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Abstract 

     A result of Brain Fisher is extended to two pairs of self-maps through the 
notions of weak compatibility and property EA.  

     Keywords: Compatible self-maps, weakly compatible self-maps, property EA 
and common fixed point.      

 

1 Introduction 
 
In 1976 Brian Fisher [2] proved the following: 
 
Theorem 1.1: Let A be a self-map on a complete metric space X satisfying the 
contractive type inequality 
 
   ( ) ( ) ( ) ( ) ( )AxydAyxcdAyydAxxdbAyAxd ,,,,,2 +≤  for all Xyx ∈, ,  ...      (1.1) 
 
where 1,0 <≤ cb . Then A has a unique fixed point. 
 
In this paper we extend Theorem 1.1 to two pairs of self-maps using the notion of 
property EA and weakly compatible maps (cf. Section 2 below). 
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2 Preliminaries 
 
In this paper X denotes a metric space with metric d. Self-maps A and S are 
commuting if ASx = SAx for all x ∈ X.  
 
Definition 2.1: A and S are compatible [3] if  
 
 ( ) 0,lim =

∞→ nnn
SAxASxd       …     (2-a)  

 
whenever ∞

=1}{ nnx  is a sequence in X such that  

 
 zSxAx nnnn

==
∞→∞→

limlim        …     (2-b)  

 
for some Xz∈ .  
 
Note that every commuting pair is compatible. That is compatibility is weaker 
than the commutativity. However, a compatible pair is commuting (cf. [3]). 
 
By altering the asymptotic condition (2-a), later various types of compatibility                
like A- and S-compatibilities [9], Compatibility of type A (cf. [5]), type B (cf. [8]),  
type C (cf. [7]), type E (cf. [11]) and type P (See [6]) were developed in solving 
certain functional equations that arise dynamical programming. A nice compa-
rative survey among these types of compatibility was done in [9] and [12]. 
   
Definition 2.2: Self maps A and S on X satisfy property EA [1] if there exists a 
sequence { }

1=
∞

nnx  in X with the choice (2-b) 

Obviously compatible and noncompatible pairs satisfy the property EA.  
 
Definition 2.3: Self maps A and S are weakly compatible [4] if they commute at 
their coincidence points.  
 
It was shown that every compatible pair is weakly compatible but the converse is 
not true [4], and the notions of weakly compatibility and property EA are 
independent [10]. 
 

3 Main Result and Remarks 
 
Theorem 3.1: Let A, B, S and T be self-maps on X satisfying the inclusions 
 
 )()( XTXA ⊂ and )()( XSXB ⊂     ...        (3) 
 
and the inequality 
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 ( ) ( ) ( ) ( ) ( )AxTydBySxcdTyBydSxAxdbByAxd ,,,,,2 +≤  
  
      for all Xyx ∈, , ...         (4) 
 
with the same choice of the constants b and c as in Theorem 1.  
 
If one of S(X) and T(X) is complete and 
  
 (a)  Either (A, S) or (B, T) satisfies property EA 
 (b) The pairs (A, S) and (B, T) are weakly compatible.  
 
Then A, B, S and T have a unique common fixed point. 
 
Proof. Suppose that A and S satisfy the property EA. By the 
inclusion )()( XTXA ⊂ , we can find another sequence { }

1=
∞

nny in X such that  

 
Axn = Tyn for all n so that from (2-b)  
 
 .limlimlim zTySxAx nnnnnn

===
∞→∞→∞→

     …         (5) 

 
Let q = nn

By
∞→

lim . We prove below that q = z. 

 
Writing x = xn and y = yn in the inequality (4), we get 
 
 ( ) ( ) ( ) ( ) ( )nnnnnnnnnn AxTydBySxcdTyBydSxAxdbByAxd ,,,,,2 +≤ . 
 
Applying the limit as n → ∞ in this and using (5) it follows that 
 

( ) 0.0.,2 cbqzd +≤  so that d2(z, q) = 0 or d(z, q) = 0. That is, q = z.  
 
Hence  zByTySxAx nnnnnnnn

====
∞→∞→∞→∞→

limlimlimlim .   …        (6) 

 
Similarly we can prove (6) if the pair (B, T) satisfies the property EA. 
 
Case A: Suppose that T(X) is complete subspace of X.  
 
Note that { }

1=
∞

nnTy  is Cauchy and convergent sequence in T(X). Therefore z ∈ T(X). 

That is z = Tq for some q ∈ X. Now we show that q is a coincidence point of B 
and T. 
 
