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Abstract
In this paper we introduce n-normal operators on a Hilbert space H. We give
some basic properties of these operators. In general an n-normal operators
need not be a normal operator, a hyponormal operator.
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1 Introduction

Throughout this paper, B(H) denotes to the algebra of all bounded linear
operators acting on a complex Hilbert space H. An operator T is said to be
normal if T ∗T = TT ∗, (it is well known that normal operators have translation-
invariant property, i.e., if T is a normal operator, then (T − λ) is a normal
operator for every λ ∈ C); self adjoint if T ∗ = T ; positive if T ∗ = T and
〈Tx, x〉 ≥ 0 for all x ∈ H; and projection if T 2 = T = T ∗. For an operator
T ∈ H, if ‖Tx‖ = ‖x‖ for all x ∈ H ( or equivalently T ∗T = I), then T is
called an isometry. An onto isometry is called unitary. An operator T ∈ B(H)
is called partial isometry if T ∗T is projection. An operator T on H is called
subnormal if there exists a Hilbert space K with H is a subspace of K and a
normal operator N on K such that NH ⊆ H and N |H = T ; T is hyponormal
if T ∗T ≥ TT ∗. Let T ∈ B(H) and x ∈ H. The sequence {T nx}∞n=0 is called
orbit of x under T , and is denoted by orb(T, x). If orb(T, x) is dense in H, then
x is called a hypercyclic vector for T . An operator T ∈ B(H) is called scalar
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of order m if it possesses a spectral distribution of order m, i.e., if there is a
continuous unital morphism φ : Cm

0 (C) −→ B(H) such that φ(z) = T where
z stands for the identity function on C and Cm

0 (C) for the space of compactly
supported functions on C, continuously differentiable of order m, 0 ≤ m ≤ ∞.
An operator T ∈ B(H) is called subscalar if it is similar to the restriction of a
scalar operator to an invariant subspace.

2 n-normal operators

Definition 2.1. T ∈ B(H) is called an n-normal operator if T nT ∗ = T ∗T n.

Proposition 2.2. Let T ∈ B(H). Then T is n-normal if and only if T n is
normal where n ∈ N.

Proof. Let T is n-normal, T nT ∗ = T ∗T n. Therefore
T n(T ∗)n = T ∗T n(T ∗)n−1 = T ∗(T nT ∗)(T ∗)n−2 = (T ∗)2T n(T ∗)n−2 = (T ∗)nT n.
Then T n is normal. Now, let T n is normal. Since T nT = TT n, by Fuglede

theorem [8], T ∗T n = T nT ∗. Therefore T is n-normal.

It is clear that a bounded normal operator is n-normal for any n. The

converse is not true. Indeed if T =

(
i 2
0 −i

)
, then T is 2-normal which is

not normal. And all nonzero nilpotent operators are n-normal operators, for
n ≥ k where k the index of nilpotance, but they are not normal. It is well
known that if T is normal, then it is hyponormal. And if T is normal and T k

is compact for some k, then T is compact by [8]. The following example shows
that these need not be true in case of n-normal operator.

Example 2.3. Let H = `2 and e1, e2, ...be standard orthogonal basis for `2.

Define T on H by Tei =





e1, i=1
ei+1, i=2j
0, i=2j+1

,j = 1, 2, · · ·. Then T 2 = P , where

P is the orthogonal projection on the space span by e1. So T is 2-normal but
neither T nor T ∗ is hyponormal.
Now, since T 2 is a projection on one-dimensional space , it is compact. How-
ever, since range of T contains an infinite orthonormal set {ei, i = 1, 3, 5, · · ·},
T is not compact.

The following example shows that there exists an operator which is subnormal
but not n-normal for any n ∈ N .

Example 2.4. Let U be unilateral shift on `2 (i.e., U(α0, α1, · · ·) = (0, α0, α1, · · ·).
Then U is subnormal but for any n ∈ N , Un is not normal.
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It is well known that if T is hyponormal and compact, then T is normal.

But we note that the nilpotent operator T =

(
0 a
0 0

)
an n-normal operator,

which is compact but not normal. Thus T is not hyponormal.

Theorem 2.5. The set of all n-normal operators on H is closed subset of
B(H) which is closed under scalar multiplication.

