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Abstract

The nullity (degree of singularity)(G) of a graph G is the multiplicity of zero
as an eigenvalue in its spectrum. It is proved ttia¢ nullity of a graph is the
number of non-zero independent variables in anysdfiigh zero-sum weightings.
Let u and v be nonadjacent coneighbor vertices @banected graph G, then
n(G) =5n(G-u) + 1 = y(G-v) + 1. If G is a graph with a pendant vertex@rtex
with degree one), and if H is the subgraph of Gamled by deleting this vertex
together with the vertex adjacent to it, theG) = »(H). Let H be a graph of
order n and G, G,,..., G, be given vertex disjoint graphs, then the expanded
grapht %' is a graph obtained from the graph H by replacegagh vertexwof H
by a graph Gwith extra sets of edges; ®r each edge;v of H in which § =
{uw: uev(G), weV(G)}. In this research, we evaluate the nullity opamrded
graphs, for some special ones, such as null grapbsjplete bipartite graphs,
star graphs, complete graphs, nut graphs, pathd,@mles.

Keywords: Graph Theory, Graph Spectra, Nullity of a Graph.

I Introduction

A graph G is said to besangular graph provided that its adjacency matrix A(G)
is a singular matrix. The eigenvalugs A, ...A, of A(G) are said to be the
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eigenvalues of the graph G, which form the spectains. The occurrence of
zero as an eigenvalue in the spectrum of the g@aphcalled itsullity (degree
of singularity) and is denoted by(G). See [1] and [3].

Definition 1.1[2, 5, 7]A graph G is said to bg -singular or the nullity of G ig,
abbreviated;(G) or 7 if, the multiplicity of zero (as an eigenvalue)SiG) is 7.

Definition 1.2[2] A vertex weighting of a graph G is a function f: V(G:LR
where R is the set of real numbers, which assigreabnumber (weight) to each
vertex.

A weighting of G is said to b®on-trivial if there is at least one vertex/NV(G)
for which f(v)=O0.

Definition 1.3[2] A non-trivial vertex weighting of a graph G is @allazero-sum
weighting provided that for eachAN(G), Zf (u)= 0, where the summation is

taken over all iNg(V).

Clearly, the following weighting for G is a nonsial zero-sum weighting, where
x and y are weights and (x, ¥)0, 0), as indicated in Fig.1.1.

Figure 1.1: A non-trivial zero-sum weighting of a graph

Definition 1.4[5] Out of all zero-sum weightings of a graph Ghigh zero-sum
weighting of G is one that uses maximum number of non-zedependent
variables, M(G) .

An important relation between the singularity ajraph, and existence of a zero-
sum weighting is, that a graph is singular iff igsesses a non trivial zero-som
weighting.[2]

Proposition 1.5[5] In any graph G, the maximum number of non-zero
independent variables in a high zero-sum weightiggals the number of zeros as
an eigenvalues of the adjacency matrix of G.

In Fig. 1.1, the weighting for the graph G is athigero-sum weighting that uses 2
independent variables, hengéi) = 2.

Let r(A(G)) be the rank of A(G). Clearly(G) = p — r(A(G)). The rank r(G) of a
graph G is the rank of its adjacency matrix A(Ghei, each ofy(G) and r(G)
determines the other.
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The nullity of some known graphs such as cycle fath B, complete K and
complete bipartite K graphs are given in the next lemma.

Lemma 1.6[5, 6, 7]

i) The eigenvalues of the cyclg &e of the form:

Zcos@, r=0,1, ..., n-1. According to this,
n
2, if n=0(mod4),
n(C,)= .
0, otherwise.

il) The eigenvalues of the path &e of the form:

Zcosn—r, r=1,2,...n. And thus,
n+1

1, if nis odd,

0, if nis even

n(F’n)={

iif) The nullity of the complete graph,Ks:

_J1 if p=1
”(Kp)"{o, it p>1

iv) The nullity of the complete bipartite graphsKis:

K )= ifr=s=1
e/ 2452 oherwise

Definition 1.7: Two vertices of a graph G are said to be of Haee type
(coneighbors) if they are not adjacent and have the same saeighbors. Thus,
the two vertices v Vv of the same type have the same row vectois= R

describing them, where ;Rnd R are thei™ and j" row vector of A(G),
corresponding to the verticesand v, , i, j =1, 2, ..., p. Each pair of such (same
type) vertices results in two dependent (coincideys which yield a zero in

spectra of the graph G. It is clear that the oceurce of m equal rows contributes
(m-1) to the nullity.

