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Abstract

In this paper, we introduce the class of meromorphic univalent functions
defined by hypergeometric function. We obtain some interesting properties like
coefficient inequality, distortion and growth theorems, Hadamard product(or
convolution), radii of starlikeness and convexity for the functions in the class
H∗(β, α, k).
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1 Introduction

Let
∑

denote the class of functions of the form

f(z) =
1

z
+
∞∑
n=1

anz
n,

which are analytic and meromorphic univalent in the punctured unit disk ∗ =
{z ∈ C : 0 < |z| < 1} = −{0}.



64 Abdul Rahman S. Juma et al.

Let A be a subclass of
∑

of functions of the form

f(z) =
1

z
+
∞∑
n=1

anz
n, (an ≥ 0, n ∈ N). (1)

A function f ∈ A is meromorphic starlike function of order ρ, (0 ≤ ρ < 1)if

−<
{
zf ′(z)

f(z)

}
> ρ, (z ∈).

The class of all such functions is denoted by A∗(ρ). A function f ∈ A is
meromorphic convex function of order ρ, (0 ≤ ρ < 1) if

−<
{

1 +
zf ′′(z)

f ′(z)

}
> ρ, (z ∈).

The Hadamard product (or convolution) of two functions, f given by (1) and

g(z) =
1

z
+
∞∑
n=1

bnz
n, (bn ≥ 0, n ∈ N),

is defined by

(f ∗ g)(z) =
1

z
+
∞∑
n=1

anbnz
n,

see [9], let us define the function φ̃(a, c; z) defined by

φ̃(a, c; z) =
1

z
+
∞∑
n=0

|(a)n+1

(c)n+1

|anzn,

for c 6= 0,−1,−2, ..., and a ∈ C − {0}, where (λ)n = λ(λ + 1)n+1 is the
Puchhammer symbol. We note that

φ̃(a, c; z) =
1

z
2F1(1, a, c; z),

where

2F1(b, a, c; z) =
∞∑
n=0

(b)n(a)n
(c)n

zn

n!
,

is the well-known Gaussian hypergeometric function. Corresponding to the
function φ̃(a, c; z), using the Hadamard product for f ∈

∑
, we define a new

linear operator L∗(a, c) on
∑

by

L∗(a, c)f(z) = φ̃(a, c; z) ∗ f(z) =
1

z
+
∞∑
n=1

|(a)n+1

(c)n+1

|anzn. (2)
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The meromorphic functions with the generalized hypergeometric functions
were considered recently by Dziok and Srivastava [2],[3], Liu [5], Liu and Sri-
vastava [6], [7], [8], Cho and Kim [1]. For a function f ∈ L∗(a, c)f(z) we
define

I0(L∗(a, c)f(z)) = L∗(a, c)f(z),

and for k = 1, 2, 3, ...,

Ik(L∗(a, c)f(z)) = z(Ik−1L∗(a, c)f(z))′ +
2

z
,

=
1

z
+
∞∑
n=0

nk|(a)n+1

(c)n+1

|anzn, (3)

We note that Ik(L∗(a, c)f(z)) studied by Frasin and Darus [4].
It follows from (2) that

z(L(a, c)f(z))′ = aL(a+ 1, c)f(z)− (a+ 1)L(a, c)f(z). (4)

Also, from (3) and (4) we get

z(IkL(a, c)f(z))′ = aIkL(a+ 1, c)f(z)− (a+ 1)IkL(a, c)f(z).

Now we define the following:
Definition 1.1 : A function f ∈ A of the form (1) is in the class H∗(β, α, k)
if it satisfies the following condition:

|
z(IkL∗(a,c)f(z))′′

(IkL∗(a,c)f(z))′
+ 2

z(IkL∗(a,c)f(z))′′

(IkL∗(a,c)f(z))′
+ 2α

| < β, (5)

where λ > −1, 0 ≤ α < 1, 0 < β ≤ 1, k = 1, 2, 3, ....
In this paper we obtain coefficient estimates for the class H∗(β, α, k),

Hadamard product, growth and distortion theorems, radii of starlikeness and
convexity.

