¢. Hence
x € A. So A is Be-closed.

Proposition 3.4 A topological space (X, 7) is Be-Ty if and only if the sin-
gletons are Bce-closed sets.

Proof. Let (X,7) be Be-7T7 and x any point of X. Suppose y € X \ {z},
then = # y and so there exists a Be-open set U such that y € U but = ¢ U.
Consequently y € U C X \ {z}, that is X \ {z} = U{U : y € X \ {z}} which
is Bc-open.

Conversely, suppose {p} is Be-closed for every p € X. Let z,y € X with
x #y. Now x # y implies y € X \ {z}. Hence X \ {2z} is a Bc-open set
contains y but not z. Similarly X \ {y} is a Bc-open set contains x but not y.
Accordingly X is a Be-T; space.

Proposition 3.5 The following statements are equivalent for a topological
space (X,T) :

1. X is Be-Ts.

2. Let x € X. For each y # x, there exists a Bc-open set U containing x
such that y ¢ BcCl(U).

3. For each x € X, "{BcCIl(U) : U € BcO(X) and x € U} = {x}.
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Proof. (1) = (2). Since X is Be-Ty, there exist disjoint Be-open sets U and V/
containing = and y respectively. So, U C X \ V. Therefore, BeCl(U) C X\ V.
So y ¢ BeCl(U).

(2) = (3). If possible for some y # x, we have y € BcCl(U) for every Be-open
set U containing =, which then contradicts (2).

(3) = (1). Let z,y € X and = # y. Then there exists a Bc-open set U
containing x such that y ¢ BcCl(U). Let V = X \ BcCl(U), then y € V' and
x €U and also UNV = ¢.

Proposition 3.6 Let (X, 1) be a topological space, then the following state-
ments are hold:

1. Every Bce-Ts space is Be-T.
2. FEvery Bce-T1 space is Bc—T%.
3. Bvery BC—T% space is Be-Ty.
Proof.
1. The proof is straightforward from the definitions.
2. The proof is obvious by Proposition 3.4.

3. Let x and y be any two distinct points of X. By Proposition 3.3, the
singleton set {x} is Be-closed or Be-open.

(a) If {z} is Be-closed, then X \ {z} is Be-open. So y € X \ {z} and
z ¢ X \ {z}. Therefore, we have X is Be-Tp.

(b) If {x} is Bc-open. Then x € {z} and y ¢ {x}. Therefore, we have
X is Be-Ty.

Definition 3.7 A subset A of a topological space X is called a BeDifference
set (briefly, BeD-set) if there are U,V € BcO(X,T) such that U # X and
A=U\V.

It is true that every Bc-open set U different from X is a BeD-set if A =U
and V' = ¢. So, we can observe the following.

Remark 3.8 Fvery proper Bc-open set is a BeD-set.

Now we define another set of separation axioms called Be-Dy,, for k = 0,1, 2,
by using the BcD-sets.

Definition 3.9 A topological space (X, T) is said to be:
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1. Be-Dy if for any pair of distinct points x and y of X there exists a BeD-
set of X containing x but not y or a BeD-set of X containing y but not
x.

2. Be-Dy if for any pair of distinct points x and y of X there exists a BeD-
set of X containing x but not y and a BcD-set of X containing y but
not x.

3. Be-Dy if for any pair of distinct points x and y of X there exist disjoint
BeD-set G and E of X containing x and y, respectively.

Remark 3.10 For a topological space (X, T), the following properties hold:
1. If (X, 7) is Be-Ty, then it is Be-Dy, for k=0,1,2.
2. If (X, 1) is Be-Dy, then it is Be-Dy_q, for k =1,2.
Proof. Obvious.
Proposition 3.11 A space X is Be-Dy if and only if it is Be-Ty.

