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Abstract
Given an arbitrary non-empty subset M of vertices in a graph G = (V,E),

each vertex u in G is associated with the set f o
M(u) = {d(u, v) : v ∈ M, u 6=

v}, called its open M-distance-pattern. The graph G is called open distance-
pattern uniform (odpu-) graph if there exists a subset M of V (G) such that
f o
M(u) = f o

M(v) for all u, v ∈ V (G) and M is called an open distance-pattern
uniform (odpu-) set of G. The minimum cardinality of an odpu-set in G, if it
exists, is called the odpu-number of G and is denoted by od(G). In this paper we
characterize several odpu-graphs and constructed classes of odpu-graph products
especially, join of two graphs, cartesian product, lexicographic Product and
corona.

Keywords: Graph products, Open distance-pattern uniform graphs, Open
distance-pattern uniform (odpu-) set, Odpu-number.

1 Introduction

All graphs considered in this paper are finite, simple, undirected and connected.
For graph theoretic terminology we refer to Harary[7].

The concept of open distance-pattern and open distance-pattern uniform
graphs were studied in [1, 2]. Given an arbitrary non-empty subset M of
vertices in a graph G = (V,E), the open M-distance-pattern of a vertex u
in G is defined to be the set f o

M(u) = {d(u, v) : v ∈ M, u 6= v}, where
d(x, y) denotes the distance between the vertices x and y in G. If there exists
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a non-empty set M ⊆ V (G) such that f o
M(u) is independent of the choice of u,

then G is called open distance-pattern uniform (odpu-) graph and the set M is
called an open distance-pattern uniform (odpu-) set. The minimum cardinality
of an odpu-set in G, if it exists, is the odpu-number of G and is denoted by
od(G). In this paper, we characterize several odpu-graphs which are formed by
graph products especially, join of two graphs, cartesian product, lexicographic
product and corona. We need the following definitions and previous results.

In paper [1], it is proved that, a graph G with radius r(G) is an odpu
graph if and only if the open distance pattern of any vertex u in G is f o

M(u) =
{1, 2, · · · , r(G)} and a graph is an odpu-graph if and only if its centre Z(G)
is an odpu-set, thereby characterizing odpu-graphs, which in fact suggests an
easy method to check the existence of an odpu-set for a given graph.

Proposition 1. [1] For any graph G, od(G) = 2 if and only if there exist at
least two vertices x, y ∈ V (G) such that deg(x) = deg(y) = |V (G)| − 1, where
deg(x) denote the degree of the vertex x in G.

Proposition 2. [1] There is no graph having odpu-number three.

Proposition 3. [1] A graph G is an odpu graph if and only if its centre
Z(G) is an odpu set and hence |Z(G)| ≥ 2.

Proposition 4. [1] All self-centered graphs are odpu graphs.

Theorem 1.1. [1] The shadow graph of any complete graph Kn, n ≥ 3 is
an odpu-graph with odpu-number n+ 2 (The shadow graph S(G) of a graph G
is obtained from G by adding for each vertex v of G a new vertex v′, called the
shadow vertex of v, and joining v′ to all the neighbors of v in G).

Theorem 1.2. [1] Every odpu-graph G satisfies, r(G) ≤ d(G) ≤ r(G) + 1
where r(G) and d(G) denote the radius and diameter of G respectively.

The join of two graphs G1 = (V1, E1) and G2 = (V2, E2) is denoted by
G1 +G2 has the vertex set as V = V1 ∪ V2 and the edge set E contains all the
edges of G1 and G2 together with all edges joining the vertices of V1 with the
vertices of V2.

The cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is
denoted by G1 × G2 has the vertex set V = V1 × V2. Let u = (u1, u2) and
v = (v1, v2) be two vertices in V = V1 × V2. Then u and v are adjacent in
G1 × G2 whenever [u1 = v1 and u2 is adjacent to v2] or [u2 = v2 and u1 is
adjacent to v1].