Proof. First if T is n-normal, and α is scalar, then (αT )n(αT )∗ = αnα(T nT ∗) =
ααn(T ∗T n) and (αT ∗)(αnT n) = (αT )∗(αT )n. Hence αT is n-normal. Now,
suppose that (Tk) is sequence of n-normal operators converging to T in B(H).
Now, ‖T nT ∗− T ∗T n‖ ≤ ‖T nT ∗− T n

k T ∗
k ‖+ ‖T ∗

k T n
k − T ∗T n‖ −→ 0 as k −→∞.

Hence T ∗T n = T nT ∗. Thus T is n-normal.

Proposition 2.6. Let T ∈ B(H) be n-normal. Then

1. T ∗ is n-normal.

2. If T−1 exists, then (T−1) is n-normal.

3. If S ∈ B(H) is unitary equivalent to T , then S is n-normal.

4. If M is a closed subspace of H such that M reduces T , then S = T/M
is an n-normal operator.

Proof. (1) Since T is n-normal, T n is normal. So (T n)∗ = (T ∗)n is normal, T ∗

is an n-normal operator.
(2) Since T is n-normal, T n is normal. Since (T n)−1 = (T−1)n is normal, T−1

is an n-normal operator.
(3) Let T be an n-normal operator and S be unitary equivalent of T . Then
there exists unitary operator U such that S = UTU∗ so Sn = UT nU∗. Since
T n is normal, Sn is normal. Therefore S is n-normal.
(4) Since T is n-normal, T n is normal. So T n/M is normal. And since M is
invariant under T , T n/M = (T/M)n. Thus (T/M)n is normal. So T/M is
n-normal.
Now, the following example shows that the class of 2-normal operators may
not have the translation-invariant property.

Example 2.7. Let T =

(
0 T1

0 0

)
, where T1 : H1 −→ H. Then T is 2-

normal operator. But [(T − λ)∗2, (T−λ)2] =

( −4 | λ |2 T1T
∗
1 0

0 4 | λ |2 T ∗
1 T1

)

not necessarily equal to zero unless λ = 0. Hence (T − λ)2 is not normal. So
(T − λ) is not necessarily 2-normal operator.

Theorem 2.8. If S, T are commuting n-normal operators, then ST is an
n-normal operator.
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Proof. Since S, T are commuting n-normal operators, Sn, T n are commuting
normal operator. So SnT n is a normal operator. Since SnT n = (ST )n, (ST )n

is normal. Hence ST is n-normal.

The following example shows that Theorem 2.8 is not necessarily true if S,
T are not commuting.

Example 2.9. Let S =

(
1 0
0 −1

)
and T =

(
i 2
0 −i

)
be operators on

the Hilbert space C2. Then S and T are 2-normal. We note that ST =(
i 2
0 i

)
6=

(
i −2
0 i

)
= TS. But as (ST )2 =

( −1 4i
0 −1

)
is not normal,

ST is not 2-normal.

Corollary 2.10. If T is n-normal, Then Tm is n-normal for any positive
integer m.

The following example shows that sum of two commuting n-normal oper-
ators need not be n-normal.

Example 2.11. Let S =

(
1 0
0 1

)
, T =

(
0 1
0 0

)
. Then S and T are

commuting 2-normal. But S + T =

(
1 1
0 1

)
, (S + T )2 =

(
1 2
0 1

)
is not

normal. Thus S+T is not 2-normal. We note here S is a selfadjoint operator.

Proposition 2.12. Let T , S be commuting n-normal operator, such that
(S + T )∗ commutes with

∑n−1
k=1

(
n
k

)
Sn−kT k. Then (S + T ) is an n-normal op-

erator.