Proof. Suppose that X is Be-Dy. Then for each distinct pair z,y € X, at least
one of z,y, say x, belongs to a BeD-set G but y ¢ G. Let G = Uy \ Uy where
Uy # X and U,U; € BeO(X, 7). Then x € Uy, and for y ¢ G we have two
cases: (a) y ¢ Uy, (b) y € Uy and y € Us.

In case (a), x € Uy but y ¢ U;.

In case (b), y € U but x ¢ Us.

Thus in both the cases, we obtain that X is Be-Tj.

Conversely, if X is Be-Tj, by Remark 3.10 (1), X is Be-Dy.

Proposition 3.12 A space X is Be-Dq if and only if it is Be-Ds.

Proof. Necessity. Let x,y € X, x # y. Then there exist BeD-sets G, G
in X such that z € Gy, y ¢ G and y € Gy, x ¢ Go. Let Gy = Up \ Uy and
G = Uz \ Uy, where Uy, Us, Us and U, are Be-open sets in X. From z ¢ G,
it follows that either x ¢ Us or x € U3 and = € U;. We discuss the two cases
separately.

(1) x ¢ Us. By y ¢ G1 we have two subcases:

(a) y ¢ Uy. Since x € Uy \ Uy, it follows that z € U; \ (U U Us), and since y €
Us\Uyg we have y € Us\ (U;UUy). Therefore (U \ (UaUUs3))N(Us\ (U1 UUY)) = ¢.
(b) y € Uy and y € Uy. We have x € Uy \ Uy, and y € Us. Therefore
(U \Us) N Uy = ¢.

(1) x € Us and x € Uy. We have y € U3\ U, and = € U,. Hence (Us\Uy)NU, =
¢. Therefore X is Be-Ds.

sufficiency. Follows from Remark 3.10 (2).
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Corollary 3.13 If (X, ) is Bc-Dy, then it is Be-Ty.
Proof. Follows from Remark 3.10 (2) and Proposition 3.11.

Definition 3.14 A point x € X which has only X as the Bc-neighbourhood
18 called a Bc-neat point.

Proposition 3.15 For a Be-Ty topological space (X, T) the following are
equivalent:

1. (X,7) is Be-Dy.

2. (X, T) has no Be-neat point.

Proof. (1) = (2). Since (X, 7) is Be-Dy, then each point z of X is contained
in a BeD-set A = U \ V and thus in U. By definition U # X. This implies
that x is not a Be-neat point.

(2) = (1). If X is Be-Tp, then for each distinct pair of points z,y € X, at least
one of them, z (say) has a Be-neighbourhood U containing x and not y. Thus
U which is different from X is a BeD-set. If X has no Be-neat point, then y
is not a Be-neat point. This means that there exists a Be-neighbourhood V' of
y such that V' # X. Thus y € V' \ U but not z and V' \ U is a BeD-set. Hence
X is Be-D;.

Corollary 3.16 A Bc-Ty space X is not Be-Dq if and only if there is a
unique Be-neat point in X.

Proof. We only prove the uniqueness of the Be-neat point. If z and y are two
Be-neat points in X, then since X is Be-Tp, at least one of x and y, say z, has
a Bc-neighbourhood U containing x but not y. Hence U # X. Therefore x is
not a Be-neat point which is a contradiction.

Definition 3.17 A topological space (X, T), is said to be Be-symmetric if
for x and y in X, x € BcCl({y}) implies y € BcCl({x}).

Proposition 3.18 If (X,7) is a topological space, then the following are
equivalent:

1. (X, 7) is a Be-symmetric space.

2. {x} is Be-g.closed, for each x € X.
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Proof. (1) = (2). Assume that {z} C U € BcO(X), but BeCl({z}) € U.
Then BeCl({z}) N X \ U # ¢. Now, we take y € BcCl({z}) N X \ U, then
by hypothesis z € BeCl({y}) € X \ U and = ¢ U, which is a contradiction.
Therefore {z} is Be-g.closed, for each z € X.