Taking x = xn and y = q in the inequality (4) and using (6) we get 
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 d2(Axn,Bq) ≤ b.d(Axn,Sxn) d(Bq,Tq) + c.d(Sxn,Bq)d(Tq,Axn)  
 
or  d2(Tq, Bq) ≤ b.0 + c.0 = 0. 
                                                          
Hence Tq = Bq, that is q is a coincidence point of T and B. 
 
Again )()( XSXB ⊂  implies that Bq ∈ S(X) or Bq = Sr for some r ∈ X. 
 
Then from the inequality (4) with x = r, y = q we get  
 
 d2(Ar,Bq) ≤ b.d(Ar,Sr)d(Bq,Tq) + c.d(Sr,Bq)d(Tq,Ar). 
 
Using Bq = Tq = Sr in this, we see that d2(Ar,Sr)≤ 0 or Ar = Sr. Hence  
 
  Ar = Sr = Bq = Tq.        …        (7) 
 
In other words, r is a coincidence point of A and S and q is a coincidence point of 
B and T. 
 
Case B: Suppose that S(X) is complete subspace of X. 
 
Since { }

1=
∞

nnSx is a Cauchy sequence and convergent sequence in S(X) we see that 

z ∈ S(X) or z = Tp for some p ∈ X. 
 
Now we write x = xn and y = p in the inequality (4). Then  
 
 d2(Axn,Bp) ≤ b.d(Axn,Sxn)d(Bp,Tp) + c.d(Sxn,Bp)d(Tp,Axn) 
 
or d2(Tp, Bp) ≤ b.0 + c. 0 = 0  so that Tp = Bp or that p is a coincidence point of T 
and B. 
 
Again )()( XSXB ⊂ implies that Bp ∈ S(X) or Bp = Sv for some v ∈ X. 
 
Then from the inequality (4) with x = v and y = p, we get 
 
 d2(Av, Bp) ≤ b.d (Av, Sv) d(Bp, Tp) + c.d (Sv, Bp) d(Tp, Av). 
 
Using Tp = Bp = Sv, this gives  
 
 d2(Av,Sv) ≤ b.d(Av,Sv)d(Tp,Tp) + c.d (Bp,Bp) d(Tp,Av) = 0 or Av = Sv.  
 
Thus v is a coincidence point of A and S and p is a coincidence point of B and T. 
 
Since the pairs (A, S) and (B, T) are weakly compatible, we find that  
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ASr = SAr and BTq = TBq. This implies Az = Sz and Bz = Tz. 
 
Now from the inequality (4) with x = y = z, it follows that 
 
 d2(Az, Bz) ≤ b.d(Az, Sz)d(Bz, Tz) + c.d(Sz, Bz)d(Tz, Az) 
 
            ≤ b.d (Sz, Sz)d(Tz, Tz) + c.d (Az, Bz) d(Bz, Az)  
 
⇒ (1 – c) d2(Az, Bz) ≤ 0  ⇒ d2(Az, Bz) = 0  or     Az = Bz. 
 
Thus   Az = Sz = Bz = Tz       …        (8) 
 
Now we prove that Az = z. 
 
From the inequality (4) with x = z and y = q, we have 
  
 d2(Az, Bq) ≤ b.d(Az, Sz)d(Bz, Tq) + c. d(Sz, Bq)d(Tq, Az) ≤ b⋅0 + c.d2(Az, z)  
 
⇒  (1 – c) d2(Az, z) ≤ 0 or Az = z. 
 
Hence Az = Sz = Bz = Tz = z. Thus z is a common fixed point of A, S, B and T. 
 
Uniqueness: Let z, z′ be two common fixed points of A, S, B and T. 
 
From the inequality (4) with x = z and y = z′, we get  
 
d2(Az, Sz′) ≤ b.d(Az, Sz)d(Bz′, Tz′) + c.d(Sz, Bz′)d(Tz′, Az) ≤ 0 + c.d(z, z′)d(z′,z) 
 
or  d2(z, z′) ≤ c.d2(z, z′) so that z = z′. 
 
Hence the fixed point is unique. 
 
Remark 3.1: Writing B = A and S = T = I, the identity map on X in Theorem 3.1, 
we get (1) from (4) as a special case. It is also known that the identity map 
commutes and hence is weakly compatible with every map. Further from the 
proof of Theorem 1.1, the sequence { }

1=
∞

n

nxA  is Cauchy for each x ∈ X. Therefore 

if X is complete, this converges to some z ∈ X and its convergence is equivalent to 
the property EA of the pair (A, I), that is the condition (a) of Theorem 3.1. 
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