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Abstract

In this paper, we present results on theggquton of the folding part of the
cusp catastrophe model on the control space to $iadbility and catastrophic
phenomenon of the periodic solutions of some neafidlifferential equations by
using methods of catastrophe theory. We have shevws that the occurrence of
the folding of the cusp surface is always accomgzhmith the saddle - node
bifurcation, and that the saddle - node bifurcatican be classified as cusp type
catastrophe.
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1 Introduction

Some characteristics of the phenomena of disconti® jumping in reality are
hard to be explained by equations . The catastrapbery can explain these
characteristics. A cusp catastrophe model i®ldped to analyze the stability
by drawing graphs for a cusp-catastrophe model oflimear differential

equations, the bifurcation set or the projectiontte folding part of the cusp
catastrophe model on the control space is alwagsnaganied with the saddle-
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node bifurcation.. The study of catastrophic protde (equilibrium points,

catastrophic manifold (CM), amplitude, jump phenome...,etc.) has been of
immense importance since long time in view of it®vgng applications in

physical, biological and social sciences. Severghas, for example Arrow

Smith et al. (1983), Cesari (1971), Hale (1969)rtiMan (1963), Hayashi (1964),
Hirsch & Smale (1974), Marsden et al. (1976), Sa@69), Smith et al. (1977),
Zeeman (1977, and references therein) and Muhanmoktias Murad (1985)

have made their valuable contributions towards yshgd some aspects
(equilibrium points, periodic solutions, limit cyd, stability (or instability), and

phenomena associated With forced oscillations) leé problems. To my

knowledge, these authors, have, however, not loakedcatastrophic problems
like saddle- node bifurcation as an catastropéicdassification and its type and
the stability and semi-stability of periodic sotuts of NLDE. In the present work,
therefore, an effort has been made to study thbsagmenon by catastrophic
method which might bridge the gap between the alefexred works and others
in progress both qualitative and quantitative tiitda have been given to the
problem so as to present a more clear picture efpthysical phenomena. This
work may generate a continuous interest to onetfetlhe has actually available
new investigative technique. As well know, theree alementary and non-
elementary types of catastrophes; the formers evers kinds (fold, cusp,

swallowtail, hyperbolic, elliptic , butterfly pdvalic ) and the latter has got no
classification, we have shown here that saddlede rasfurcation of the averaged
system arising from the general from of the nor@dmelifferential equation

(NLDE) which is of the following form:

U+ cagu = &f (t,u,u)

(For example, the saddle-node bifurcation of Van Pa oscillator can be said as
a particular case of this NLDE which corresponds twusp catastrophe dynamic
system). And more importantly, we find that the wecence of folding of CM is
always accompanied with the saddle- node bifurnatide further attempt to fit a
catastrophic model to our above nonlinear diffaeéntand then show the
catastrophic phenomena of saddle- node bifurcatisach as splitting (or
coalescing) and appearance (or disappearance)ngtilar points, and their
projections on the limit cycles). Evidently, theepent work grows from
calculation involved in the aforesaid NLDE. We nbere that in many physical
circumstances, like the one as here, we came agrosBnear differential
equation for which exact solutions (closed fromutiohs) are not possible. In
such cases, therefore, we alternatively, take rdsosome standard numerical
methods with prescribed boundary conditions (R-Khod, perturbation analysis,
..., etc.). But we have applied here a Liapunov dir@ethod to obtain the
stability of the periodic solutions of above mengd NLDE, and discuss its
associated physical features, without using anyntlary conditions. We divide
the main body of this work into four parts: Thesfipart is introductory. In
sections 2, 3 and 4, we have determined, respéctive dynamic is given here
for the fist time), CM and saddle node bifurcatidinimum complexity of a
chaotic system.
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Discrete chaotic systems, such as the logistic roap,exhibit strange attractors
whatever their dimensionality. However, the PoigeBendixson theorem shows
that a strange attractor can only arise in a caotis dynamical system (specified
by differential equations) if it has three or malienensions. Finite dimensional
linear systems are never chaotic; for a dynamigatesn to display chaotic
behavior it has to be either nonlinear, or infirdiemensional.