(2) = (1). Assume that z € BcCl({y}), but y ¢ BcCl({z}). Then {y} C
X \ BeCl({z}) and hence BcCl({y}) € X \ BcCl({x}). Therefore x € X \
BeCl({z}), which is a contradiction and hence y € BcCl({z}).

Corollary 3.19 If a topological space (X, T) is a Be-Ty space, then it is
Bce-symmetric.

Proof. In a Be-T) space, every singleton is Be-closed (Proposition 3.4) and
therefore is Be-g.closed. Then by Proposition 3.18, (X, 7) is Be-symmetric.

Corollary 3.20 For a topological space (X, 1), the following statements are
equivalent:

1. (X, ) is Be-symmetric and Be-Ty.
2. (X, 1) is Be-Ty.

Proof. By Corollary 3.19 and Proposition 3.6, it suffices to prove only (1) =
(2).

Let x # y and as (X, 7) is Be-Tp, we may assume that x € U C X \ {y} for
some U € BcO(X). Then = ¢ BeCl({y}) and hence y ¢ BeCl({z}). There
exists a Bc-open set V' such that y € V C X \ {z} and thus (X, 7) is a Be-Ty
space.

Proposition 3.21 If (X,7) is a Be-symmetric space, then the following
statements are equivalent:

1. (X, 7) is a Be-Ty space.
2. (X,7) isa Be-Ty space.
3. (X, 7) is a Be-Ty space.

Proof. (1) < (3). Obvious from Corollary 3.20.
(3) = (2) and (2) = (1). Directly from Proposition 3.6.

Corollary 3.22 For a Be-symmetric space (X, T), the following are equiv-
alent:

1. (X, 7) is Be-Tp.
2. (X,7) is Be-Dy.
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3. (X, 7) is Be-Ty.

Proof. (1) = (3). Follows from Corollary 3.20.
(3) = (2) = (1). Follows from Remark 3.10 and Corollary 3.13.

Definition 3.23 Let A be a subset of a topological space (X, 7). The Be-
kernel of A, denoted by Bcker(A) is defined to be the set

Beker(A) =n{U € BcO(X): ACU}.

Proposition 3.24 Let (X,7) be a topological space and x € X. Then
y € Bceker({z}) if and only if x € BeCl({y}).

Proof. Suppose that y ¢ Bcker({z}). Then there exists a Bc-open set V
containing x such that y ¢ V. Therefore, we have ¢ BcCl({y}). The proof
of the converse case can be done similarly.

Proposition 3.25 Let (X, 7) be a topological space and A be a subset of
X. Then, Bcker(A) = {x € X: BcCl({z}) N A # ¢}.

Proof. Let © € Bcker(A) and suppose BceCl({z}) N A = ¢. Hence z ¢
X \ BeCl({z}) which is a Be-open set containing A. This is impossible, since
x € Bcker(A). Consequently, BeCl({x}) N A # ¢. Next, let x € X such that
BeCl({z}) N A # ¢ and suppose that ¢ Bcker(A). Then, there exists a
Be-open set V' containing A and = ¢ V. Let y € BeCl({z}) N A. Hence, V
is a Be-neighbourhood of y which does not contain x. By this contradiction
x € Bcker(A) and the claim.

Proposition 3.26 The following properties hold for the subsets A, B of a
topological space (X,T) :

1. A C Bcker(A).
2. A C B implies that Bcker(A) C Beker(B).
3. If A is Be-open in (X, 7), then A = Bcker(A).

4. Bcker(Bcker(A)) = Bcker(A).

Proof. (1), (2) and (3) are immediate consequences of Definition 3.23. To prove
(4), first observe that by (1) and (2), we have Bcker(A) C Bcker(Bcker(A)).
If x ¢ Bcker(A), then there exists U € BcO(X,7) such that A C U and
x ¢ U. Hence Bcker(A) C U, and so we have ¢ Bcker(Bcker(A)). Thus
Bcker(Bcker(A)) = Bceker(A).
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Proposition 3.27 If a singleton {x} is a BeD-set of (X, 1), then Beker({x})
#+ X.