Proof. Since (S + T )n(S + T )∗ = (
n∑

k=0

(
n
k

)
Sn−kT k)(S∗ + T ∗), (S + T )n(S +

T )∗ = SnS∗ +
n−1∑

k=1

(
n
k

)
Sn−kT k(S + T )∗ + T nS∗ + SnT ∗ + T nT ∗. And since

(S + T )∗ is commuting with
n−1∑

k=1

(
n
k

)
Sn−kT k, (S + T )n(S + T )∗ = S∗Sn + (S +

T )∗
n−1∑

k=1

(
n
k

)
Sn−kT k + S∗T n + T ∗Sn + T ∗T n. So (S + T )n(S + T )∗ = (S +

T )∗(Sn + T n) + (S + T )∗(
n−1∑

k=1

(
n
k

)
Sn−kT k). Hence (S + T )n(S + T )∗ = (S +

T )∗(
n∑

k=0

(
n
k

)
Sn−kT k) = (S + T )∗(S + T )n.
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Lemma 2.13. If S, T ∈ B(H) are 2-normal operators and ST + TS = 0,
then T + S and ST are 2-normal.

Proof. Since ST + TS = 0, S2T 2 = T 2S2. So (S + T )2 = S2 + T 2 is normal.
Thus (S + T ) is an 2-normal operator.
Now since ST + TS = 0, (ST )2 = −S2T 2 = −T 2S2. Hence by Theorem 2.8,
ST is a 2-normal operator.

Now we state some well known lemmas which we shall need.

Lemma 2.14. Let P , Q be the projections on closed subspaces M , N re-
spectively. Then M⊥N if and only if PQ = 0.

Lemma 2.15. If T is normal, then Tx = λx if and only if T ∗x = λx.

Lemma 2.16. If P is the projection on a closed subspace M of H, then M
reduces of T if and only if TP = PT .

Theorem 2.17. Let T be an operator on finite dimensional Hilbert space
H, λ1, ..., λm be eigenvalues of T such that λn

i 6= λn
j ,i 6= j, M1, ..., Mm the

corresponding eigenspaces, and P1, ..., Pm the projections on M1, ..., Mm re-
spectively. Then Mi’s are pairwise orthogonal and they span H if and only if
T is n-normal operator.

Proof. Assume Mi’s are pairwise orthogonal and they span H. Then for x ∈ H,
x = x1 + x2 + ... + xm, xi ∈ Mi, T nx = T nx1 + ... + T nxm = λn

1x1 + ... + λn
mxm.

Since Pi’s are projection on eigenspace Mi’s which are pairwise orthogonal,
by lemma 2.14 Pix = xi. Hence Ix = x1 + ...xm = P1x + ... + Pmx =
(P1 + ... + Pm)x for every x ∈ H. Thus I = Σn

i=1Pi. Since T nx = λn
1x1 +

... + λn
mxm = λn

1P1x + ... + λn
mPmx = (λn

1P1 + ... + λn
mPm)x for all x ∈ H. So

T n =
∑m

i=1 λn
i Pi. Hence T ∗n = λ

n

1P1 + ... + λ
n

mPm. Since Mi’s are pairwise

orthogonal, PiPj =

{
Pi, if i = j;
0, if i 6= j.

So T nT ∗n = |λ1|2nP1 + ...+ |λm|2nPm and

T ∗nT n = |λ1|2nP1 + ... + |λm|2nPm. Thus T n is normal, i.e., T is an n-normal
operator.
Suppose T is an n-normal operator. Then T n is a normal operator. We claim
that Mi’s are pairwise orthogonal. Let xi, xj be vectors in Mi, Mj, (i 6= j)
such that T nxi = λn

i xi and T nxj = λn
j xj. Then λn

i 〈xi, xj〉 = 〈λn
i xi, xj〉 =

〈T nxi, xj〉 = 〈xi, T
∗nxj〉 = 〈xi, λj

n
xj〉 = λn

j 〈xi, xj〉. So (λn
i − λn

j )〈xi, xj〉 = 0.
Since λn

i 6= λn
j , 〈xi, xj〉 = 0. This shows that Mi’s are pairwise orthogonal.

Let M = M1+...+Mm. Then M is a closed subspace of H. Let P be associated
projection onto M . Then P = P1 + ... + Pm. Since T n is normal, each Mi

reduces T n. It follows that T nP = PT n. Consequently M⊥ is invariant under
T n. Suppose that M⊥ 6= {0}. Let T1 = T n/M⊥. Then T1 is an operator
on non-trivial finite dimensional complex Hilbert space M⊥ with empty point
spectrum which is impossible. Therefore M⊥ = {0}. i.e., M = H.
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Theorem 2.18. Let T1, ..., Tm be n-normal operators in B(H). Then
(T1 ⊕ ...⊕ Tm) and (T1 ⊗ ...⊗ Tm) are n-normal operators.