The composition (or lexicographic product) G = G1[G2] also has the vertex
set V = V1 × V2 and the vertex u = (u1, u2) is adjacent with the vertex
v = (v1, v2) whenever [u1 is adjacent to v1] or [u1 = v1 and u2 is adjacent to
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v2]. Obviously both compositions G1[G2] and G2[G1] are not isomorphic in
general.

The Corona G1 ◦ G2 of two graphs G1 and G2 was defined by Frucht and
Harary [5] as the graph G obtained by taking one copy of G1 (which has p1
vertices) and p1 copies of G2, and then joining the ith vertex of G1 to every
vertex in the ith copy of G2. It follows from the definition of the corona that
G1 ◦G2 has p1(1 + p2) points and q1 + p1q2 + p1p2 edges where G1 and G2 has
q1 and q2 edges respectively.

Theorem 1.3. [8] The cartesian product of two graphs is connected if and
only if both factors are connected.

Theorem 1.4. [8] Let (u, v) and (x, y) be arbitrary vertices of the cartesian
product G×H. Then,
dG×H((u, v), (x, y)) = dG(u, x) + dH(v, y).

2 Main Results

First we characterize the odpu graphs which are obtained by taking join of two
graphs. Recall that a universal vertex means a vertex which is adjacent to all
other vertices of the graph.

Theorem 2.1. Join of two graphs G1 and G2 is an odpu-graph if and only
if exactly one of G1 and G2 does not have exactly one universal vertex.

Proof. Assume that the join G1 +G2 is an odpu-graph. We shall prove that
exactly one of G1 and G2 does not have exactly one universal vertex. If not,
assume that exactly one of G1 and G2 (say G1) has exactly one universal ver-
tex u ∈ V (G1). Since u is a universal vertex in G1, u is a universal vertex in
G1 +G2. Also, since u is the only universal vertex in G1 and G2 does not have
a universal vertex, there is no vertex of degree |V (G1 + G2)| − 1 in G1 + G2

other than u. This implies Z(G1+G2) = {u}. Hence by Proposition 3, G1+G2

is not an odpu-graph, a contradiction to the assumption.
Conversely, assume that exactly one of G1 and G2 does not have exactly one
universal vertex. Then, the following are the three possibilities.
(i) One of G1 and G2 has more than one universal vertices.
(ii) Both G1 and G2 have at least one universal vertex each.
(iii) None of G1 and G2 has a universal vertex.

Case:i One of G1 and G2 (say G1) has at least two universal vertices u
and v.
Since u and v are universal vertices of G1, u and v are also universal vertices
of G1 + G2. That is, there exist two universal vertices in G1 + G2 and hence
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by Proposition 1, G1 +G2 is an odpu-graph.

Case:ii Both G1 and G2 have at least one universal vertex each.
Let x ∈ V (G1) and y ∈ V (G2) are universal vertices in G1 and G2 respectively.
Then, x and y are universal vertices of G1 + G2 and hence by Proposiion 1,
G1 +G2 is an odpu-graph.

Case:iii None of G1 and G2 has a universal vertex.
In this case the graph G1+G2 does not have a universal vertex. Let u ∈ V (G1).
Then, for every vertices v ∈ V (G1) not adjacent to u, there exists a path uwv
where w ∈ V (G2), in G1 + G2. This is true for all vertices of V (G1) and
similarly in V (G2). Hence G1 +G2 is a self-centered graph of radius 2. Hence
by Proposition 4, G1 +G2 is an odpu-graph. Hence the Theorem.

Corollary 2.2. Join of two graphs G1 and G2 is an odpu-graph if and only
if one of the following condition must hold.
(i) One of G1 and G2 has more than one universal vertices.
(ii) Both G1 and G2 have at least one universal vertex.
(iii) None of G1 and G2 has a universal vertex.

Corollary 2.3. G1 +G2 is an odpu graph if and only if |Z(G1 +G2)| ≥ 2.

Corollary 2.4. G1 +G2 is odpu if and only if r(G1 +G2) = r(Z(G1 +G2)).

Theorem 2.5. For any positive integer n 6= 1, 3, there exists an odpu-graph
G with odpu-number n which is formed by join of two graphs G1 and G2.