Corollary 1.8[4] (End Vertex Corollary): If G is a graph with a pendant vertex,
and H is the subgraph of G obtained by deleting thertex together with the
vertex adjacent to it, then(G) = n(H).
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Applying Corollary 1.8, several times, deletingand \srespectively is illustrated
in the next figure.

Vi 7 V3
' ./I I |
®
Vy Vg Ve A
V3
=n( e ‘ )
Vg
Vg Ve A
= (e o ¢)=3

Figure 1.2: lllustration of Corollary 1.8

So (End Vertex Corollary) is a strong tool to detere the nullity of trees.

Operations on Graphs

Many interesting graphs are obtained from combimiags (or more) of graphs or
operating on a single graph in some way. We nowudis a number of operations
which are used to combine graphs to produce new.one

Lemma 1.9[1, 3]Let G = GUG,U...UG, Where G, G, ..., Gare connected
t
components of G, thepG) =Y 7(G,)

i=1
Definition 1.10[1, 3] Thejoin G;+G; of two graphs @and G is a graph whose
vertex set, V(&G,) = V(G)WN(G,), and edge set E(G) = E(RE(G,) Auv:
for all ueG; and all veG,}.

Definition 1.11[1] The sequential join G;+Gat ... +G, of n disjoint graphs
G1,Gy,...,G is the graph (G+G2) UAG,+G3) U...UGr.1+G\) and denoted by

>G, , fori=1,2,...,n and
i=1

defined by
V(36)=U V©).EQG U EG)IY

{uv: for all ueG; and all e G4, i=1,2,...,n-1}.



On the Nullity of Expanded Graphs 101

As depicted in Fig.1.3.

Figure 1.3: The sequential join grapEGi
i=1

It is clear that, pﬁ“Gi ) = ipi , q(iGi )= iqi +n§ B R
i=1 i=1 i=1 i=1 i=1

In which p=p(G) and g=q(G).

Definition 1.12[4] Let R, be a path with vertex {yw,...,»}. Replacing each
vertex v by an empty graptN , of order p, for i=1,2,...,p and joining edges

between each vertex df, and each vertex di , for i=1,2,...,n-1, we get a
graph order p+p2+...+py, denoted byZN », - Such graph is called sequential
i=1

join.

Definition 1.13[1] Thestrong product graph GG, of G, and G, is the union
of the Cartesian product grapm&G, and the Kronecker product graph 8G..

Clearly, p(GXIG,) = p(G)p(Gz) and q(GxGy) = p(G)a(Ga)+ p(&) q(Gr) + 2
q(G) a(&).

It is apparent that KX K, =Kmn.

Results, relating the nullity of the grapl®& and G; ang their strong product
Gi1XIG;,, are not studied widely.

We conclude that, if both{&and G are singular graphs, then so id3EG,.

Definition 1.14[1] Thecorona G =G, e G, of two disjoint graph$5, and G,
is defined as the graph obtained from taking onpycof G, and p, copies of
G, , and then joining thé " vertex ofG, to every vertex in the" copy of G, .
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As illustrated in Figure 1.8, where the copiesGfare denoted bys, , G,, ...,

Gy, Vi=V(G)={% Wy} UO V(@) =, ) )} for

. P
i=12,..p,,andV (G) =V, UU®

i=1

G,

¥

1 V2

(p1)

P2

Figure 1.4:The coronaG, e G,

From the definition of the corona, it is clear thate G,is connected iff Gis
connected. Also if @contains at least one edge, tHépe G,is not bipartite
graph.

And p(Ge G,) = p(1+ p,),

q(G, e G,)=q, + p,o,+ P P, with a diameter
diam(Ge G)=diam(G)+2.

Note that G, € G,# G, e G unlesG, 0G,.

Studying the nullity of the corona graffh € G, is one of the main subjects
discussed in the present study.