The Poincaré-Bendixson theorem states that a tweertional differential
equation has very regular behavior. The Lorenaetidr is generated by a system
of three differential equations with a total of severms on the right hand side,
five of which are linear terms and two of which apeadratic (and therefore
nonlinear). Another well-known chaotic attractor generated by the Rossler
equations with seven terms on the right hand sady one of which is
(quadratic) nonlinear. Spot found a three dimeraiggstem with just five terms
on the right hand side, and with just one quadnaticlinearity, which exhibits
chaos for certain parameter values. Zhang and Hshdeved that, at least for
dissipative and conservative quadratic systemsgethdimensional quadratic
systems with only three or four terms on the rigdmd side cannot exhibit chaotic
behavior. The reason is, simply put, that solutimnsuch systems are asymptotic
to a two dimensional surface and therefore solstam well behaved. While the
Poincaré—Bendixson theorem means that a contindgoamical system on the
Euclidean plane cannot be chaotic, two-dimensiooatinuous systems with non-
Euclidean geometry can exhibit chaotic behaviorh&gs surprisingly, chaos may
occur also in linear systems, provided they araiteFdimensional A theory of
linear chaos is being developed in the functionahlgsis, a branch of
mathematical analysis. Note that elementary cafalsés cannot occur in linear
systems.

2  SystemsArising from General form of the NLDE

General form of the NLDE: - The general form of tieDE considered here is
(= —fw +ef (tu,u), (.=d\dt) (1)
Where ¢ is very small parameter andl is periodic with respect to t with
27
period; . If then we have the linear form equation (1) iniethh case we are not

interested because catastrophic phenomenon appdariro NLDE. For, we
proceed to obtain the approximate solution of &pa¢ follows:

Let=v, (2)
and, from egs. (1) And (2), we have

v=-w2u+ef(tu, u) (3)
To satisfy egs. (2) and (3), we further assume that

u = a(t) sin (wt) +b (t) +b (t) cos (i)
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(4)
v=w [a (t) cos (wt) —b (t) sin (wt)]

where a (t) and b (t) are slowly varying functimig, and thereforéi andb can
be neglected. In order that the set of equatiofssiuld be the solutions of
equations (2) and (3) it must satisfy the followoanditions.

asin(wt) -b cos(wt) = 0 (5)
écos(vvt) —bsin(wt) =v£v[’8u+ f(t,u,U} (6)
&8 = w? —w; (7)

From the foregoing egs. (5), (6), and (7) we obtaénnon- autonomous system:

a= %{[z’u + f (t,u,u)} cos(wt)

(8)
b= —£{,8u + f (t,u,U)sin(Wt)}
w
Integration of equation (8) with respect to t, @ox t < Zdw, give
The autonomous system:
2
BT |
a=— I{,Bu + f (t,u,u}cos(wt)dt
T 0
(9)

2n

b= —%T I[ﬁu + f (t,u,U}sin(vvt)dt

After integration of eq. (9) we have (10), or, iengral, we can assume that (with
out any loss of generality) expression (10) takesform.

a= ,8b+/,1a—{)(2ar2 + y,ar’ +...+)(2nar2”}
(11)

b= —ﬁ’a+,ub—{)(2br2 + y,br* +...+)(2nbr2“}— B

Where 1, 3,B and x,, X,.....X,, are parameters and=+/a’ +b?* is the

Amplitude. Thus the foregoing eq. (11) is our degiaveraged system arising
from the general from of the NLDE (1).
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3 Catastrophic Manifold (CM)
The equilibrium points of the averaged system @cur whena=b= Ohence,

equaling to zero the right hand side of the equatio

(11) We obtain, after some simplifications.
[ = Qo+ xar® ot ot 79+ B2 -B2 =0, (12)

Where we have made use of the polar coordinatsfranations:

a=rcosg,b =rsing. . Puttingy=r? and making suitable change of coordinates,

we may reduce eq. (12) to the standard form of sdype of elementary
catastrophe, that is, we may find some standami fofr the eq. (12) for CM as
follows.

m m-2 _ m-3 —
yoAuy T Uy U, =0

This is our desired form of the eq. (12) whene=2n+1. . Let us define a
function F' such that.

