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Abstract

Due to the fact that systems of nonlinear equatiarise frequently in science and
engineering, they have recently attracted reseagihaterest. In this work, we present a
new Newton-like approach which is independent ofction evaluation and has been
provided using an original idea that improves sodefinitions and notions of a recently
proposed method [1] for solving systems of nonlinddso, the convergence of proposed
method has been discussed. The computational ay@mtand convergence rate of the
proposed method are also tested via some numeegpériments. From the obtained
numerical results it seems that present approaéécatonsiderably the overall performance
in relation to Newton's method and its aforemerdtmariants.

Keywords lterative methods, System of nonlinear equatibiesyton’s method

1 Introduction

Let us consider the problem of finding a real zesayx™ =(x},x,....,X,), of a system of
nonlinear equations

" Corresponding author



An Improved Newton's Method Without Di.... 65

f(X Xy, %,)=0, (1)

This system can be referred bgt) =0, wherer =(f,,f,,...,f,):D OR" - R" iS continuously
differentiable on an open neighborhobd O D of x".

The most widely used iterative scheme for solviygteams of nonlinear equations is
Newton’s method, giving by

xPh=xP - F(x") T R(x"), (2)
Where F'(x®*)* denote the Jacobian matrix at the current apprdiama
xP =(xP,x0,...,xP)and x** is the next approximation. It is well known thaetmethod has

guadratic convergence.

Since there exists no general method that yieldexaat solution of (1), in recent years, a
large number of algorithms and methods of solutiohdifferent orders have been derived
and studied in the literature. These attempts amgiderations are mainly because of their
numerous influences and applications in real apptios such as in science and engineering
[2, 3].

Some approaches to solving such systems were mopassng decomposition method [4],
guadrature formulas [5, 6] and other techniques8].7,

In some cases, we may encounter with differentiofd(1), while the nonlinear system is
known with some precision only, for example whee fianction and derivative values
depend on the results of numerical simulations §@]jn some cases the precision of the
desired function is available at a prohibitive costvhen the function value results from the
sum of an infinite series (e.g. Bessel or Airy fumes [10, 11]).

In [12] a method without evaluation of nonlineandtion values is proposed which can be
applied for polynomial systems. Also, these methard@sideal for situations with unavailable
accurate function values or high computational b3}

So, it is very important to obtain methods whiclk &ee of function evaluations, i.e., the
required function values are not directly evaluafesin the corresponding component
functionsf, but are approximated by using appropriate quastiie have recently used in so-
called IWFEN method [1].

Here, we generalize some used definitions in IWHREBBthod and then by using a new
geometrical interpretation a method which is a newroved Newton’s method without
direct function evaluations is presented.

The rest of this contribution is structured asda#. In Section 2, we develop the new
method and its convergence theorem is proved. Soumerical examples and some
comparisons between the results of different amtres and our proposed method are given
in Section 3. Finally, conclusions are drawn intieec4.

2 New Approach to the Solution of the Problem

To develop a new method, let us have the follovdafjnition of pivot points which extends
the corresponding existing ones.



66 Behzad Ghanbari et al.

Definition 1. For anyi 0{12,.. n} andp=12,..and based om-1components of current
point x?, we generalize the definition of pivot points 1 [

X P = (P XxE L xP L, xPT) 3)

pivot

as its new following form

X oot = (X2 XD o XP X XP). 4)

It is obvious that the only difference between @eifiinition (4) and (3) is that in (3)i) has
considered to be the fix value of but in our definitiorj () 3{1,2.... n} is not known in prior
and should be obtained in such way that will beoithticed later.

Moreover, we impose the pivot points (4) to be beda parallel line toj( ) axis, which
passes through the current point any iterationp of the algorithm. From the definition of

the pivot points, it is obvious, that these poihtsse the same-1components with the
current pointx® and differ only at thg () th component.

Definition 2. Let’s define the functiong;,:R - R, as

gjp(ii)(t) =f (X7, x5, ij( yu b )fpi( i X7 %0 (5)

From (5) and the imposed property to pivot poirs (t is evident that the unknowri ) -th
component of (4%°,, can be found by solving each of the correspondimg dimensional
equations

g jp(ii) (t)=0 (6)

According to Implicit Function Theorem [14] thergigt unique mappingg such that
Xio) =@ (¥).f (v:¢ (y)) =0and therefore

X7i, =@ (y").