Proof. Case:i n = 2.
Consider the graph, K2 + H, where H is any graph. Then the vertices of K2

are universal vertices in K2+H and hence by Corollary 2.2, it is an odpu-graph
with odpu-number n = 2.

Case:ii n = 4.
Consider the graph, K2 + K2, which isomorphic to K2,2 and hence it is an
odpu-graph with odpu-number 4.

Case:iii n = 5.
Consider the graph, G = C5 + K2. Then r(G) = 2. Let M be a minimal
odpu-set of G. Since r(G) = 2, f o

M(u) = {1, 2}; ∀ u ∈ V (G). Since, for
a vertex x in K2, the other vertex y ∈ K2 is the only vertex at a distance 2
in G, both the vertices of K2 must be in M . Now let C5 = (v1, v2, v3, v4, v5, v1).

Claim:1 M contains exactly three vertices from C5.
Since, all the vertices of C5 is adjacent to a vertex of M ∩ K2, 1 ∈ f o

M(vi);
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(i = 1, 2, . . . , 5). If none of the vertices of C5 is in M , then 2 /∈ f o
M(vi) ∀ i =

1, 2, . . . , 5. So let v1 ∈ M . But, for 2 ∈ f o
M(v1), either v3 or v4 must be in M .

With out loss of generality assume that v3 ∈ M . Then v2 ∈ N(v1) ∩ N(v3).
Since 2 ∈ f o

M(v2), either v4 or v5 must be in M . Let v5 ∈M . Hence M contains
v1, v3 and v5 and it is easy to see that 2 ∈ f o

M(vi); i = 1, 2, . . . , 5 and hence
three vertices of C5 must be in M . Hence M = {v1, v3, v5, u, v} and od(G) = 5.

Case:iv n = k; where k ≥ 6 and k is even.
Let G = K2 +K2,2,...,2, where K2,2,...,2 be the complete t-partite graph of order
2t. Then G is isomorphic to a complete (t + 1)-partite graph with 2t + 2 = k
vertices. Thus the graph G is self-centered with r(G) = 2 and hence it is an
odpu-graph. Each partitions of G contains exactly two vertices u and v such
that v is the only vertex of u at a distance 2 in G and conversely. Hence all the
vertices of G must be in the minimum odpu set M . Hence od(G) = k, where
k ≥ 6 and k is even.

Case:v n = k; where k ≥ 7 and k is odd.
Let G = C5 + K2,2,...,2, where K2,2,...,2 be a complete t-partite graph of order
2t. then, G is a self-centered graph of radius two. Each partitions of K2,2,...,2

contains exactly two vertices u and v such that v is the only vertex of u at a
distance 2 in G and conversely. Hence all the vertices of K2,2,...,2 must be in
the minimum odpu set M . By claim-1 in Case:(iii), exactly three vertices of
C5 must be in M . Hence M contains exactly 3 + 2t vertices of G and hence
od(G) = 3 + 2t; t ≥ 2. Thus od(G) = k, k ≥ 7 and k is odd. Hence the
theorem.

Corollary 2.6. Let G be an odpu-graph formed by join of two graphs G1

and G2. Then, G has odpu-number two if and only if either
(i) One of G1 or G2 has more than one universal vertices or
(ii) Both G1 and G2 have at least one universal vertex each.

Theorem 2.7. Let G be an odpu-graph formed by join of two graphs G1

and G2. Then, od(G) = 4 if and only if there exist two non-adjacent vertices
ui and vi in Gi (i = 1, 2) such that N(ui) ∩N(vi) = φ, for i = 1, 2.