Proof. Since {z} is a BeD-set of (X, 7), then there exist two subsets Uy, Us €
BcO(X, 1) such that {z} = Uy \ Uy, {z} C Uy and U; # X. Thus, we have
that Beker({z}) C U; # X and so Bcker({z}) # X.

Proposition 3.28 For a Bc-T% topological space (X, T) with at least two
points, (X, 7) is a Be-Dy space if and only if Beker({z}) # X holds for every
point x € X.

Proof. Necessity. Let x € X. For a point y # z, there exists a BeD-set U
such that z € U and y ¢ U. Say U = U, \ Uy, where U; € BcO(X, 1) for each
i € {1,2} and U; # X. Thus, for the point x, we have a Bc-open set U; such
that {z} C U, and U; # X. Hence, Bcker({z}) # X.

Sufficiency. Let x and y be a pair of distinct points of X. We prove that
there exist BeD-sets A and B containing « and y, respectively, such that y ¢ A
and x ¢ B. Using Proposition 3.3, we can take the subsets A and B for the
following four cases for two points x and y.

Casel. {z} is Bec-open and {y} is Be-closed in (X, 7). Since Beker({y}) # X,
then there exists a Be-open set V' such that y € V and V # X. Put A = {z}
and B = {y}. Since B =V \ (X \ {y}), then V is a Be-open set with V' # X
and X \ {y} is Bc-open, and B is a required BeD-set containing y such that
x ¢ B. Obviously, A is a required BeD-set containing x such that y ¢ A.
Case 2. {x} is Be-closed and {y} is Bc-open in (X, 7). The proof is similar to
Case 1.

Case 3. {z} and {y} are Be-open in (X, 7). Put A = {z} and B = {y}.

Case 4. {x} and {y} are Be-closed in (X, 7). Put A = X \{y} and B = X\ {z}.
For each case of the above, the subsets A and B are the required BcD-sets.
Therefore, (X, 7) is a Be-Dy space.

Definition 3.29 A function f : X — Y is called a Bc-open function if the
image of every Bc-open set in X is a Bc-open set in'Y .

Proposition 3.30 Suppose that f : X — Y is Bc-open and surjective. If
X is Be-Ty, then'Y is Be-Ty, for k=0,1,2.

Proof. We prove only the case for Be-T7 space the others are similarly.

Let X be a Be-T) space and let yy,y2 € Y with y; # yo. Since f is surjective,
so there exist distinct points x1, 2o of X such that f(z1) = y; and f(z3) = yo.
Since X is a Bc-T7 space, there exist Be-open sets G and H such that z; € G
but xo ¢ G and x5 € H but z; ¢ H. Since f is a Be-open function, f(G) and
f(H) are Bc-open sets of Y such that y;, = f(x1) € f(G) but yo = f(x2) ¢
f(G), and yo = f(z2) € f(H) but y; = f(x1) ¢ f(H). Hence Y is a Be-Ty
space.
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4 Be-Ry, (k=0,1)

In this section, new classes of topological spaces called Be- Ry and Be- Ry spaces
are introduced.

Definition 4.1 A topological space (X,T), is said to be Be-Ry if U is a
Be-open set and x € U then BeCl({z}) C U.

Proposition 4.2 For a topological space (X, T), the following properties
are equivalent:

1. (X,7) is Be-Ry.

2. For any F' € BcC(X), x ¢ F implies F C U and x ¢ U for some
U € BcO(X).

3. For any F € BcC(X), v ¢ F implies F N BeCl({x}) = ¢.

4. For any distinct points x and y of X, either BeCl({z}) = BcCl({y}) or
BeCl({z}) N BeCl({y}) = ¢.

Proof. (1) = (2). Let F € BeC(X) and x ¢ F. Then by (1), BeCl({z}) C
X\ F. Set U= X\ BcCl({x}), then U is a Bc-open set such that /' C U and
x¢U.