Wherey =(X,, X0 s X g0 X {yerree s %10 % )-

Similar in [1], in this paper the sign-function lkdsmethod [15] is used for solving the
corresponding one-dimensional equations.

It is clear that the solution of (6) is dependimgtbe expression of the componentand the
current approack’ . That is, if any of the Eq. (6) has no zeros, werat able to apply our
proposed method on a system of equations. Heraélasito what was discussed in [1], we
can adopted some techniques to guarantee the reastef pivot points. For example
choosing a linear combination between the compenkke in [16] or applying either a
reordering technique like in [17]). For the neefishts work we consider that we are always
able to find the zeros of (6) is possible.

The key idea in this paper is to substitute the cfion value of
F(x?)=(f,(x"), f,(x?),....f._,(x"), f (x*)), in Newton’'s method (2) to the its suitable
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approximation. Hence, let us use the first ordeagldr expansion of’ around the point
t=x’ as

dgP 7
K + ot (X0 (= ). (7)

i) J()

gr =g

J() J()

Settingt =x"' at (7) and in view of (5), we have

gr (i) = (x")+0, (£ (X")(%%,— X)) (8)

i)

Due to the property of pivot points (i€ (x/;,) =0, the relation (8) becomes

f(x")=0;)f (X")(XE = %) 9)

The relation (9) is so important for the developtr&rour approach, because using (9) in (2)
will transform it to a new Newton's method, whiclilwmot depend directly on the function
values, (x?), but ono, ,,f, (x") and the n-th components of the poirtsanadx?,, .

In Fig. 1, we can see the behavior of functgqn (t) for anyj()0{1,2... n}. If we bring from
the pivot pointB =(x", ,.0) , the parallel line to the tangent of the functiah the
pointP =(x?;,.f (x")). From the similar triangles, the function valyg®), denoted by the
segment AP, can be approximated by the quadijty (x")(x7,-x" ), denoted by the

i€)
segment AQ. This plot can give us a good idea tsh a suitable dlrection ofi ) .Using
similarity in triangles, it can be verified that aiever segment BC has a fewer length, the
approximationd, ,,f, (x”)(x", -x" )mstead off, (x)is more valid. So, we should choose that

direction j (i) which minimizes the expression

R (10)

BC p.
| | 1() J(If (Xp) @)

From triangular inequality in (10), we have

f.(xP) (11)

J(l f (Xp)

. 1o f(xP)
It is clear that, the expressipn-
0,,fi (xP)

achieves its maximum value.
Hence, in this paper we lg{i)=J whereas for anyd{1.2...,n}, J be the smallest index

which we hav@,f, (x*)|=|9,f, (x*)|, i.e. that direction which has the steepest siopeng the

components of the gradient vector of functiorat the poink® .
Now, using (9) in Newton method (2), we have

|BC| < ‘X; oo XJp(II)‘

minimizing whenever the numerator expression

V (XP)L(xP)+ F(x")(x= x")=0 (12)
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Where

0, of,(x") 0 0 X 0 ~ay"®) X~ %’

0 0 XP) ... —a(y") | _ Xy~ %y

xP
V(x")= and L(x*)=|"'®

0 0 o 0 7)) Xy =AY ") | | Xy = Xfim)

Under the assumptions of Implicit Function Theord® diagonal matrix (x?) is invertible
and (12) becomes

V (XP) TR (xP)(x= xP) == L(xP)
Now, we consider the function

L(X)=(Xj(1)_¢?(Y)vXj(2)_(p2(Y) aaaaa )ﬁo)_#(Y))T (13)

Utilizing again the Implicit Function Theorem torde o, ¢ (x) , we have

[ 0,f,(x) 0,f,(x) 1 d,f,(x) i (14)
9;f1(X) 0, of1(X) 9,y (%)
0,00 L ahe) 80K
L'(x) =] 0;f 2(x) 0;5f(x) 0, yf(x) | =V (X)*F'(x),
01,00 08,00 ARG
95mfa(X) 0jm)fa(X) 05 fa(X) |

Where the entries af occur atj (i ) -th column fori -th row.
Finally, Eqgs. (13) and (14) introduce iterative heat given by

xPh=xP—L'(x")L(x"), (15)
A similar convergence theorem to what stated ing¢ap be presented and proved, as follows.

Theorem 1.Let F =(f,,f,,...,f,):D OR" - R"be sufficiently differentiable at each point of an
open neighborhoo® ofx" OR", that is a solution of the systé&rx) =0. Let us suppose that
F'(x) is continuous and nonsingular . Then the sequende*} obtained using the

iterative scheme (14) for sufficiently close idigess°, converges tx” with convergence
order of two.