Il On the Nullity of the Sequential Join of Some
Special Graphs

The nullities of the sequential join of some spegraphs, N, K s, S, K, Pn and
C, are determined in this section.
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Definition 2.1: Let the graphs ¢ G, ...,G, be given. Anexpanded graph
(expanded join graphpH (:i of a labeled graph H of vertex sei{w,,..., \}, is a

graph obtained from H by replacing each vertekwthe graph Gi =1,2,...,n,
with extra sets of edges; r each edgev of H in which § = {uw: ueG;,
weG}. We call G’'s inserting graphs and H the base graph. Thus, diuker

n n n-1
p(H (n;i ) = zpi and the sizey (H (n;i ) :Zqi +Z|oI Q.., Where the last

i=1 i=1 i=1
summations is taken over all i for which the ventels adjacent with jv; in H.

That is G+ Gg is an induced subgraph ¢H fi for each pair of adjacent
vertices Y\ of H. Moreover, if ywi,vi forms a path RPin H, then (GJ G;)+Gy is
an induced subgraph dH (n;i . While if v, and v forms a triangle in H, the(G;

+ G) + G is a subgraph ofH fi .

An illustration for Definition 2.1is given in the next example.

Example 2.2:Letthegraphs G, G;, G;, G4, Gs and H be giveias follows:
G1=P3, G=K, , G=K 1, G4:C3, Gs=K; and,

b4

¥
Then the expanded graph of H by inserting the aligvgraphs is indicated in
5
Figure 2.1, in whichp(G) = > p =10 and
i=1

5 4
q(G)=>.a,+> P R.=18.
i1 -1

Figure 2.1: The expanded graph GH S‘

Moreover, if the base graph H is a pathtRen the expanded gra;Fh(n;i is the
sequential join of the graphs;&5,,..., G.. IfH =Psand Gs, 1 = 1,2,3,4, 5 are
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5
given as in Example 2.2, then, the sequential gpaph ZGi is depicted in Fig.
i=1

2.2, with p(G) = 10 and q(G) =6 + 14 = 20.

5
Figure 2.2: The sequential join graph G,

i=1

Next, we determine the nullity of the sequentiah jof some special graphs such
as G= Ny, K5, S, Kp, Pnyor G, fori=1,2,...,n.

If G :ZN o, WwhereN , =N, (the trivial graph) for all i, then the graph G is
~
simply a path of order n.

Proposition 2.3:For an expanded grapE N, , we have:
i=1

2k
) Ifn =2k fork=1.2,.., them(D> N,)is
i=1
2(k-1)
2+n( ), N,)=2k=n.

i=1

2k +1
ii) If n=2k+1, fork=1,2,..., them(D_N,) is
i=1
2k -1
2+n(D N,)=2k+2= n+1,

i=1
Proof: i) Let w;, i=1,2 and j=1,2,...,2K, be a zero-sum weightingtfa vertex
2k +1

2k
vij in the graphd N, (or >_N,), as indicated in Fig.2.3

i=1 i=1
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W1,1) W1,2) W,3) W1,2k-1) W1,2k)

o - ------- - @ - @ oo d

N e ™
[ »- ® . @ »
W2,1) W2 2) W2, 3) W2 2k-1) W2 2k)

2k
Figure 2.3: A weighting of the grapfi N,

i=1

2
If k = 1, then using the weights technique it isyeto evaluate thaI(ZNz) =2

i=1
3
and Il(ZNz) = 4 by Lemma 1.6 ii, Since the verticeg x& and \, » are
i=1
coneighbors as well as; w-1and v k1 hence removing the vertices x and

2k
V1 2k-1from the graphZN2 , a graph with end vertex (namely3) is obtained.
i=1

2k 2(k-1)
Apply (End Vertex Corollary) to it, we gg{> N,) =2 +n( D> N,).
i=1 i=1

i) Similar argument holds for the odd case aiso.

Theorem 2.4: Forn>2,ifG =) N o » then

i=1

> p-n if nis even,
nG)=1'"

Y p-n+1  if nisodd .

i=1

Proof: The proof is just an extension to that of Proposi2.3, and hence it is
omitted.m

Corollary 2.5: In Theorem 2.4 ifip= p ¥, then the nullity of G {:N p IS

n(p-21 if nis even,

”(G):{n(p—1)+1 if nis odd. m

The Sequential Join of Complete Bipartite Graph

A graph G is said to be a bipartite graph if it @ans no odd cycles. Thus, the
sequential join of complete bipartite graphs i asbipartite graph. Moreover,
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the sequential join of complete bipartite gragh«, ¢ hasp =)' (r, +s/) and
i=1 i=1

n n-1
=S+ (£ +§)N[u+$.)
i=1 i=1

while, the diameter OE K, s isn-1,forn=3.
i=1

We define the next term:

Definition 2.6: A singular graph G is said to be @mpletely non stable if

ZW(U) = 0 for a high zero-sum weighting of G. It is cleaathf the above
udG

condition holds for only a high zero-sum weightihgn it holds for any other
one.