After integrating with respect tp, we can find the nonlinear dynamic model as

follows y=—(y™ +uy™2 +u,y™ +...+u,_,) (13)

And we can find the canonical form for the potdrfiiaction as follows

m+ u m-
m+1y l+_m—i1y YU,y (14)

F(u,u,,..)=

Arising from the averaged system (12), for which=#fl then m=3
And F represents the potential function for cuspetygatastrophe, which may
written as follows

1 1
F(ysul’uz)zzy4+§u1y2+u2y (15)
The stationary points of F are given by
g—Fy:yS+uly+u2:0 (16)

We are considering F andalso to be function of the control variables, list
case,u,,u,. . We consider the nonlinear dynamic model

y=—(/ +uy+u,), (16a)
and investigate the Lipsanos function of this dyrma@onstruct
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a functionF (y,u,,u,) =%y4 +%u1y2 +U,) which is the cusp catastrophe. [12].

It is easily seen that 15 is a Liapunov function thwi
Cli_lt::_(ys"'uly"'uz)z <0 = y2 tuytu, z0

So, the solution of the nonlinear dynamic (16apsymptotically stable in this
section, we also study the set of equations (2héir various aspects: existence,
stability (or instability), splitting (or coales@h of limit cycles and other
gualitative properties of limit cycles, we shalkeus diagrammatic device to show
these properties, which is shown in Figure 3. T$tiews the control space,
atypical trajectory on the control space, and askkinit cycles for typical points
on that trajectory. This shows clearly how

There is one possible stable limit cycle outsidedtitical region and two inside it,
and that one of them crashes into the unstablé tyale to form a semi- stable
limit cycle and splitting and bifurcation curve. & Burface represented by eq. (16)
can be plotted on figure 2. Figure (2) and (3) suiiciently rich to illustrate the
set of phenomenon (splitting (or coalescing), appeae (or disappearance) of
limit cycles) to be a catastrophic phenomenon. &hgsenomenon are related,
respectively, to the phenomenon (splitting (or esaing), appearance (or
disappearance) of equilibrium points). The cubioagpn (160 can have one or
three real roots and then the system (2), othemnstable, since F has two
minimum points and one maximum points, and the tmmdof three limit cycles
is

4ud +27u2 < 0 a7)
The boundary of the region (of one limit cycle lorete) is defined by
407 +27u2= 0 (18)

Note thatd*FIdy? is zero on this curve and hence the function Fseasi-stable

limit cycles in the u, v plane. We have shown iatiem (4) that the projection of
the degene- rate singularities is saddle-node dafion for the dynamical system
arising from Van Der Pol oscillator which can bédsas a particular case of this
NLDE which corresponds to a cusp type catastropbeexample,

If n=1, then we obtain from expression (12)

Xor® =2px,r* +(u® +B*)r*-B*= 0 (19)

To obtain standard form of catastrophic manifoléae type
Of elementary catastrophes. We may put 4,x, = 2,r’y+ | Bdression (19)
becomes

Yy - (16-3B%)3)y+12827+83B°-B* =0 (20)
This is our desired form of the expression (12)Rd. Further, the folding curve
equation in standard form of cusp catastrophe neayriiten as

4((38% -16)I3)° + 27(12827+83B? -B?)? =0 (21)

Which is called the bifurcation set. We further g@ed to prove that the forgoing
expression (21) is nothing but saddle-node bifuwoatepresents a catastrophic



On the Cusp Catastrophe Model and Stability... 79

set (cusp type). Thus we should obtain the expessi saddle- node bifurcation
and compare it with expression (21).