Proof. Let G = G1+G2 and od(G) = 4. Then, there is no universal vertex in
G and hence G is a self-centered graph of radius 2. Hence f o

M(u) = {1, 2} ∀ u ∈
V (G). Since 2 ∈ f o

M(u) ∀ u ∈ V (G) exactly two nonadjacent vertices from
G1 and exactly two nonadjacent vertices from G2 belongs to the minimum
odpu set M . Let the vertices of M be u1, v1, u2, v2 where u1, v1 ∈ V (G1) and
u2, v2 ∈ V (G2). Now, if N(u1)∩N(u2) 6= φ, then let w ∈ N(u1)∩N(v1). Then
wu1, wv1, wu2, wv2 ∈ E(G) and hence 2 /∈ f o

M(w), a contradiction. Hence
N(u1) ∩ N(v1) = φ. Similarly N(u2) ∩ N(v2) = φ. Hence there exist two
non-adjacent vertices ui and vi in Gi (i = 1, 2) such that N(ui) ∩ N(vi) = φ,
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for i = 1, 2.
Conversely, assume that there exist two non-adjacent vertices ui and vi in Gi

(i = 1, 2) such that N(ui) ∩ N(vi) = φ, for i = 1, 2. Let M = {u1, v1, u2, v2}.
Since d(u1, v1) = 2 and d(u1, u2) = d(u1, v2) = 1, f o

M(u1) = {1, 2}. Simi-
larly, f o

M(v1) = {1, 2}. Since d(u2, v2) = 2 and d(u2, u1) = d(u2, v1) = 1,
f o
M(u2) = {1, 2}. Similarly, f o

M(v2) = {1, 2}. Let w ∈ V (G1). Then, d(w, u2) =
d(w, v2) = 1 and since N(u1)∩N(v1) = φ, at least d(w, u1) = 2 or d(w, v1) = 2
or both. Therefore, f o

M(w) = {1, 2} Similarly, ∀ z ∈ V (G2), f
o
M(z) = {1, 2}.

Hence 4 vertices of G form an odpu-set. By Proposition 1 and Proposition 2,
we conclude that od(G) = 4. Hence the theorem.

The next Lemma help us to characterize the odpu graphs which is formed
by the cartesian product of two graphs.

Lemma 2.8. Let (u, v) be a vertex of the cartesian product G ×H. Then,
eG×H(u, v) = eG(u) + eH(v) where eG(u) denote the eccentricity of u in G.

Proof. Let eG×H(u, v) = k. Then, there exists a vertex (x, y) ∈ G×H such
that d((u, v), (x, y)) = k and there is no vertex (a, b) such that d(u, a)+d(v, b) >
k. Thus, d(u, x) and d(v, y) are maximum with respect to u and v respectively.
Hence, d(u, x) = eG(u) and d(v, y) = eH(v). Hence by the Theorem 1.4,
eG×H(u, v) = eG(u) + eH(v). Hence the lemma.

Corollary 2.9. r(G×H) = r(G) + r(H) and d(G×H) = d(G) + d(H).

Proof. r(G×H) = min {e(u, v) : (u, v) ∈ G×H}.
= min {e(u) + e(v) : u ∈ G, v ∈ H}, by the Theorem 1.4.
= min {e(u) : u ∈ G} + min {e(v) : v ∈ H}.
= r(G) + r(H).
Similarly, d(G×H) = d(G) + d(H).

Theorem 2.10. The cartesian product G1×G2 is an odpu-graph if and only
if one of G1 and G2 is self-centered and the other graph is an odpu-graph.

Proof. For notational convenience let r(G1 × G2) = r, r(G1) = r1 and
r(G2) = r2. Similarly, d(G1 ×G2) = d, d(G1) = d1 and d(G2) = d2. Hence by
Corollary 2.9 r = r1 + r2 and d = d1 + d2.

First we assume that H = G1 ×G2 is an odpu graph. We shall prove, one
of G1 and G2 (say G1) is self-centered and the other is an odpu graph. If not,
there are two possibilities.

Case:1 None of G1 and G2 are self-centered.
Then, r1 6= d1 and r2 6= d2 or in particular, r1 + 1 ≤ d1 and r2 + 1 ≤ d2.
Thus r1 + r2 + 2 ≤ d1 + d2. Hence by Corollary 2.9, r + 2 ≤ d. Which is a
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contradiction to Theorem 1.2.

Case:2 G1 is self-centered; but G2 is not an odpu-graph.
Since H is an odpu graph, f o

M(u, v) = {1, 2, . . . , r} ∀ (u, v) ∈ V (H) where r =
r1+r2. Now, Z(H) = {(u, v) : u ∈ Z(G1), v ∈ Z(G2)} = {(u, v) : v ∈ Z(G2)},
since G1 is self-centered. Since G2 is not odpu, there exist a vertex v ∈ V (G2)
such that f o

M(v) 6= {1, 2, . . . , r2}. Thus, there are two possibilities.