(2) = (3). Let F € BeC(X) and « ¢ F. There exists U € BcO(X) such
that ' C U and © ¢ U. Since U € BcO(X), U N BeCl({z}) = ¢ and
FNBcCl({zx}) = ¢.

(3) = (4). Suppose that BcCl({z}) # BcCl({y}) for distinct points x,y € X.
There exists z € BeCl({z}) such that z ¢ BcCl({y}) (or z € BeCl({y})
such that z ¢ BcCl({x})). There exists V' € BcO(X) such that y ¢ V and
z € V; hence z € V. Therefore, we have x ¢ BcCl({y}). By (3), we obtain
BeCl({z}) N BeCl({y}) = ¢.

(4) = (1). let V € BeO(X) and x € V. Foreachy ¢ V, x # y and = ¢
BeCl({y}). This shows that BeCl({z}) # BcCl({y}). By (4), BeCl({z}) N
BcCl({y}) = ¢ for each y € X\V and hence BeCl({z})N(U,cx\v BeCl({y})) =
¢. On other hand, since V' € BcO(X) and y € X \ V, we have BeCl({y}) C
X\ V and hence X \ V' = J,cx\y BeCl({y}). Therefore, we obtain (X \ V)N
BeCl({z}) = ¢ and BeCl({x}) C V. This shows that (X, 7) is a Be-Ry space.

Proposition 4.3 A topological space (X, T) is Be-Ty if and only if (X, 7)
18 a Be-Ty and a Be-Ry space.

Proof. Necessity. Let U be any Bc-open set of (X, 7) and = € U. Then by
Proposition 3.4, we have BcCl({x}) C U and so by Proposition 3.6, it is clear
that X is a Be-Ty and a Be-R) space.
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Sufficiency. Let z and y be any distinct points of X. Since X is Be-Ty,
there exists a Bc-open set U such that € U and y ¢ U. As x € U implies
that BeCl({z}) C U. Since y ¢ U, so y ¢ BcCl({x}). Hence y € V =
X \ BcCl({z}) and it is clear that = ¢ V. Hence it follows that there exist
Be-open sets U and V' containing x and y respectively, such that y ¢ U and
x ¢ V. This implies that X is Be-T7.

Proposition 4.4 For a topological space (X, T), the following properties
are equivalent:

1. (X,7) is Be-Ry.

2. x € BeCl({y}) if and only if y € BeCl({z}), for any points x and y in
X.

Proof. (1) = (2). Assume that X is Be-Ry. Let € BeCl({y}) and V be any
Bce-open set such that y € V. Now by hypothesis, x € V. Therefore, every
Be-open set which contain y contains z. Hence y € BeCl({z}).
(2) = (1). Let U be a Be-open set and x € U. If y ¢ U, then x ¢ BcCl({y})
and hence y ¢ BcCl({x}). This implies that BeCl({z}) C U. Hence (X, 1) is
Be-Ry.

From Definition 3.17 and Proposition 4.4, the notions of Be-symmetric and
Be- Ry are equivalent.

Proposition 4.5 The following statements are equivalent for any points x
and y in a topological space (X, T) :

1. Bcker({x}) # Bcker({y}).

2. BcCl({z}) # BcCl({y}).

Proof. (1) = (2). Suppose that Bcker({z}) # Bcker({y}), then there exists
a point z in X such that z € Bcker({z}) and z ¢ Bcker({y}). From z €
Bcker({z}) it follows that {z} N BcCl({z}) # ¢ which implies 2 € BcCl({z}).
By z ¢ Bcker({y}), we have {y} N BcCl({z}) = ¢. Since z € BcCl({z}),
BeCl({z}) C BeCl({z}) and {y} N BcCl({x}) = ¢. Therefore, it follows
that BcCl({z}) # BcCl({y}). Now Bcker({z}) # Bcker({y}) implies that
BcCl({x}) # BeCl({y})-

(2) = (1). Suppose that BeCl({z}) # BcCl({y}). Then there exists a point
z in X such that z € BeCl({z}) and z ¢ BcCl({y}). Then, there exists a
Be-open set containing z and therefore x but not y, namely, y ¢ Bcker({x})
and thus Bceker({z}) # Bcker({y}).

