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Abstract

A finite group G can be represented as raug of automorphisms of a compact
Riemann surfaces. In this paper we prove éestence of some infinite families of two
generator finite solvable groups with shorerided series acting as Riemann surface
automorphism groups.
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1 Introduction

For the last three decades, the studwutdbmorphisms of Riemann surfaces has received
considerable attention . The automorphismsaoftompact Riemann surface of gena? g
form a finite group. On the other hand ,eryv finite group is representable as the
automorphism group of some Riemann surfacegerius g2[2]. The theory of Fuchsian
groups have an important role in the study Riemann surface automorphism groups.
Macbeath[8] in his Dundee summer school npteved that a finite group G is the
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automorphism group of a compact Riemann searfaf genus g if and only if it is a
guotient of a ‘Fuchsian’ group by a ‘surfacgfoup K. Macbeath also showed [8] that
the maximal automorphism groups of compactni&inn surfaces occur as quotients of a
‘special type’ of ‘Fuchsian triangle groupSimilarly Chetiya [3] in his Ph.D. thesis
showed that the maximal solvable automorphgmoups are also quotients of a Fuchsian
triangle group having periods 2, 3,8 .A aewt of a Fuchsian triangle group is a two
generator group. This shows the importancefiofing quotients of different classes of
Fuchsian triangle groups from a strictly the#mr point of view. This was the theme of
the papers by Chetiya [4], [5], Chetiya andlita [6], [7/] where the existence of several
infinite classes of two generator finite sddle automorphism groups of compact
Riemann surfaces was proved.

In this paper we consider another interestit@ss of Fuchsian triangle groups and give
a technique to construct infinitely many fenisolvable quotients of these groups. Some o
the results given by Chetiya and Kalita [B] ,come out as special cases of those of
ours.

2 Prelimineries

An infinite group I' generated by k elements;, Xxx,............ X¢ of finite orders
My,My, ... ,m¢ respectively and 2 elements gb,........... &, b, of infinite orders
satisfying:

Koy
X7 =X =TT X0 TIIEB] =1 e (2.1)

i=1 j=1
Where [@ b] denotes the commutator of la,is called a Fuchsian group if

OT)=2y_2+ TIoq(X = 1/my ) > O e (2.2)

Such a Fuchsian group is usually denoted Afy, m,....... ,m) which is called the
signature of the group. The non negativegety is called the genus of the groliplf
y=0 we simply use the symbadl(m;,my,.......... ,m).The integers np»2 are called the

periods of the Fuchsian group. 0, k=3, thenI'=A(m;,mp,mz ) is called a Fuchsian
triangle group. A Fuchsian group having rements of finite order except the identities
is called a ‘surface group’. A surface grodpis generated by 2g elements of infinite
order and is denoted ¥\g;0). If K is a surface group of genusthgen

OK)T2 (@ =1 ) e e e (2.3)
Moreover IfI'; is a subgroup of of finite index then

L B o (R 1ol € B (2.4)
If @ is a homomorphism from the Fuchsian grdupgo any finite group G such that
kerd is a surface group ,the® is called a smooth homomorphism and aofa&vK
where K is a normal surface subgroupl'ofs called a smooth quotient bf
A Fuchsian groupl’ is said to satisfy the l.c.m. condition efery period of it divides
the I.c.m. of the remaining periods. The el group of a Fuchsian group is a surface
group if and only if it satisfies the he. condition [9]. It is to be noted tha
necessary condition for a Fuchsian groups#ébisfy the l.c.m. condition is that it must
have more than one period.
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3 Existence of Solvable Smooth Quotients

We now proceed to find an infinite familyf esolvable finite smooth quotients of
A(l,m,n) where

1. ¢,m,n are positive integees?2

2. ¢ m)=d>1 ¢n)=>1 (m,n)=1 and (dd )=1 (for any two positive
integers k.,k; the notation (k,k») is used to denote the h.c.f. of akd k.)
The following lemmas [ lemma 3.1, lemma 3l€mma 3.3 and lemma 3.4] can be found
in Bujalence et al [1] , Chetiya B. B8] [and Das G .and Patra K [10].