2 Coefficient Inequality

Theorem 2.1 : A function f defined by (1) is in the class H∗(β, α, k), if and
only if

∞∑
n=1

nk+1|(a)n+1

(c)n+1

|[n(1 + β) + (1 + β(2α− 1))]an ≤ 2β(1− α). (6)
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The result is sharp for the function

fn(z) =
1

z
+

2β(1− α)

nk+1| (a)n+1

(c)n+1
|[n(1 + β) + (1 + β(2α− 1))]

zn, n ≥ 1 (7)

Proof : To proof the sufficient part, let the inequality (6) holds true and
let |z| = 1,
by (5), we have

|z(IkL∗(a, c)f(z))′′

(IkL∗(a, c)f(z))′
+ 2| − β|z(IkL∗(a, c)f(z))′′

(IkL∗(a, c)f(z))′
+ 2α| < 0,

|z(IkL∗(a, c)f(z))′′+2(IkL∗(a, c)f(z))′|−β|z(IkL∗(a, c)f(z))′′+2α((IkL∗(a, c)f(z))′)|,

= |
∞∑
n=1

(n+1)nk+1|(a)n+1

(c)n+1

|anzn−1−β|
2(1− α)

z2
+
∞∑
n=1

(n−1+2α)nk+1|(a)n+1

(c)n+1

|anzn−1|,

≤
∞∑
n=1

nk+1|(a)n+1

(c)n+1

|[n(1 + β) + (1 + β(2α− 1))]an − 2β(1− α) ≤ 0.

Thus by the maximam modulus theorem, we have f ∈ H∗(β, α, k).
Conversely, suppose that f of the form (1) is in the class H∗(β, α, k), then by
(5) we have

|
z(IkL∗(a,c)f(z))′′

(IkL∗(a,c)f(z))′
+ 2

z(IkL∗(a,c)f(z))′′

(IkL∗(a,c)f(z))′
+ 2α

| < β,

|
∑∞

n=1(n+ 1)nk+1| (a)n+1

(c)n+1
|anzn−1

2(1−α)
z2

+
∑∞

n=1(n− 1 + 2α)nk+1| (a)n+1

(c)n+1
|anzn−1

| < β.

Since |<(z)| ≤ |z| for all z, we get

<{
∑∞

n=1(n+ 1)nk+1| (a)n+1

(c)n+1
|anzn−1

2(1−α)
z2

+
∑∞

n=1(n− 1 + 2α)nk+1| (a)n+1

(c)n+1
|anzn−1

} < β. (8)

Now by choosing the value of z on the real axis so that the value of z(I
kL∗(a,c)f(z))′′

(IkL∗(a,c)f(z))′

is real, then clearing the denominator of (8) and letting z → 1− through real
values, we get the inequality (6).
The result is sharp for the function

fn(z) =
1

z
+ | (c)n+1

(a)n+1

| 2β(1− α)

nk+1[n(1 + β) + (1 + β(2α− 1))]
zn, n ≥ 1

Corollary 2.1 : If f ∈ H∗(β, α, k), then

an ≤ |
(c)n+1

(a)n+1

| 2β(1− α)

nk+1[n(1 + β) + (1 + β(2α− 1))]
,

where λ > −1, 0 ≤ α < 1, 0 < β ≤ 1, k = 1, 2, 3, ....
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3 Growth and Distortion Theorems

A growth and distortion property for the function f ∈ H∗(β, α, k) is given as
follows:
Theorem 3.1 : A function f defined by (1) is in the class H∗(β, α, k), then
for 0 < |z| = r < 1, we have

1

r
− | (c)2

(a)2
|β(1− α)

(1 + αβ)
r ≤ |f(z)| ≤ 1

r
+ | (c)2

(a)2
|β(1− α)

(1 + αβ)
r,

with equality for

f(z) =
1

z
+ | (c)2

(a)2
|β(1− α)

(1 + αβ)
z.

Proof : Since f ∈ H∗(β, α, k), we have from Theorem 2.1 the inequality

∞∑
n=1

nk+1|(a)n+1

(c)n+1

|[n(1 + β) + (1 + β(2α− 1))]an ≤ 2β(1− α),

Then

|f(z)| ≤ |1
z
|+

∞∑
n=1

an|z|n,

for 0 < |z| = r < 1, we have

|f(z)| ≤ 1

r
+ r

∞∑
n=1

an,

≤ 1

r
+ | (c)2

(a)2
|β(1− α)

(1 + αβ)
r.