Proposition 4.6 Let (X,7) be a topological space. Then N{BcCl({z}) :
r € X} = ¢ if and only if Beker({z}) # X for every z € X.
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Proof. Necessity. Suppose that N{BcCl({z}) : € X} = ¢. Assume that
there is a point y in X such that Bcker({y}) = X. Let x be any point of X.
Then z € V for every Be-open set V' containing y and hence y € BeCl({x})
for any x € X. This implies that y € N{BcCl({z}) : + € X}. But this is a
contradiction.

Sufficiency. Assume that Bcker({z}) # X for every x € X. If there exists
a point y in X such that y € N{BcCl({z}) : x € X}, then every Bc-open set
containing y must contain every point of X. This implies that the space X
is the unique Bec-open set containing y. Hence Bcker({y}) = X which is a
contradiction. Therefore, N{BcCl({z}) : z € X} = ¢.

Proposition 4.7 A topological space (X, T) is Be-Ry if and only if for every
z and y in X, BeCl({x}) # BeCl({y}) implies BcCl({x}) N BcCl({y}) = ¢.

Proof. Necessity. Suppose that (X, 7) is Be-Ry and z,y € X such that
BeCl({z}) # BeCl({y}). Then, there exists z € BcCl({x}) such that z ¢
BcCl({y}) (or z € BeCl({y}) such that z ¢ BcCl({x})). There exists V €
BcO(X) such that y ¢ V and z € V, hence x € V. Therefore, we have = ¢
BeCl({y}). Thus z € [ X\ BcCl({y})] € BcO(X), which implies BeCl({z}) C
[X \ BeCl({y})] and BeCl({z}) N BcCl({y}) = ¢.

Sufficiency. Let V € BcO(X) and let x € V. We still show that BeCl({z}) C
V. Lety ¢ V,thatisy € X\ V. Then = # y and = ¢ BcCl({y}). This shows
that BeCl({x}) # BcCl({y}). By assumption, BcCl({z}) N BeCl({y}) = ¢.
Hence y ¢ BeCl({z}) and therefore BeCl({z}) C V.

Proposition 4.8 A topological space (X,T) is Bc-Ry if and only if for
any points x and y in X, Bcker({z}) # Bcker({y}) implies Bcker({z}) N
Beker({y}) = ¢.

Proof. Suppose that (X, 7) is a Be-Ry space. Thus by Proposition 4.5, for
any points x and y in X if Bcker({z}) # Bcker({y}) then BcCl({z}) #
BeCl({y}). Now we prove that Bcker({z}) N Bcker({y}) = ¢. Assume
that z € Bcker({z}) N Bcker({y}). By z € Bcker({z}) and Proposition
3.24, it follows that z € BeCl({z}). Since x € BcCl({z}), by Proposition
4.2, BeCl({z}) = BeCl({z}). Similarly, we have BeCl({y}) = BcCl({z}) =
BeCl({z}). Thisis a contradiction. Therefore, we have Beker({z})NBcker({y})
= ¢.

Conversely, let (X, 7) be a topological space such that for any points x and
y in X, Beker({z}) # Bcker({y}) implies Bcker({z}) N Bcker({y}) = ¢. If
BcCl({z}) # BcCl({y}), then by Proposition 4.5, Beker({x}) # Bcker({y}).
Hence, Beker({z})NBcker({y}) = ¢ which implies BeCl({z})NBcCl({y}) =
¢. Because z € BeCl({x}) implies that « € Bcker({z}) and therefore Beker({z})N
Bcker({z}) # ¢. By hypothesis, we have Bcker({z}) = Bcker({z}). Then
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z € BeCl({zx})NBcCl({y}) implies that Bcker({z}) = Bcker({z}) = Bcker({y}).
This is a contradiction. Therefore, BeCl({z})NBcCl({y}) = ¢ and by Propo-
sition 4.2, (X, 7) is a Be-Ry space.