Thus, complete bipartite graphs with order greater tharaz completely non
stable graphswhile Pyn+1is not.

Lemma 2.7 (Coneighbor Lemma):Let u and v be coneighbor vertices of a
connected graph G, then

n(G) =n(G—-u) +1=n(G-v) + 1.

Proof: Label the vertices of G byawvi, v = W, v3,...,vp. Let A(G), A(G-u),
A(G—vV) be the adjacency matrices of G- G-v, respectively. Applying row
elimination R — R;— R, and column elimination G— C;-C, to the matrix A,
we get zero in each entry of row one and zero ah eatry of column one.

And obtain a new matrix A*, where A* = A®/(G-u)).

Hence, r(G) =r(Gu) = p-n(G) = (p-1) - n(G-u),

~N(G) =n(G-u) + 1, similarlyn(G) =n(G-v) + 1.m

Definition 2.8: Two adjacent vertices \and v in a graph G are said to b&mi-
coneighborsif N(w) = N(w) in the graph G-e where e .

Remark 2.9: Let w be any zero-sum weighting of a graph G.lfand v are
semi-coneighbors, then they must be weighted bygaénee variable (weight), say
X, because in any zero-sum weighting for G we have:

> W =w(v)+ Y W)=0 (1)

UONG (v1) WINs_e ()
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2 W=+ Y, w(y=0. )

UNG (V) WINs e (Y

Therefore, from (1) and (2), we get w(¥ w(vy)
Proposition 2.10:The strong product graph&mP,= ZKZ IS hon-singular.

Proof: For n =2 or 3, it is easy to prove that any zaroy weighting for KXIP,
and KXPs is trivial. m

For any zero-sum weighting of the grapbD&P, as indicated in Fig.2.4, we can
put w(vj) =x,fori=1,2 and j=1,2,...,n. This is possibleRemark 2.9

X % % %o R X,
[ % % % ... X %
Figure 2.4: The strong product graphKP,

Apply >’ w(u)=0, for all i,j, we get:

ubN (v; )

X1+ 2% =0 (1)
21+ X%+ 2% =0 (2)
2% + X+ 2X%, = 0 (3)
2Xn2*+ X1+ 2% =0 (n-1)
2X-1+t % =0 (n)

Then, from Equation (1), we get:

1
>@=-§ X1 (19

From Equations (1) and (2), we get:

1 1 3
== [2X— =X ==X 2'
X 2[ 1 5 1] 4 1 (29
From Equations (2") and (3), we get:

1 3 7
= = [Xg+ =Xxq]= =X 3'
% 2[141]81 3)
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And so on, all the values 0f,xxs,...,X, are defined in term of;x
Finally, put the values of,x and x in Equation (n) to get:

axy, = 0, for some number a, this implies that=xO and hence all the remaining
variables are zeros.

Therefore, there exist no non trivial zero-sum weighting for the grapsD&P,.
Hence, by Proposition 1.5(K:XP,) =0.m

Since, KXP, is singular graph, thehy + A + u must equal to zero for some
eigenvaluel of K, and p of P, This follows from the relations between the
eigenvalues of the strong product graph and thenemjues of its product

components. See [5].

ButA=1orr=-1, henceu+1+pu=0 = p=—% or -u-1+p=0= -1
= 0 which is impossible.

Thus, we conclude that%, is not an eigenvalue for, Ror any n. This leads that

2 cos(rll—Tl) ;é—% foranyi,i=1, 2, ..., n, and any n. Tha#iso such integers
i and n that satisfies CO‘SI'@) = —1
n+1 4

The nullity of the expanded graph G, CEKri s Is determined in the next
i=1

theorem.