Subcase:1 there exists a number k > r2 such that k ∈ f o
M(v).

Then there exists a vertex x ∈ Z(G2) such that d(v, x) = k. Now let w, z ∈
V (G1) such that d(w, z) = r1. Since x ∈ Z(G2), the vertices (x, z), (x,w) ∈
Z(G1 ×G2). By Theorem 1.4, d((v, w), (x, z)) = d(v, x) + d(w, z) = k + r1 >
r1 + r2 = r. Therefore, r1 + k ∈ f o

M(v, w) is a contradiction that H is an odpu
graph.

Subcase:2 There exists a number k; 1 ≤ k ≤ r2 such that k /∈ f o
M(v).

Thus there does not exist a vertex x ∈ Z(G2) such that d(v, x) = k. Corre-
spondingly, k + r1 /∈ f o

M(v, w) for (v, w) ∈ V (G1 × G2). A contradiction that
H is an odpu graph. Hence, one of G1 and G2 is self-centered and the other is
an odpu graph.

Conversely, assume that one of G1 and G2 (say G1) is self-centered and
the other is an odpu graph. Since G1 is self-centered, Z(G1 × G2) = {(u, v) :
v ∈ Z(G2)}. Let (u, v) ∈ V (H). Since G1 is self-centered with radius r1
and G2 is an odpu-graph with radius r2, f

o
M(u) = {1, 2, . . . , r1} and f o

M(v) =
{1, 2, . . . , r2}. That is, there exist vertices xi ∈ Z(G1) and yj ∈ Z(G2) such
that dG1(u, xi) = i; 1 ≤ i ≤ r1 and dG2(v, yj) = j; 1 ≤ j ≤ r2. Therefore,
d(u, xi) + d(v, yj) = d((u, v), (xi, yj)) = i+ j, ∀ 2 ≤ i+ j ≤ r1 + r2 = r. Also,
d(u, v), (u, y1) = 1, 1 ∈ f o

M(u, v). Hence, f o
M(u, v) = {1, 2, . . . , r}. Since (u, v)

is arbitrary, G1 ×G2 is an odpu-graph. Hence the theorem.

Theorem 2.11. Lexicographic product H = G1[G2] of two graphs G1 and
G2 is an odpu-graph if and only if either
(i) G1 is an odpu-graph. Or
(ii) G1 = K1 and G2 is an odpu-graph. Or
(iii) G1 6= K1 has exactly one universal vertex and G2 does not have exactly
one universal vertex.

Proof. First assume that lexicographic product H = G1[G2] is an odpu-
graph. Suppose G1 and G2 does not satisfy any of the three conditions. Then
the possible cases are discussed as below.

Case:(i) G1 = K1 and G2 is not an odpu-graph.
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Then, H = G1[G2] = G2 is not an odpu-graph.

Case:(ii) G1 6= K1, G1 is not an odpu-graph and G1 has no universal
vertex.
That is, G1 6= K1, G1 is not an odpu-graph with r(G1) ≥ 2. Then H has
the same radius and diameter as in G1 and hence f o

M(u) = f o
M(u, x), ∀ u ∈

V (G1), x ∈ V (G2). Since G1 is not an odpu-graph, there exist two vertices u
and v such that f o

M(u) 6= f o
M(v). Correspondingly f o

M(u, x) 6= f o
M(v, y), x, y ∈

V (G2). Hence, H = G1[G2] is not an odpu-graph.

Case:(iii) G1 6= K1 and G1 and G2 has exactly one universal vertices
each (say u and v respectively).
Then Z(G1[G2]) has exactly one vertex (u, v) and hence H is not an odpu-
graph.
Hence, all the above cases we arrived a contradiction that H = G1[G2] is not
an odpu-graph.