Proof. Since (T1⊕ ...⊕Tm)n(T1⊕ ...⊕Tm)∗ = (T n
1 ⊕ ...⊕T n

m)(T ∗
1 ⊕ ...⊕T ∗

m) =
T n

1 T ∗
1 ⊕ ... ⊕ T n

mT ∗
m = T ∗

1 T n
1 ⊕ ... ⊕ T ∗

mT n
m = (T ∗

1 ⊕ ... ⊕ T ∗
m)(T n

1 ⊕ ... ⊕ T n
m) =

(T1 ⊕ ...⊕ Tm)∗(T1 ⊕ ...⊕ Tm)n. Then (T1 ⊕ ...⊕ Tm) is an n-normal operator.
Now, for x1, ...xm ∈ H (T1 ⊗ ..⊗ Tm)n(T1 ⊗ ..⊗ Tm)∗(x1 ⊗ ..⊗ xm)
= (T n

1 ⊗ ..⊗ T n
m)(T ∗

1 ⊗ ..⊗ T ∗
m)(x1 ⊗ ..⊗ xm) = T n

1 T ∗
1 x1 ⊗ ..⊗ T n

mT ∗
mxm,

= T ∗
1 T n

1 x1 ⊗ ..⊗ T ∗
mT n

mxm = (T ∗
1 ⊗ ..⊗ T ∗

m)(T n
1 ⊗ ..⊗ T n

m)(x1 ⊗ ..⊗ xm),
= (T1⊗..⊗Tm)∗(T1⊗..⊗Tm)n(x1⊗..⊗xm). So (T1⊗...⊗Tm)n(T1⊗...⊗Tm)∗ =
(T1 ⊗ ...⊗ Tm)∗(T1 ⊗ ...⊗ Tm)n. Thus (T1 ⊗ ...⊗ Tm) is n-normal.

Proposition 2.19. (T −λ) is an n-normal operator for every λ ∈ C if and
only if T is a normal operator.

Proof. Since (T − λ) is n-normal for every λ ∈ C, (T − λ)∗(T − λ)n =

(T − λ)n(T − λ)∗. Hence (T ∗ − λ)(
∑n

k=1(−1)k
(
n
k

)
Tn−kλk) = (

n∑

k=1

(−1)k
(
n
k

)

Tn−kλk) (T ∗−λ). So (
n∑

k=1

(−1)k
(
n
k

)
T ∗Tn−kλk)−(

n∑

k=1

(−1)k
(
n
k

)
Tn−kλk)λ = (

n∑

k=1

(−1)k
(
n
k

)
Tn−kT ∗λk)−

(
n∑

k=1

(−1)k
(
n
k

)
Tn−kλk)λ. Therefore

n∑

k=1

(−1)k
(
n
k

)
(λ)k(T ∗Tn−k − Tn−kT ∗) = 0. From the left side of the last equa-

tion we get the term which k = n is zero. Hence
n−1∑

k=1

(−1)k
(
n
k

)
(λ)k(T ∗Tn−k −

Tn−kT ∗) = 0. Thus (−1)n−1n(λ)n−1(T ∗T − TT ∗) +
n−2∑

k=1

(−1)k
(
n
r

)
(λ)k(T ∗Tn−k −

Tn−kT ∗) = 0. Put λ = reiθ, 0 ≤ θ ≤ 2π, r > 0, we get

(−1)n−1n(reiθ)n−1(T ∗T − TT ∗) +
n−2∑

k=1

(−1)k
(
n
k

)
(reiθ)k(T ∗Tn−k − Tn−kT ∗) = 0.

So (−1)n−1(T ∗T − TT ∗) + 1
n(reiθ)n−1 (

n−2∑

k=1

(−1)k
(
n
k

)
(reiθ)k(T ∗Tn−k − Tn−kT ∗)) = 0.

Let r −→ ∞. Then T ∗T − TT ∗ = 0. Hence T is normal. The converse is
trivial.