Lemma 3.1Let I"'=A(y; my,.......... .M be a Fuchsian group with generators..x....... X
of finite order and gby,............ ab, of infinite order. Let N be a normal subgp of
I" of finite index. Let ;e the order of the ima%e ofin the quotient//N and let I=
{1<i<k; m#p }.Also let p= mi/p and s = [7*Nl/p for every dé1, then N=A(/; ni,
......... ), iel, where each jnoccurs stimes andy is obtained from (2.4).

Lemma 3.2Let K be a Fuchsian surface group of gemuand Kthe derived group of
K. If for each positive integer n, ,Kdenotes the subgroup of K generated Hwy nth
power of all the generators of K, then tpeoduct K =K.,*K’ is a normal surface
subgroup of K such that [Kijen? .

Lemma 3.3Let/" be a Fuchsian group of non zero genussehperiods satisfy the l.c.m.
condition and let | be the l.c.m. of the ipds of I . IfI"is the derived group of and
I« is the subgroup ofl" generated by the¢k™ power (k1) of the generators of,
then I's=I I is a surface subgroup @t of finite index for any positive integerlk

Lemma 3.4Let /=(y; m, m,...... ,m, n) be a Fuchsian group withl soecurrences of m,
2, mp2, 2,y>1 and (m, n)=1. Then for positive integerkk?2,/7" has a Fuchsian
subgroup Ik whose periods satisfy the . c. m. condgticand I is of index d%?
where d =(k,m) inTr.

We are now in a position to give the pradfthe theorem on the existence of solvable
smooth quotients of Fuchsian triangle group

Theorem 3.1Let I"'=(¢{, m,n) be a Fuchsian group whefe m, n are positive integers
>2 such that{ m )=d>1, (¢ ,n)=ck>1, (m,n)=1 and (d,d) =1 (as (m, n) =1). Then
for each positive integer k >I', admits smooth quotients of order
dld2k2y/t2yk aAt2ve—1 pA/hi+2y—1 (A/hy+2yg—1 hldz—A/’h—Z)’k h2d1—A/h2—2Yk k>1
and of genus:

(1/2h1A/h1+2Vk—1h;/h2+21’k—1)) ([ qA+2Vi—1pA/h+2yi—1

- 1 1 1 1 1 - - /
AT 2y 24 AL + - — o — 5 — L, Where ARZTTRI T k2 b= (b
,K) and h=(c,k).

Proof: Let us assume thdt=add,, m=Dbd, n=cd where a, b ,c are prime to each
other. Let r/ be generated by elements;, xx; and x satisfying

ad,d bd cd
X; PEX, =Xg i=XpXoXs=1
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Or equivalently xadldz—xbdl— (x1x,)¢%=1,
Let u b, W be the images of 1x x; and x respectively under the abelianizing

homomorphism FromI" onto 1ﬂ/lg . Thenr/f is generated by;uw, and y satisfying:

adq,d bd cd
U P =uU, 'Sug 2 =lilUs = 1.

adldz_ bdl —_ cd
Or u,; = =(uquy)*2=1.

The above relation gives ,

uh®=1as
(ugu,)%2=1
_> Cdz quZ—l
=> u1 Uz—l
=> b= U1
Now, uimldz=ubd1 =
_Radldz - (ul-dZ)bdlzl
Radldz u bdle:l'
Therefore ud1d2—1 as(a,b)=1.
So, = Za,a,
By lemma 3.1
I'=;:a byucn...... beC, . c) . (3.1.2)
dl-times d2-times

And we get y =1/2 [ (d-1)(c:-1) ].
By lemma 3.4, has a subgroufy, k>1 Of finite index whose periods satistfiye
l.c.m. condition.

Let I'*, = {x*, xeI'} be a subgroup of, for k=2. Let I=I*,I", then by lemma
(3.2)I« is normal inI" of finite index .