Proposition 4.9 For a topological space (X, T), the following properties
are equivalent:

1. (X, 7) is a Be-Ry space.

2. For any non-empty set A and G € BcO(X) such that AN G # ¢, there
exists ' € BcC(X) such that ANF # ¢ and F C G.

3. For any G € BcO(X), we have G = U{F € BcC(X): F C G}.
4. For any F € BeC(X), we have FF = N{G € BcO(X): F C G}.

5. For every x € X, BcCl({x}) C Bcker({z}).

Proof. (1) = (2). Let A be a non-empty subset of X and G € BcO(X)
such that AN G # ¢. There exists € ANG. Since z € G € BcO(X),
BeCl({z}) € G. Set F = BeCl({z}), then F' € BeC(X), F C G and
ANF # ¢.

(2) = (3). Let G € BcO(X), then G O U{F € BcC(X): FF C G}. Let x
be any point of G. There exists F' € BeC(X) such that z € F and F C G.
Therefore, we have x € FF C U{F € BeC(X): F C G} and hence G = U{F €
BceC(X): F C G}.

(3) = (4). Obvious.

(4) = (5). Let x be any point of X and y ¢ Bcker({z}). There exists V' €
BcO(X) such that z € V and y ¢ V, hence BeCl({y}) NV = ¢. By (4),
(N{G € BcO(X): BcCl({y}) € G}) NV = ¢ and there exists G € BcO(X)
such that © ¢ G and BcCl({y}) € G. Therefore BeCl({z}) N G = ¢ and
y ¢ BcCl({z}). Consequently, we obtain BeCl({z}) C Bcker({z}).

(5) = (1). Let G € BcO(X) and x € G. Let y € Bcker({z}), then z €
BeCl({y}) and y € G. This implies that Bcker({z}) C G. Therefore, we
obtain € BeCl({z}) C Bcker({z}) C G. This shows that (X, 7) is a Be-Ry
space.

Corollary 4.10 For a topological space (X, 1), the following properties are
equivalent:

1. (X,7) is a Be-Ry space.

2. BcCl({z}) = Bcker({z}) for allz € X.
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Proof. (1) = (2). Suppose that (X,7) is a Be-Ry space. By Proposition
4.9, BcCl({z}) C Bcker({z}) for each x € X. Let y € Bcker({z}), then
r € BcCl({y}) and by Proposition 4.2, BcCl({z}) = BcCl({y}). There-
fore, y € BcCl({z}) and hence Bcker({z}) C BceCl({z}). This shows that
BcCl({z}) = Bcker({z}).

(2) = (1). Follows from Proposition 4.9.

Proposition 4.11 For a topological space (X, T), the following properties
are equivalent:

1. (X,7) is a Be-Ry space.
2. If F is Be-closed, then F' = Bcker(F).
3. If F is Bce-closed and x € F, then Bcker({z}) C F.

4. If x € X, then Bcker({z}) C BeCl({z}).

Proof. (1) = (2). Let F be a Be-closed and ¢ F. Thus (X \ F) is a
Be-open set containing x. Since (X,7) is Be-Rg, BeCl({z}) € (X \ F).
Thus BeCl({z}) N F = ¢ and by Proposition 3.25, © ¢ Bcker(F'). There-
fore Beker(F) = F.

(2) = (3). In general, A C B implies Bcker(A) C Bcker(B). Therefore, it
follows from (2), that Beker({z}) C Bcker(F) = F.

(3) = (4). Since x € BeCl({z}) and BcCl({x}) is Be-closed, by (3), Beker({z})
C BeCl({x}).