Conversely, assume that G1 and G2 satisfy any one of the given three con-
ditions.
Case:(i) G1 is an odpu-graph.
Then f o

M(u) = f o
M(v), ∀ u, v ∈ V (G1). Hence, f o

M(u, x) = f o
M(v, y) ∀ x, y ∈

V (G2) and (u, x), (v, y) ∈ V (H). Hence H = G1[G2] is an odpu-graph. Note
that, in the case of G1 have two or more universal vertices make G1, an odpu
graph. Hence this case is already discussed here.

Case:(ii) G1 = K1 and G2 is an odpu-graph.
Then, H = G1[G2] = G2 is an odpu-graph.

Case:(iii) G1 6= K1, G1 has a universal vertex u and G2 does not have
exactly one universal vertex.

Subcase:(i) G1 6= K1, G1 has a universal vertex u and G2 has more than
one universal vertex (say x and y).
Then H = G1[G2] has at least two universal vertices (u, x) and (v, y) and hence
by proposition 1, H is an odpu-graph.

Subcase:(ii) G1 6= K1, G1 has a universal vertex u and none of the ver-
tices of G2 are universal vertices.
Then ∀ x ∈ V (G2), there exists a vertex y ∈ V (G2) such that x, y /∈ E(G2).
Hence, d((u, x), (u, y)) = 2 and d((u, x), (w, y)) = 1 ∀ u 6= w consequently
eH(u, x) = 2. Also, ∀ w, v 6= u, d((w, x), (v, y)) = 2, since, ((w, x), (u, x), (v, y))
is a path of length 2 in H. Hence, eH(w, x) = 2. Thus, H is self-centered and



hence it is an odpu-graph.

Lemma 2.12. If G is an odpu-graph then, G has no cut vertices.

Proof. Suppose, G has a cut vertex u, then the graph G has at least two
blocks (say B1 and B2) such that V (B1)∩V (B2) = {u} and E(B1)∩E(B2) =
φ. Since, the center of a graph lies in a block, with out loss of generality,
assume that the center Z(G) lies in the block B1. Let v ∈ V2 such that
uv ∈ E(G). If G is an odpu-graph then, there exists an odpu-set M ⊆ Z(G)
and f o

M(u) = {1, 2, . . . , r} ∀ u ∈ V (G). Then there exists a vertex w ∈ M
such that d(u,w) = r, and d(v, w) = r + 1. Then r + 1 ∈ f o

M(u), which is a
contradiction. Hence an odpu-graph G cannot have cut vertices.

The Corona G ◦ H was defined by Frucht and Harary[5] as the graph G
obtained by taking one copy of G1 of order p1 and p1 copies of G2, and then
joining the ith vertex of G1 to every vertices in the ith copy of G2.

Theorem 2.13. Corona G ◦ H is an odpu- graph if and only if the graph
G ≈ K1 and the graph H has at least one universal vertex.

Proof. Assume that G ◦H is an odpu-graph. We shall prove, G1 ≈ K1 and
G2 has at least one universal vertex. If not, there are two possibilities.

Case:(i) G is not isomorphic to K1.
Then, G has at least two vertices. Let the vertices of G be v1, v2, . . . , vp1 . Then
G ◦H − {v1, v2, . . . , vp1} is p1 disconnected copies of H. Hence, each vertices
of G in G ◦H are cut vertices, a contradiction to Lemma 2.12.

Case:(ii) G = K1, but H has no universal vertices.
Then G◦H has exactly one universal vertex and hence it is not an odpu-graph,
a contradiction to the assumption.
Conversely, assume that G = K1 and H has at least one universal vertex. Then
the corona G ◦H has at least two universal vertices and hence by Proposition
1, it is an odpu-graph with od(G ◦H) = 2.

Corollary 2.14. If corona G ◦H is an odpu-graph then, od(G ◦H) = 2.

The next Corollary gives a necessary condition for a graph to be an odpu-
graph.

Corollary 2.15. A graph G is odpu then, it cannot be represented as corona
of two non-trivial graphs G and H.

Corollary 2.16. Any odpu-graph H with od(H) = 2 can be represented as
corona H = K1 ◦G, where K1 = {v} and G = 〈H − v〉.
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