As I'ery<sl", so Il is abelian .
Consider an abelianizing homomorphism :

® T —I/T
Let ULy ,oeornnnn.n. Uy Vgyeeeeeanns Va1, 8 by ,a,,b, be the images of x
X yernnenens 1 Xa2s V1r o+ 9 YVayr 01, Pryeeenens ay,By respectively under the above mentioned
homomorphism sat|sfy|ng the conditions:
W= u,l= =up =vy¢ ==V Ul Ug, Vy....0q, =1
U= ulk— ..... ud’; =v1k— ....... :V;ik: a1k=b1k= ....... = a;ﬁ':b]’f' =1,

where the elements commute with each other.

If (b k) h;>1,(c, k) h>1, then the above relation give:
wM=.... =l =y 2= mvg 12 =1

and the elements commutes W|th each other.
We conclude that ,



62 Gayatree Dast al.

- ) - /) g )
Y YT ] N
dz—l)summands dlel)summands 2)/ —summands
Therefore
F/E Grlphi-lp2y - A say . (3.1.2)
By Ieana 1 we get
=y a,....... a,blh...... .., b/hclh,........ ,c/h

—_—
A-times ;U h,—times ;I; h,—times

Since the periods of satisfy the l.c.m. condition, therefofg— is a surface group. The
genus ofy, calculated from lemma 3.1 s,

b

_ A(A 1 1, 1 1 1 J
VK= ;[2}’ —2+G(1- )+l 0)- -k 2L

By lemma 3.3 let us construct another sulygrg,” generated by™ (t>1) power of the
infinite order generators dfy.

Let N=I}/T,, , then N is normal iy of finite index andl/N is abelian ag,c I};T}, =
N.

We now have,

Fk/N=Za@ __________________ @Za@Zb/ ................ @Zb/h @Zc/h > Y. @Zc/h BZef DB DZer
\ J \ ) 1 k2 — P 2 - ~ J
(A-1)summands (A/h -1)summands (A/hz-l)summands 2)/k summands

Where('= —abc is the l.c.m. of the periods of.
Therefore\ Fk/Nl =40/, Dt Cfp Rt )

-— t2Vk [ A+2yk- 1bA/h +2rk-1 A2+ 2rk- 1]

hy /h1+2Vk—1h2/h2+2Yk—1
=B, say (3.1.3)

Where A is given by (3.1.2).

By lemma 3.1 we have Ng{ .......).

Since N is a surface group and thereforer/@:is a smooth quotient off and the
genus obtained from (2.4) is

Yo = 2y —24AL+ = 2o 2)]4L,

hy  hy a

Where A and B are given by (3.1.2) andlL.®. respectively. Therefore we have
2
- 2k [aA+2yk-le/ h1+zyk-1[CA/ h2+2yk-l] 2y, —2+A(1+ ]hil g 1 _ 1

A A h, a b
h 2
2h, /h1+2'yk—1h2/ 2+2yg_q

1
Z)+1
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Now the order of G is
| \G|E/N\: \F/f\ r/rk‘ ‘rk/N ‘

=, ka'tZ]/k aAt2vk=1  pA/hi+2yi—1 A/hp+2yk—1 hldz—A/h1—2Yk
hzdz—A/hz—ZVk k>1
i)

Thus I' admits smooth quotients ,but we cannot wdnether it is solvable or not. This
completes the proof of the theorem.

Remark 1: If a=b=c=1, then I" admits abelian smooth quotient of ordeid,dand of
genus

%[(dl'l)(dZ'l)] as well as metabelian smooth quotiehtorler dd:k?"’ and of genus,
k@D [ (ch-1)(ch-1)-1]+1, for kel

Remark 2: If a=1 and b, ¢ >1 thed” admits a metabelian smooth quotient of orde
chdop®2t2y —1 cdat2y -1 | 2v" k>1 and of genus
%bd2+2]/ —1pdi+2y =1 2y [dle'dz/b'dl/C'1]+1; k-1,

Where y'=> (ch-1)(b-1).
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