Proof. Using the mapping=(,,l,,...|,) :D OR" - R", where

(<) =x, —@(y)
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The iteration of our method is given By™ =x?-L'(x?)™*L(x") For the above mapping the
well-known conditions of Newton's theorem (see ]1atfe obviously fulfilled because of the
form of L'(x), stated in (14) and the property of pivot poir}s-¢, (y'),for i =1,2,..n. The
convergence theorem for mappingis proved, and the iterations of (15) converge to
x" quadratic ally.]

Using this proposed idea, we may expect that ouhadewill have better convergence than
the method of IWFEN method. The results of expentsan Section 3 will confirm this
conjecture.

Also, it should be pointed out that the proposed peocedure remains the cost of IWFEN
method. This is because of it does not need momgpuatational cost, since the used new
partial derivatives have already been evaluatedercorresponding Jacobian matrix.

3 Numerical Examples

In this section, we perform some numerical expenitsidor testing the convergence of the
iterative method proposed in the previous section.

In order to compare the results, we take the sa@amples which were used in [1]. In Tables
1-2, we present the results obtained, for varioitgal points by Newton’s method, IWFEN
and our new proposed method.

Example 1.The first system has two roos = (0.1,0.1,0.1andx; = (-0.1,-0.1- 0.1. It is given
by:

fl(Xl’XZ’ X3) = Xi — X X, %, =0,

(X X5 X5) = X22_ X X3=0,

fa(Xy, X5, X5) =10X, X3+ X,— X~ 0.1= 0

Example 2.The second example is

f (X1 X2, X5) = X X = X3é12 +10* =0,
Fo (X1 X0 X5) = X, + X5)+ (%= %) =0,

fL(Xy, X5, Xg) = X+ X3=0.

With the solutiorx™ = (-0.999900k% 13 - 0.9999081 10 ,0.9999801*1l.

Results were obtained by using Maple software \0adbyit floating point arithmetic
(Digits:=30). The iterative process will stop if

"X K+l _ X k " <107

From Tables 1-2, we see that the results of comipatdor the proposed iterative method
admit the theoretical order of convergence in Taeof. Furthermore the proposed iterative
method converges much faster than the other compae¢hods.
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Q :(‘x 7(1)’ a/“)f, (X ! )(Xl/(ll)) *X//-’“)))
» P =] fi(x")
1\ 4 =(x7),0)
B =(X i 00,0)
_per _ &")
Q ‘é_(”’éwﬂuw )
A B c
Fig 1. The behavior of functiogli”(;‘) (t)
Tablel
Comparison between different methods for example 1.
x? X3 X3 Newton IWFEN Present Method
IT FE X, IT FE X, IT FE X,
04| 05| 05| 53| 636 x, 20 240 X, 16 144 X,
-4 -2 1 33| 396| «x, 33 396 X, 23 207 X,
-1 -2 | 06| 51| 612 «x, 51 612 X, 10 90 X,
-1 -2 1 29 | 384| «x, 29 384 X, 19 171 X,
0.5 2 1 54| 648 x; 54 648 X, 18 162 X,
5 -2 -2 38| 456| x; 38 456 X, 18 162 X,
10 -2 -2 39| 468 «x; 39 468 X, 33 297 X,
Table2
Comparison between different methods for example 2.
x? X3 xJ Newton IWFEN Present Method

T FE T FE T FE
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2 2 2 42 504 38 342 12 108
-2 -2 -2 27 324 27 243 7 63
3 3 5 92 1104 18 162 24 216
4 4 4 73 876 26 234 27 243
0.5 0.5 0.5 46 552 32 288 7 63
1 1 5 37 444 37 333 11 99
-4 -1 -2 28 336 26 234 17 153

4 Conclusion

In this paper we present a generalization of améc@roposed variant of Newton's method
for solving nonlinear systems. This new method th&sorder of convergence two and is
independent of function evaluation. Also, the prisgob method can be used in some systems
where the function calculations are quite costlycannot be done precisely. As seen in
Tables [1-2], the numerical results of the proposexthod are quite satisfactory and admit
the geometrical explanations. In some cases thdtsesf ourselves are very acceptable and
there is a sufficient reduction on the number efations and hence the proposed method
seems to be a reliable refinement for Newton’s wetind some its recent modifications.
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