Proposition 2.20. Let T ∈ B(H) with the Cartesian decomposition
T = A + iB where A and B are selfadjoint operators. Then T is 2-normal
operator if and only if B2 commutes with A, and A2 commutes with B.

Proof. Suppose B2A = AB2 and A2B = BA2. Then T 2T ∗ = (A + iB)2(A −
iB) = (A2+iAB+iBA−B2)(A−iB) = A3−iA2B−B2A+iB3+iABA+AB2+
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iBA2+BAB and T ∗T 2 = A3−AB2+iA2B+iABA−iBA2+iB3+BAB+B2A.
Since B2A = AB2 and A2B = BA2, T 2T ∗ = T ∗T 2. Hence T is 2-normal.
Now let T be 2-normal. So T 2T ∗ = T ∗T 2. Hence −B2A + iBA2 − iA2B +
AB2 = −AB2 + iA2B − iBA2 + B2A, (AB2 − B2A) + i(BA2 − A2B) = 0.
Let T1 = AB2 − B2A, T2 = BA2 − A2B. Then T ∗

1 = −T1, T ∗
2 = −T2 (i.e.,

T1, T2 are skew hermition) and T1 + iT2 = 0. So −T1 + iT2 = 0. This gives
T1 = AB2 −B2A = 0. Similarly, B2A = AB2.

It is clear that a 2-normal operator is a 2k-normal operator and a 3-normal
operator is a 3k-normal operator. The following examples show that a 2-normal
operator need not be 3-normal operator and vice versa.

Example 2.21. Let T =

(
2 1
0 −2

)
. Then T 2 =

(
4 0
0 4

)
is a normal

operator. But T 3 =

(
8 4
0 −8

)
is not normal. So T is 2-normal but it is not

3-normal.

Example 2.22. Let T =

(
2 2
−2 0

)
. Then T 3 =

( −8 0
0 −8

)
is a normal

operator. But T 2 =

(
0 4
−4 −4

)
is not normal. So T is 3-normal but it is

not 2-normal.

Proposition 2.23. Suppose T is both k-normal and (k + 1)-normal for
some positive integer k. Then T is (k + 2)-normal. And hence T is n-normal
for all n ≥ k.

Proof. Since T is k-normal, T kT ∗ = T ∗T k. Hence TT kT ∗T = TT ∗T kT . So
T k+1T ∗T = TT ∗T k+1. Since T is (k + 1)-normal, T ∗T k+2 = T k+2T ∗. Thus T
is (k + 2)-normal.

Corollary 2.24. If T is 2-normal and 3-normal, then T is an n-normal for
all n ≥ 2.

The following example shows a 2-normal and 3-normal operator may not
be normal.

Example 2.25. Let T =

(
0 0
a 0

)
be an operator acting in two-dimensional

complex Hilbert space. Then T is 2-normal, 3-normal, and hence it is n-normal
for all n ≥ 2 but it is not normal.

Proposition 2.26. Suppose T is a k-normal operator for a positive integer
k and it is a partial isometry. Then T is a (k+1)-normal operator. And hence
T is n-normal for all n ≥ k.
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Proof. Since T is partial isometry, TT ∗T = T by [5, p.250]. Hence TT ∗T k =
T k and T kT ∗T = T k. Since T is k-normal, T k+1T ∗ = T k and T ∗T k+1 =
T k. Thus T k+1T ∗ = T ∗T k+1. Therefore T is (k + 1)-normal. And hence by
Proposition 2.23 T is n-normal for all n ≥ k.

Corollary 2.27. If T is 2-normal and partial isometry, then T is n-normal
for all integer n ≥ 2.

We note that, in Example 2.25 if a equal to 1, then T is a 2-normal operator
and a partial isometry but not normal.

Lemma 2.28. Let T be k-normal and (k + 1)-normal. If either T or T ∗ is
injective, then T is normal.

Proof. Since T is (k +1)-normal, T k+1T ∗ = T ∗T k+1. And since T is k-normal,
T k+1T ∗ = T kT ∗T . Hence T k(TT ∗ − T ∗T ) = 0. Since T is injective, TT ∗ −
T ∗T = 0. Thus T is normal. In case T ∗ is injective, since T ∗ is k-normal and
(k + 1)− normal, T ∗ is normal. Hence T is normal.