Crose Sections of (CM)




80 Muhammad Nokhas murad

4 Saddle-Node Bifurcaion

For the same values ¢f , =1andu= 4, equation (11) becomes
a=pfo+da-ar’=X, ap) (say) (22)
b=-Ba+4b-br2-B=X, @b) (say)

Let X (a,b) be the vector field of the system (82fined by X(a,b) = (X (a,b),

X, (a,b) and (g, b,)be an equilibrium point of X which represents gegiodic

solution of NLDE {eq.(1)}. Therefore, X (@, b,) Must be equal to zero. Further,
we define, we define the linear part of X by

X 1da 9X,/db

DX (aov0) = (23)

dX,/da 9X,/db
[4—3a2—b28—2ab }

=A.
-B-2ab 4-a®-3p?

The stability of the system can be calculated andlygaed. The analysis
performed by eigenvalues methods.
The eigenvalues), are calculated for thé-matrix, which are the non-trivial

solutions of the equation

AX= AX (23a)

where x is ar2x1vector. Rearranging (23a) to solve foryields
det(A-A1)=0 (23b)

Thetwo solutions of (23b) are theigenvalueg A, A,) of the2x2matrix A. These
eigenvalues may be real or complex, and are ofatme a £ £ . If A is real, the
complex eigenvalues always occur in conjugate pair.

The eigne values of the matrix A are

A =4-2r2 - \r*-pB° (24)
A, =4=-2r%+r* - p?

Now, we able to determine some kinds of bifurcasets under certain different
condition: Case 1: whenl, and A, are imaginary, we may obtain Hopf
bifurcation set which represents a non- elementatgstrophe set. Case 2: when
the determinant of the linear p@rtof vector field is zero (or one of the eigne
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values is zero), we obtain other kind of bifurcatset as follows: Assumi=0,
we obtain after some simplifications

y =713,/16-383 (25)

Wherey =r?. Eliminatingy between (20) and (25), we obtain
- {a6-3p2)13 + 2712827+ 89387 -B?}* =0

Note that the Eigen- values are not imaginary {fidan 1963)

This is the same expression as given in (21) whkehwish to prove it to be
exactly saddle —node bifurcation set: NOTE: we hawewed thag ,,, (3,B) # 0,,

for proof see [8], wherg3,B) is any element in bifurcation set. So we have the
following proposition. The occurrence of the folgirof the RM is always
accompanied with the saddle — node bifurcationn3 then m=5 and the
response manifold for the averaged system (11) is

Yy HuyP+o+uy+u, = 0

Which represents a catastrophic manifold for bfijteHence the catastrophic
phenomena appears in the averaged system (11) wh@rés butterfly. And so
the projection of the folding part (i.e., the saddhode bifurcation) represents a
butterfly catastrophe. For example take the fumctim (1) as follows:

f (t,u,u) = uu® + Bsin(wt ) (27)

The averaged system is:
: £
a= _F(ﬁb + 516IUbr ‘“+B

(28)
: £
b = " (Ba + 516 par *)

Let u=615 and the response manifold (RM) is.
y>+2py°+py-B*= 0

Which is a catastrophic manifold of butterfly. Attt nonlinear dynamic system
is written as follows

y=~(y"+2By’ + 3’y -B?) (28a)
Let u, =28,u, = f%,u, =-B% and investigate the Liapunov function. Of this

dynamic. Construct a functioR (y,u,,u,.u;) = %ye +%u1y4 +U,)° + Uy

Which is the Butterfly catastrophe. [12]. It is #yaseen thatF ¥ )is a Liapunov
function with = —(y° +28y° + B°y—-B?*)* <0 = —(y° +28y°* + B°y-B*) %0
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5 Conclusion

The solution of the nonlinear dynamic (26a) is astptcally stable. And there
are the following propositions:

Proposition 4.1 The saddle- node bifurcation can be classifiedcasp type
catastrophe).

Proposition 4.2 There exist asymptotically stable solution for amynlinear
dynamical systems arising from NLDE.

Proposition 4.3 The occurrence of the folding of Cusp Catastroghalways
accompanied with saddle- node bifurcation.
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