Also

|f(z)| ≥ |1
z
| −

∞∑
n=1

an|z|n,

≥ 1

r
− | (c)2

(a)2
|β(1− α)

(1 + αβ)
r, |z| = r.

Hence the proof is complete.
Theorem 3.2 : A function f defined by (1) is in the class H∗(β, α, k),

then for 0 < |z| = r < 1, we have

1

r2
− | (c)2

(a)2
|β(1− α)

(1 + αβ)
≤ |f ′(z)| ≤ 1

r2
+ | (c)2

(a)2
|β(1− α)

(1 + αβ)
,

with equality for

f(z) =
1

z
+ | (c)2

(a)2
|β(1− α)

(1 + αβ)
z.
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Proof : From Theorem 2.1 we have

∞∑
n=1

nk+1|(a)n+1

(c)n+1

|[n(1 + β) + (1 + β(2α− 1))]an ≤ 2β(1− α).

Thus

|f ′(z)| ≤ |−1

z2
|+

∞∑
n=1

nan|z|n−1,

for 0 < |z| = r < 1, we get:

|f ′(z)| ≤ | 1
r2
|+

∞∑
n=1

nan,

≤ 1

r2
+ | (c)2

(a)2
|2β(1− α)

(1 + αβ)
,

and

|f ′(z)| ≥ |−1

z2
| −

∞∑
n=1

nan|z|n−1,

≥ | 1
r2
| −

∞∑
n=1

nan

≥ 1

r2
− | (c)2

(a)2
|2β(1− α)

(1 + αβ)
.

This completes the proof.

4 Hadamard Product

Theorem 4.1 : Let the functions f, g ∈ H∗(β, α, k). Then (f ∗g) ∈ H∗(δ, α, k)
for

f(z) =
1

z
+
∞∑
n=1

anz
n,

g(z) =
1

z
+
∞∑
n=1

bnz
n,

and

(f ∗ g)(z) =
1

z
+
∞∑
n=1

anbnz
n,
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where

δ =
2β2(1− α)(n+ 1)

2β2(1− α)(n+ 2α− 1)− | (c)n+1

(a)n+1
|nk+1[n(1 + β) + (1 + β(2α− 1))]2

Proof : Since f, g ∈ H∗(β, α, k), then by Theorem 2.1 we have:

∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an ≤ 1,

and
∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
bn ≤ 1.

We must find the largest δ such that

∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + δ) + (1 + δ(2α− 1))]

2δ(1− α)
anbn ≤ 1.

By Cauchy- Schwarz inequality, we get

∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)

√
anbn ≤ 1, (9)

To prove the theorem it is enough to show that

(a)n+1

(c)n+1

|n
k+1[n(1 + δ) + (1 + δ(2α− 1))]

2δ(1− α)
anbn

≤ |(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)

√
anbn,

which is equivalent to√
anbn ≤

δ[n(1 + β) + (1 + β(2α− 1))]

β[n(1 + δ) + (1 + δ(2α− 1))]
.

From (9), we have√
anbn ≤ |

(c)n+1

(a)n+1

| 2β(1− α)

nk+1[n(1 + β) + (1 + β(2α− 1))]
.

We must show that

| (c)n+1

(a)n+1

| 2β(1− α)

nk+1[n(1 + β) + (1 + β(2α− 1))]
≤ δ[n(1 + β) + (1 + β(2α− 1))]

β[n(1 + δ) + (1 + δ(2α− 1))]
,
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which gives

δ ≤ 2β2(α− 1)(n+ 1)

2β2(1− α)(n+ 2α− 1)− | (c)n+1

(a)n+1
|nk+1[n(1 + β) + (1 + β(2α− 1))]2

.

Hence the proof is complete.
Theorem 4.2 : Let the functions fi(i = 1, 2) defined by

fi(z) =
1

z
+
∞∑
n=1

an,iz
n, (an,i ≥ 0, i = 1, 2)

be in the class H∗(β, α, k). Then the function g defined by

g(z) =
1

z
+
∞∑
n=1

(a2n,1 + a2n,2)z
n,

is in the class H∗(η, α, k), where

η =
4β2(α− 1)(n+ 1)

4β2(1− α)(n+ 2α− 1)− | (a)n+1

(c)n+1
|nk+1[n(1 + β) + (1 + β(2α− 1))]2

Proof : Since fi ∈ H∗(β, α, k), (i = 1, 2),then by Theorem 2.1 we have:

∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an,i ≤ 1, i = 1, 2.