Proposition 2.29. Let T =

(
a b
c d

)
where a, b, c, d ∈ C. Then T is

2-normal if and only if (a + d) = 0 and (|b| = |c| or b(d− a) = c(d− a)).

Proof. Suppose T =

(
a b
c d

)
is 2-normal. Then T 2 =

(
a2 + bc ab + bd
ac + dc cb + d2

)

is normal. Hence |ab + bc| = |ac + dc| and (ab + bd)((cd + d2) − (a2 + bc)) =
(ac + dc)((cb+d2)−(a2+bc)). Since |b(a+d)| = |c(a+d)| and b(a+d)(cb+d2−
a2−bc) = c(a + d)(cb+d2−a2−bc), |b||a+d| = |c||a+d| and b(a+d)(d2−a2) =
c(a + d)(d2 − a2). Hence |b||a + d| = |c||a + d| and b(a + d)(d − a)(d + a) =
c(a−d)(d−a)(d+a). So |b||a+d| = |c||a+d| and b(d−a)|a+d|2 = c(d−a)|a+d|2.
Thus |b| = |c| or |a + d| = 0 and b(d− a) = c(d− a) or |a + d|2 = 0.

By giving similar arguments that in the last Proposition one can prove the
following.

Proposition 2.30. Let T =

(
a b
c d

)
where a, b, c, d ∈ C. Then T is

3-normal if and only if (a2+bc+ad+d2) = 0 and (|b| = |c| or c(d−a) = b(d−a).

Next, we characterize when a two-dimensional upper triangular complex
matrix is n-normal.

Proposition 2.31. For n ≥ 2 we have T =

(
a b
0 c

)
is n-normal if and

only if b(an−1 + an−2c + ... + cn−1) = 0.
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Proof. Let T =

(
a b
0 c

)
. Then T is n-normal if and only if

T n =

(
an b(an−1 + an−2c + ... + cn−1)
0 cn

)
,

is normal if and only if | b(an−1 + an−2c + ... + cn−1) |= 0 if and only if
b(an−1 + an−2c + ... + cn−1) = 0.

Example 2.32. Consider n = 3 in the last Proposition. Then T is a 3-
normal operator if and only if b(a2 + ac + c2) = 0. Take a = 2, b = 1,

and c = −1 +
√

3i. Then T =

(
2 1

0 −1 +
√

3i

)
is 3-normal. Note that

T 3 =

(
8 0
0 8

)
is normal. Thus T is 3-normal.

We note that by use the last Proposition we may get an n-normal operator
but not normal.

Proposition 2.33. Let T ∈ B(H), F = T n + T ∗, and G = T n − T ∗. Then
T is an n-normal operator if and only if G commutes with F .

Proof. FG = GF if and only if (T n + T ∗)(T n − T ∗) = (T n − T ∗)(T n + T ∗) if
and only if T 2n− T nT ∗ + T ∗T n− T ∗2 = T 2n + T nT ∗− T ∗T n− T ∗2 if and only
if T nT ∗ − T ∗T n = 0 if and only if T is an n-normal.

Proposition 2.34. Let T ∈ B(H), B = T nT ∗, F = T n + T ∗, and G =
T n − T ∗. If T is an n-normal, then B commutes with F and G.

Proof. Since T is an n-normal, BF = T nT ∗(T n + T ∗) = T nT ∗T n + T nT ∗T ∗ =
T nT nT ∗+T ∗T nT ∗ = (T n +T ∗)T nT ∗ = FB. By similar way we can prove that
BG = GB.

Proposition 2.35. Let T be a weighted shift with nonzero weights {αk}∞k=0.
Then T is n-normal if and only if | αk−n | ... | αk−1 |=| αk | ... | αk+n−1 | for
k = n, n + 1, ....

Proof. Let {ek}∞k=0 be an orthogonal basis of Hilbert space H. Since T nek =
αk...αk+n−1

ek+n and T ∗nek = αk−1...αk−nek−n, T nT ∗nek =| αk−1 |2 ... | αk−n |2 ek and
T ∗nT nek =
| αk |2 ... | αk+n−1 |2 ek. Thus T n is normal if and only if | αk |2 ... | αk+n−1 |2=|
αk−1 |2 ... | αk−n |2 for k = n, n + 1, ....