Theorem 2.11: Forn>2,n(Y K )= D (r, +s, —2).
i=1

i=1

Proof: Apply (Coneighbor Lemma) for each pair of coneighiertices u and v

n
in ZKn s » that is removing a vertex out of each such a paich are exactly
i=1

D (r, +s, —2), we obtain the graphA&P,.

i=1

n

Then, n(G) = D (1, +s, —2)+ n(K:XP,) . m

i=1

The Star graph for S .1 is a complete bipartite graph, with one of itstipa
sets consisting of exactly one vertex. It is a gletype of trees, trees with

diameter 2, with only three distinct eigenvaluesnely, \/p-1,0,-/ p- 1.
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Moreover, the expanded graph of n st&s, i=1, 2, ...,n, G =ZSIOi has order,
i=1

n

p=>.p, and sizeq,

n-1
q=>_p —nN+> N R.., with diameter n-1,%8.

i=1 i=1

Corollary 2.12: For n, p > 2, the nullity of G isz p, —2n.

i=1
Proof: S, DK, _,, henceitis a special case of Theorem 2.3a7.
Corollary 2.13: Forn>2,if G = isp , p>2.
Then, n(G) = n(p-2).
Proof: Put r+s = p in Theorem 2.3.7, then, the prove is immedmte

The Sequential Join of Complete Graphs

The complete graph Kp >2, is a simple graph with neither a cut vemex a

bridge, and has maximum sizeq; p(pz—l) . While the sequential joiEKIOi ,
i=1

n> 3, is not a complete graph. Its ordepis Z P,

i=1

] n n-1 n ) -1 n-1
and sizeq =Zqi "'Z‘,pipulzZpl(pzI ) +Zpip'+1'
i=1 i=1

i=1 i=1

The nullity of z Koy, is determined in the next theorem.
i=1

Theorem 2.14:1f n> 2, and p> 2 for i=1, 2,..., n, therEKIoi IS non-singular.

i=1
Proof: For n = 2, then, the sequential join of:Kand Ky, is kp1+p2 which is a
complete graph, hence by Lemma 1.4.11(ii{};) = O.

For n> 2, no non zero-sum weighting for G exists. Thisdedrom the fact

ZKZ is an induced subgraph EKpi and each extra vertex u K, is semi-
i=1
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coneighbor with each vertex & Kp - By Remark 2.9, the weight of u is the
J

same as the weight of each v, which is zero; héhee a non-singular graph by
Proposition 1.5m

The Sequential Join of Paths

Paths are extreme graphs to determine many invar@nthe graph such as the
diameter, and the average distance. Moreover,dfeestial join of path graphs,

n n n n-1
D.P, . has orderp = >'m, and sizeq = > (m -1)+ > mm,,, and the
i=1 i=1 i=1 i=1

diameter is n-1, for i 2, while it is equal to 2, where n=2, and on m, > 2.

Lemma 2.15:1f G; = Phand G=P,,and G = G + G, then, the nullity of the
graph G is given by:

2 if bothm= &- land = 4 1for k €1 Z
nG)=41 if eitherm= &- lor n= & 1but not both
0 if neither m,nor n= 4t- 1 ,forany k and any

Proof: Label the vertices of Gby w,V,,...,Vim, With a high zero-sum weighting
W(1,1pW(1,2),- -, W,m), and the vertices of Loy w,Uy,...,U,, With a high zero-sum
weighting Wz,1,W,2),...,.Wz,ny, in G.

By Definition 2.6, if m = 4k — 1 and n = 4t — 1,eth both B and R are
completely non stable graphs, and the same wemluam be used for the join
graph, hence the nullity of the join graph is 2this case. If either of them is
completely non stable, say,But not B, then wo 1y = Wz ,2)=...= W,n) = 0 in any
high zero-sum weighting of the join. Finally, ifthon and m cannot be written as
4k-1 for any k and any t, then in the join grapfyw O V i,j. Thus, G is non-
singular.m

Theorem 2.16: If G = ZPm , then nullity of the graph G s

n if m= &- 1,forkd Z" |

G)=
1) {O if m#4k-1,foraykOZ".

Proof: If m = 3, then the proof follows from Lemma 2. Moreover, if m = 4k-1,
keZ®, then the path graph,Pis a completely non stable graph, and each

n
component of the compound gra@ P, uses exactly one variable, hence there

exist exactly n variables in any high zero-sum Wweig of G, then,n(G) = n.
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If m # 4k-1, k€Z*, then each Ris not a completely non stable, hence there exists
no non-trivial zero-sum weighting for G, for>n1. Thus, by Proposition 1.5, we
conclude that G is non-singula.