Hence
∞∑
n=1

(|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
)2a2n,i

≤ (
∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an,i)

2 ≤ 1, (i = 1, 2.)

Thus
∞∑
n=1

1

2
(|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
)2(a2n,1 + a2n,2) ≤ 1,

To prove the theorem, we must find the largest η such that

n(1 + η) + (1 + η(2α− 1))]

η
≤
| (a)n+1

(c)n+1
nk+1[n(1 + β) + (1 + β(2α− 1))]2

4β2(1− α)
, n ≥ 1,

so that

η ≤ 4β2(α− 1)(n+ 1)

4β2(1− α)(n+ 2α− 1)− | (a)n+1

(c)n+1
|nk+1[n(1 + β) + (1 + β(2α− 1))]2

.
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Hence the proof is complete.
Theorem 4.3 : If f(z) = 1

z
+
∑∞

n=1 anz
n ∈ H∗(β, α, k), and g(z) =

1
z

+
∑∞

n=1 bnz
n with |bn| ≤ 1 is in the class H∗(β, α, k), then f(z) ∗ g(z) ∈

H∗(β, α, k).
Proof : From Theorem 2.1 we have

∞∑
n=1

|(a)n+1

(c)n+1

|nk+1[n(1 + β) + (1 + β(2α− 1))]an ≤ 2β(1− α).

Since
∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
|anbn|,

=
∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an|bn|,

≤
∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an ≤ 1.

Thus f(z) ∗ g(z) ∈ H∗(β, α, k).
Hence the proof is complete.

Corollary 4.1 : If f(z) = 1
z

+
∑∞

n=1 anz
n ∈ H∗(β, α, k), and g(z) =

1
z

+
∑∞

n=1 bnz
n with 0 ≤ bn ≤ 1 is in the class H∗(β, α, k), then f(z) ∗ g(z) ∈

H∗(β, α, k).

5 Radii of Starlikness and Convexity

Theorem 5.1 : Let the function f(z) defined by (1) be in the class H∗(β, α, k).
Then f is meromorphically starlike of order δ(0 ≤ δ < 1) in the disk |z| <
r1(β, α, k, δ), where

r1(β, α, k, δ) = inf
n
{|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))](1− δ)

2β(n+ 2− δ)(1− α)
}

1
n+1

The result is sharp for the function given by (7).
Proof : It is enough to show that

|zf
′(z)

f(z)
+ 1| ≤ 1− δ,

|zf
′(z)

f(z)
+ 1| = |

∑∞
n=1(n+ 1)anz

n

z−1 +
∑∞

n=1 anz
n
| ≤

∑∞
n=1(n+ 1)an|z|n+1

1−
∑∞

n=1 an|z|n+1
.



72 Abdul Rahman S. Juma et al.

This will be bounded by 1− δ,∑∞
n=1(n+ 1)an|z|n+1

1−
∑∞

n=1 an|z|n+1
≤ 1− δ,

∞∑
n=1

(n+ 2− δ)an|z|n+1 ≤ 1− δ,

by Theorem 2.1, we have

∞∑
n=1

|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))]

2β(1− α)
an ≤ 1.

Hence

|z|n+1 ≤ |(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))](1− δ)

2β(n+ 2− δ)(1− α)
,

|z| ≤ {|(a)n+1

(c)n+1

|n
k+1[n(1 + β) + (1 + β(2α− 1))](1− δ)

2β(n+ 2− δ)(1− α)
}

1
n+1 .

This completes the proof of the theorem.
Theorem 5.2 : Let the function f(z) defined by (1) be in the class H∗(β, α, k).

Then f is meromorphically convex of order γ(0 ≤ γ < 1) in the disk |z| <
r2(β, α, k, γ), where

r2(β, α, k, γ) = inf
n
{|(a)n+1

(c)n+1

|n
k(1− γ)[n(1 + β) + (1 + β(2α− 1))]

2β(n+ 2− γ)(1− α)
}

1
n+1

The result is sharp for the function given by (7).
Proof : By using the same technique in the proof of Theorem 5.1 we can show
that

|zf
′′(z)

f ′(z)
+ 2| ≤ 1− γ, ((0 ≤ γ < 1).

for |z| < r2 with the aid of Theorem 2.1, we have the assertion of Theorem
5.2.
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