Proposition 2.36. Let T ∈ B(H) be an n-normal operator and invertible.
Then T and T−1 have a common nontrivial closed invariant subspace.
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Proof. . Since T is n-normal and invertible, T n and (T−1)n are normal. Hence
by [1, Corollary 4.5] T n and (T−1)n both have no hypercyclic vector. Thus by
[7], T and T−1 both have no hypercyclic vector. Therefore by [2], T and T−1

have a common nontrivial closed invariant subspace.

Let λ be the coordinate in C and dµ(λ), denotes planar Lebesgue measure.
Let D be a bounded open subset of C. We shall denote by L2(D,H) the
Hilbert space of measurable function f : D −→ H such that

‖f‖2,D = {∫
D
‖f(λ)‖2dµ(λ)} 1

2 < ∞.

The space of functions f ∈ L2(D,H) that are analytic in D (i.e., ∂f = 0) is
denoted by

A2(D, H) = L2(D,H)∩Ô(U,H).

A2(D, H) is called the Bergman space for D.
Let D be a bounded open subset of D and m a fixed non-negative integer. The
vector valued Sobolev space Wm(D, H) with respect to ∂ and of order m will
be the space of those functions f ∈ L2(D, H) whose derivatives ∂f, ..., ∂mf in
the sense of distributions also belong to L2(D, H). Endowed with the norm
‖f‖2

W m =
∑m

i=0 ‖∂if‖2
2,D. Wm(D,H) becomes a Hilbert space contained con-

tinuously in L2(D, H).

Theorem 2.37. Let D be an arbitrary bounded disk in C. If T ∈ B(H) is
2-normal with the property that σ(T ) ∩ (−σ(T )) = ∅, then the operator

λ− T : W 2(D, H) −→ L2(D,H)

is one to one.

Proof. Let f ∈ W 2(D,H) such that (λ− T )f = 0 i.e.,

‖(λ− T )f‖W 2 = 0. (1)

Then, for i = 1, 2, we have

‖(λ− T )∂if‖2,D = 0. (2)

Hence for i = 1, 2, we get ‖(λ2 − T 2)∂if‖2,D = 0. For i = 1, 2. Since T 2 is
normal,

‖(λ2 − T ∗2)∂if‖2,D = 0. (3)

Since λ−T is invertible for λ ∈ D\σ(T ), the equation 2 implies that ‖∂if‖2,D\σ(T ) =
0. Therefore

‖(λ− T ∗)∂if‖2,D\σ(T ) = 0. (4)
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Since σ(T )∩(−σ(T )) = ∅ and σ(T ∗) = σ(T )∗, λ+T ∗ is invertible for λ ∈ σ(T ).
therefore, from equation 3, we have

‖(λ− T ∗)∂if‖2,σ(T ) = 0. (5)

Hence from 4 and 5, we get

‖(λ− T ∗)∂if‖2,D = 0. (6)

By [6, Proposition 2.1], we obtain

‖(I − P )f‖2,D = 0, (7)

where P denotes the orthogonal projection of L2(D,H) onto the Bergman
space
A2(D, H). Hence (λ−T )Pf = (λ−T )f = 0. Since T has SVEP, f = Pf = 0.
Hence λ− T is one to one.

Lemma 2.38. Let T ∈ B(H) be an 2-normal operator with property for
σ(T ) ∩ (−σ(T )) = ∅. If V is an isometry, then the operator
λ− V TV ∗ : W 2(D,H) −→ L2(D, H) is one to one. ¥

Proof. Let f ∈ W 2(D, H) such that (λ− V TV ∗)f = 0. Then(λ− T )V ∗f = 0.
Hence for i = 0, 1, 2 (λ − T )V ∗∂if = 0. By Theorem 2.37, for i = 0, 1, 2,
V ∗∂if = 0. Hence for i = 0, 1, 2, V TV ∗∂if = 0. Thus λ∂if = 0 for i =
0, 1, 2. By [6, Proposition 2.1] with T = (0), we get ‖(I − P )f‖2,D = 0,
where P denotes the orthogonal projection of L2(D,H) onto the Bergman
space A2(D,H). Hence λf = λPf = 0. By [4, Corollary 10.7], there exists a
constant c > 0 such that

c‖Pf‖2,D ≤ ‖λPf‖2,D = 0. So f = Pf = 0. Thus λ− V TV ∗ is one to one.