It is clear that P+ Ps has no non trivial zero-sum weighting, heq(@) = 0.
Observation 2.17: If G = Zn:Pmi , therm(G) = no. of paths>, of order 4k-1, for
ki eZ". "
Example 2.18:Let G = P,, G, = B3 and G = P, then there is a zero-sum
weighting of the grapki P, » where mr2,3,4 as indicated in Fig.2.5.

i-1

0

Figure 2.5: A zero-sum weighting of the grapsmi

This zero-sum weighting uses exactly one independarmables, namely wx) ,

3
hencen(} P, )=1.
i=1

Il The Sequential Join of Cycles

Cycles are 2-regular, critical 2-connected grapbdd cycles are critical 3-
colarable graphs. The nullity of the sequentiah jof n cycles,ZCpi , Is our

i=1
goal in the next.

Proposition 3.1:1f G = C, + Cy,, then the nullity of the graph G is given by:

4 if bothn= &kand s 4&,for kKl Z
nG)=:2 if n=4& orm= 4 but nottheboath,
0 if neithertheorderof C nor of C i9(mod4

Proof: The proof is similar to that of Theorem 2.36.
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Theorem 3.2:Forn>2,if G = Zij B> 2,j=1,2,...,n, the nullity of Gis

j=1
2n if p,= &, k = lforeachj j= 1,2,n
1G)= 0 if noorder of ij is equal to zerdmodt).

Proof: It is known thatn(Cs) = 2, and using weights, it is easy to show that
Il(c4k1 +C4k2) =2+2=4.

If W), Wajp » “Waj, —Waj ..., are weights o€ 's, g =4k;, then from the

condition Z W, =0, there is no relation betweenuy and Wuj, Vi,
OVON (i, j)

j=1,2,...,n,ifj=1

Hence, if j=n where jp=4k;, thenn(G) = 2n. For n subgraphs of G, if no non
trivial zero-sum weighting exists (that is ordemaoin of them is zero mod 4), then
no non trivial zero-sum weighting for G exists, berby Proposition 1.5(G) =
O.m

Observation 3.3:1f G = ZCPi , then the nullity of the graph G &, if j orders
i=1

of the cycles 's are of form p= 4Kk;.

IV Nullity of the Corona of a Path with other Specal
Graphs

In this section, we study the nullity of the corafawo graphs.

In Definition 1.12, we choose &G P, and G is a known graph, such as\\K,
Pm, C4, Kr’sor Kp

Proposition 4.1: Let G = P, and G = Ny, then the nullity of the corona graph
7n(G), G =R,0 Nypis n(m -1).

Proof: Follows from applying (End Vertex Corollary) n-ta® namely to the
vertices uj, j=1, 2, ..., m, as illustrated in Fig.4.1.
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U1 U2 Um Upy Uz Upm Wi U bhm

=1(MNm-y) = n(m-1)

Figure 4.1: The corona graph,® Np,
Proposition 4.2: The nullity of the graph G =9 K5 is zero.

Proof: Let w; be a weighting of the corona graph@® Kz. From the condition

> w,,=0forall vin R O Ky, the graph PO K can be weighted as

OvON(i,])

indicated in Fig.4.2.

Where, wi )= y
Y oy -2y -2y -3y -3y -ny _-ny
y 2y 3y (n-ly yn

Figure 4.2: The corona graph® K

Now, the sum of the weights over the neighborhduaith® vertex weighted nyvi)
is (n-1)V\(1,1) - NWa,1) - NW1,1) = 0 = Wa,1) = 0.

The graph RO K, has no non trivial zero-sum weighting. Hence itn@n-
singular.m

Proposition 4.3:For the corona graph G = PO Ky, is hon singular.
Proof: Is similar to that of Lemma 4.2, heng@) = O.m

Proposition 4.4:Let G = P, and G = C,, then the nullity of G = PO C, is 5(G)
=2n.

Proof: Follows from the fact that there exists exactly airs of coneighbors
vertices in G and after removing a vertex out afheauch a pair, we obtain the
graph indicated in Figure 4.2.