(4) = (1). We show the implication by using Proposition 4.4. Let x €
BcCl({y}). Then by Proposition 3.24, y € Bcker({z}). Since x € BeCl({z})
and BcCl({z}) is Be-closed, by (4), we obtain y € Bcker({z}) C BeCl({z}).
Therefore x € BeCl({y}) implies y € BeCl({x}). The converse is obvious and
(X, 7) is Be-Ry.

Definition 4.12 A topological space (X, 1), is said to be Be-Ry if for x,y
in X with BeCl({x}) # BceCl({y}), there exist disjoint Bc-open sets U and V
such that BcCl({z}) C U and BcCl({y}) C V.

Proposition 4.13 A topological space (X, 1) is Be-Ry if it is Be-Ts.

Proof. Let x and y be any points of X such that BeCl({z}) # BcCl({y}). By
Proposition 3.6 (1), every Be-T; space is Be-T;. Therefore, by Proposition 3.4,
BeCl({z}) = {x}, BeCl({y}) = {y} and hence {z} # {y}. Since (X, 7) is Be-
Ty, there exist disjoint Be-open sets U and V' such that BeCl({z}) = {2} C U
and BceCl({y}) = {y} C V. This shows that (X, 7) is Be-R;.
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Proposition 4.14 For a topological space (X, T), the following are equiva-
lent:

1. (X,7) is Be-Th.

2. (X,7) is Be-Ry and Be-T.

3. (X, 1) is Be-Ry and Be-Tp.
Proof. Straightforward.

Proposition 4.15 For a topological space (X, T), the following statements
are equivalent:

1. (X,7) is Be-R;.

2. Ifx,y € X such that BeCl({z}) # BcCl({y}), then there exist Be-closed
sets Fy and Fy such thatx € F,y ¢ Fy,y € Fy, v ¢ Fy and X = F{UFs.

Proof. Obvious.
Proposition 4.16 If (X,7) is Be-Ry, then (X, 7) is Be-Ry.

Proof. Let U be Bc-open such that z € U. If y ¢ U, since x ¢ BeCl({y}),
we have BcCl({z}) # BcCl({y}). So, there exists a Bc-open set V' such
that BcCl({y}) € V and = ¢ V, which implies y ¢ BcCl({z}). Hence
BeCl({z}) C U. Therefore, (X, 7) is Be-Ry.

Corollary 4.17 A topological space (X, T) is Be-Ry if and only if for x,y €
X, Bcker({z}) # Bcker({y}), there exist disjoint Bc-open sets U and V' such
that BeCl({z}) C U and BcCl({y}) C V.

Proof. Follows from Proposition 4.5.

Proposition 4.18 A topological space (X, T) is Be-Ry if and only if x €
X\ BcCl({y}) implies that x and y have disjoint Bc-open neighbourhoods.

Proof. Necessity. Let x € X \ BcCl({y}). Then BcCl({z}) # BcCl({y}),
so, x and y have disjoint Be-open neighbourhoods.

Sufficiency. First, we show that (X, 7) is Be-Ry. Let U be a Be-open set and
x € U. Suppose that y ¢ U. Then, BeCl({y}) NU = ¢ and x ¢ BcCl({y}).
There exist Be-open sets U, and U, such that z € U,, y € U, and U, NU, = ¢.
Hence, BcCl({z}) C BcCl(U,) and BceCl({z}) N U, C BeCl(U,) N U, =
¢. Therefore, y ¢ BcCl({z}). Consequently, BeCl({z}) C U and (X,7)
is Be-Ry. Next, we show that (X, 7) is Be-R;. Suppose that BeCl({z}) #
BeCl({y}). Then, we can assume that there exists z € BeCl({z}) such that
z ¢ BcCl({y}). There exist Be-open sets V, and V, such that z € V,, y € V,
and V, NV, = ¢. Since z € BcCl({z}), x € V,. Since (X, 7) is Be-Ry, we
obtain BeCl({z}) C V,, BcCl({y}) C V, and V, NV, = ¢. This shows that
(X,7) is Be-R;.
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