Proposition 2.39. Let T ∈ B(H) be an n-normal operator. If T is
quasinilpotent, then T is nilpotent, and hence T is subscalar.

Proof. Since T is quasinilpotent, σ(T ) = {0}. Hence by the spectral mapping
theorem we get σ(T n) = σ(T )n = {0}. Thus T n is quasinilpotent and normal.
So T n = 0 i.e., T is nilpotent and T is algebraic operator and hence by [3], T
is subscalar.

Proposition 2.40. Let T ∈ B(H) be a 2-normal Operator with the property
that σ(T ) ∩ (−σ(T )) = ∅. Then T is subscalar of order 2.
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Proof. Consider an arbitrary bounded disk D ⊂ C which contains σ(T ) and
the quotient space H(D) = W 2(D,H)/(λ− T )W 2(D, H) endowed with the
Hilbert space norm. The class of a vector or an operator A on H(D) will
be denoted respectively by f̃ , Ã. Let M be the operator of multiplication by
λ on W 2(D, H). Then M is a scalar operator of order 2 and has a spectral
distribution φ. Let S = M̃ . Since (λ − T )W 2(D, H) is invariant under every
operator Mf , f ∈ C2

0(C), we infer that S is a scalar operator of order 2 with
spectral distribution φ̃.
Consider the natural map V : H −→ H(D) denoted by V h = ˜1⊗ h, for
h ∈ H, where 1⊗ h denotes the constant function sending λ ∈ D to h. Then
V T = SV . In particular R(V ) is an invariant subspace for S. Now we shall
prove that V is one to one and has closed range.
Let {hn}, {fn} be sequences respectively in H, W 2(D,H) such that

lim
n−→∞

‖(λ− T )fn + 1⊗ h‖W 2 = 0. (8)

It suffices to show that limn−→∞ hn = 0.
By the definition of the norm of Sobolev space 8 implies that

lim
n−→∞

‖(λ− T )∂ifn‖2,D = 0. (9)

limn−→∞ ‖(λ− T )∂ifn‖2,D = 0 Since T 2 is normal, for i = 1, 2

lim
n−→∞

‖(λ2 − T ∗2)∂ifn‖2,D‖∂ifn‖2,D = 0. (10)

Since λ−T invertible for λ ∈ D\σ(T ), 9 implies that limn−→∞ ‖∂ifn‖2,D\σ(T ) =
0. Therefore

lim
n−→∞

‖(λ− T ∗)∂ifn‖2,D\σ(T ) = 0. (11)

Since for σ(T ) ∩ (−σ(T )) = ∅ and σ(T ∗) = σ(T )∗, λ + T ∗ is invertible for
λ ∈ σ(T ). Therefor from 10 we have

lim
n−→∞

‖(λ− T ∗)∂ifn‖2,σ(T ) = 0. (12)

Hence by 11 and 12 we get

lim
n−→∞

‖(λ− T ∗)∂ifn‖2,D = 0. (13)

By [6, Proposition 2.1], we obtain

lim ‖(I − P )fi‖2,D = 0, (14)

where P denotes the orthogonal projection of L2(D,H) onto the Bergman
space
A2(D, H). Substituting 14 into 8, we get limn−→∞ ‖(λ−T )Pfn+1⊗hn‖2,D = 0.
Let Γ be a curve in D Surrounding σ(T ). Then for λ ∈ Γ
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limn−→∞ ‖Pfn(λ) + (λ− T )−1(1⊗ h)‖ = 0

uniformly. Hence by Riesz-Dunford functional

limn−→∞ ‖ 1
2πi

∫
Γ
Pfn(λ)dλ + hn‖ = 0.

But since 1
2πi

∫
Γ
Pfn(λ)dλ = 0, by Cauchy’s theorem calculus, limn−→∞ hn = 0.

Thus V is one to one and has closed range.
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