~ PO Cy) =2n +n(Pr O Ky)
=2m
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Proposition 4.5: For any complete bipartite graph, K, the nullity of G = RO
K:sis given by

n(G) =n(r+s-2).
Proof: Follows by applying Coneighbor Lemma, hence itrstted. m

Proposition 4.6:Let G be the graph KP,, then,

1 if n= &- 1for kO Z"
0 otherwise

/7(G“)={

Proof: Let w1y and wyj, j=1,2,...,n be a zero-sum weighting for the graph G
as indicated in Fig.4.3.

.
’

. >-- . L ‘e ~-o
(1.1 1,2) (1,3) /n-1) 1,n)
W Wiz W Wn) W

Figure 4.3: The cone graph Gof the path R

From the condition z Wy =0, forallvin G

OvON (i, )
Wa2)tWen=0 = Wai2=— Wy (1)
W + Wa g2+ Wey =0, j=1,2,...,n-2 )

Win-1)t We,1)=0

From Equation (2) we get:

W1 j+2)= — Wa,j) — We,1), forj=1,2,..,n-2 3)

Thus, Wi.3)= — W1 — W) 4) (

W(1,4)= = Wa,2) — W2,1) 5)(
Wi,4)= 0

This gives that W = 0, for k€Z*, and wi 2k1)= — Wa 1) + W2 Assume that
wa2) # 0, then the sum of the weights over the neighbmothof the vertex

n
weighted w1 is Zwm) # 0, which is a contradiction from which we assumed
i=1
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W2 = 0. Now if n# 4k-1, then we get y,1)= 0 and hence, no non-trivial zero-
sum weighting exists. Thus, any high zero-sum weighof G will use only one
non-zero variable sayyw)where n = 4k—1, and hence the prove is compiete.

If G is a cone over the cone @enn(G™) =n(G), and moreover if this process
is continued any t times, theffG™) = n(G'), because of the fact that the second
vertex of G* which is added and joined to all vertices ofi&Ssemi-coneighbor
with the first vertex of Gwhich is added and joined to all vertices of Gnéte
both must be zero weighted and hence, the redldivi® for any t.

Proposition 4.7:Let G = P, and G = Py, then the nullity of G = PO Py is

n if m=4&-1k= 12..
0 otherwise.

n(G) = {
Proof: If m = 3, then the graph G is,P Ps, as indicated in Fig.4.4.

X1 0 =% % 0 —x% x 0 —-% % 0 -—x%
\ Vi A

® . A
0 0

\

Figure 4.4: The graph RO P;

Applying (Coneighbour Lemma), we have n-pairs afeighbors. After removing
a vertex out of each such a pair, we obtain thelgRg © K;thus,n(P, O Ps)=
n+n (P, O Ky). But, n(P, © K2) = 0. Hencen(P, © P;) = n.

If m>3, then we have n induced subgraphs of thplgROP,, and each of them is

a cone of a path,P. But the nullity of a cone of a path,Pm = 4k-1 is one , and
we have n such a cones.

n if m=&-1k= 1,2.
0 otherwise. N

II(G) = {
Open Problem: Evaluaten(G;0 Gy) in terms of invariants of Gand G?.
Nullity of the Semi-Corona of a Path with other Special Graphs

In the following section we are going to define fegni-corona.

Definition 4.8: Let H, be a graph, whose vertices labeleghf...,h and
G1,G,,...,G, be distinct graphs with orders,p,,...,[n and their vertices labeled

byuij 1<i<n,Kj<p.
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We define thesemi-coronagraph G = HO ”Gi , to be the graph whose vertex

setis V(G) = V(RUG, ) and edge set EG)=EHU E(UG,) U {hiy for
=1 i=1 i=1

each j,¥j< p}.

That is the vertexhis adjacent witrui, Uf’ ufl, h; is adjacent withu;,

U..--UY and his adjacent withy©, ., ...,y " . as illustrated in Fig.4.5,
where G=P, G =P, G =G, G=CGandH=G

Figure 4.5: The semi-corona grapgh = G,0 ”Gi

Proposition 4.9:

1) 0 [Nn) = X (m, -1,

2) (P, O |j|<pi )=0.

n

3)n( PO |_IK )= 31 +s, -2).

i=1

Proof: The proof is a generalization for that of Progoss 4.1, 4.2 and 4.5,
respectivelym
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