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Abstract 

       In this paper, we present results on the projection of the folding part of the 
cusp catastrophe model on the control space to find stability and catastrophic 
phenomenon of the periodic solutions of some nonlinear differential equations by 
using  methods of catastrophe theory. We have shown here, that the occurrence of 
the folding of the cusp surface is always accompanied with the saddle - node 
bifurcation, and that the saddle - node bifurcation can be classified as cusp type 
catastrophe.  

     Keywords: Cusp catastrophe model, cusp type catastrophe, nonlinear 
differential equations, saddle-node bifurcation. 

 

1      Introduction 
 
Some characteristics of  the phenomena of discontinuous jumping in reality are 
hard to be explained by equations . The catastrophe theory can explain these 
characteristics. A cusp    catastrophe model is developed to analyze the stability 
by drawing graphs for a cusp-catastrophe model of nonlinear differential 
equations, the bifurcation set or the projection of the folding part of the cusp 
catastrophe model on the control space is always accompanied with the saddle-
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node bifurcation.. The study of catastrophic problems (equilibrium points, 
catastrophic manifold (CM), amplitude, jump phenomena, …,etc.)  has been of 
immense importance since long time in view of its growing applications in 
physical, biological and social sciences. Several authors, for example Arrow 
Smith et al. (1983), Cesari (1971), Hale (1969), Hartman (1963), Hayashi (1964), 
Hirsch & Smale (1974), Marsden et al. (1976), Sale (1969), Smith et al. (1977), 
Zeeman (1977, and references therein) and Muhammad Nokhas Murad (1985) 
have made their valuable contributions towards studying some aspects 
(equilibrium points, periodic solutions, limit cycles, stability (or instability), and 
phenomena associated With forced oscillations) of the problems. To my 
knowledge, these authors, have, however, not looked into catastrophic problems 
like saddle- node bifurcation as an  catastrophic set, classification and its type and 
the stability and semi-stability of periodic solutions of NLDE. In the present work, 
therefore, an effort has been made to study these phenomenon by catastrophic 
method which might bridge the gap between the above referred works and others 
in progress  both qualitative and quantitative thoughts have been given to the 
problem so as to present a more clear picture of the physical  phenomena. This 
work may generate a continuous interest to one feel that he has actually available 
new investigative technique. As well know, there are elementary and non-
elementary types of  catastrophes; the formers of seven kinds (fold, cusp, 
swallowtail, hyperbolic,  elliptic , butterfly parabolic ) and the latter has got no 
classification, we have shown here that saddle – node bifurcation of the averaged 
system arising from the general from of the nonlinear differential equation 
(NLDE) which is of the following form: 

),,(2
0 uutfuu ɺɺɺ εω =+   

(For example, the saddle-node bifurcation of Van Der Pol oscillator can be said as 
a particular case of this NLDE which corresponds to a cusp catastrophe dynamic 
system). And more importantly, we find that the occurrence of folding of CM is 
always accompanied with the saddle- node bifurcation. We further attempt to fit a 
catastrophic model to our above nonlinear differential, and then show the 
catastrophic phenomena of saddle- node bifurcation, (such as splitting (or 
coalescing) and appearance (or disappearance) of singular points, and their 
projections on the limit cycles). Evidently, the present work grows from 
calculation involved in the aforesaid NLDE. We note here that in many physical 
circumstances, like the one as here, we came across nonlinear differential 
equation for which exact solutions (closed from solutions) are not possible. In 
such cases, therefore, we alternatively, take resort to some standard numerical 
methods with prescribed boundary conditions (R-K method, perturbation analysis, 
…, etc.). But we have applied here a Liapunov direct method to obtain the 
stability of the periodic solutions of above mentioned NLDE, and discuss its 
associated physical features, without using any boundary conditions. We divide 
the main body of this work into four parts: The first part is introductory. In 
sections 2, 3 and 4, we have determined, respectively the dynamic is given here 
for the fist time), CM and saddle node bifurcation. Minimum complexity of a 
chaotic system. 
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Discrete chaotic systems, such as the logistic map, can exhibit strange attractors 
whatever their dimensionality. However, the Poincaré-Bendixson theorem shows 
that a strange attractor can only arise in a continuous dynamical system (specified 
by differential equations) if it has three or more dimensions. Finite dimensional 
linear systems are never chaotic; for a dynamical system to display chaotic 
behavior it has to be either nonlinear, or infinite-dimensional. 
The Poincaré–Bendixson theorem states that a two dimensional differential 
equation has very regular behavior. The Lorenz attractor is generated by a system 
of three differential equations with a total of seven terms on the right hand side, 
five of which are linear terms and two of which are quadratic (and therefore 
nonlinear). Another well-known chaotic attractor is generated by the Rossler 
equations with seven terms on the right hand side, only one of which is 
(quadratic) nonlinear. Spot found a three dimensional system with just five terms 
on the right hand side, and with just one quadratic nonlinearity, which exhibits 
chaos for certain parameter values. Zhang and Heide showed that, at least for 
dissipative and conservative quadratic systems, three dimensional quadratic 
systems with only three or four terms on the right hand side cannot exhibit chaotic 
behavior. The reason is, simply put, that solutions to such systems are asymptotic 
to a two dimensional surface and therefore solutions are well behaved. While the 
Poincaré–Bendixson theorem means that a continuous dynamical system on the 
Euclidean plane cannot be chaotic, two-dimensional continuous systems with non-
Euclidean geometry can exhibit chaotic behavior. Perhaps surprisingly, chaos may 
occur also in linear systems, provided they are infinite-dimensional A theory of 
linear chaos is being developed in the functional analysis, a branch of 
mathematical analysis. Note that elementary catastrophes cannot occur in linear 
systems. 
 
 2       Systems Arising from General form of the NLDE 
 
General form of the NLDE: - The general form of the NLDE considered here is  

                        ü= –w20 u + εƒ (t,u, 
.

u ), (.=d\dt)                             (1) 

Where ε is very small parameter and f is periodic with respect to t with 

period ω
π2

. If then we have the linear form equation (1) in which case we are not 

interested because catastrophic phenomenon appear only in NLDE. For, we 
proceed to obtain the approximate solution of eq. (1) as follows:  

                                      Let 
.

u = v ,                                                   (2) 
and, from eqs. (1) And (2), we have  

                                     
.

v = –w2
0 u + ε f (t,u, 

.

u )                                (3) 

To satisfy eqs. (2) and (3), we further assume that  
 
                              u = a (t) sin (wt) +b (t) +b (t) cos (wt)    
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                                                                                                          (4)                            
                             v=w [a (t) cos (wt) –b (t) sin (wt)] 
 

where a (t) and b (t) are slowly varying functions of t, and therefore aɺɺ  and bɺɺ  can 
be neglected. In order that the set of equations (4) should be the solutions of 
equations (2) and (3) it must satisfy the following conditions.  

                    
.

asin(wt) –
.

b cos(wt) = 0                                           (5) 

                     
.

acos(wt) –
.

b sin(wt) = 




 +
.

,,( uutfu
w

βε
                (6) 

                         2
0

2 ww −=εβ                                                            (7)  

 
From the foregoing eqs. (5), (6), and (7) we obtain the non- autonomous system:  
 

                 






 +=

..

),,( uutfu
W

a βε
cos(wt) 

                                                                                                          (8)  

                






 +−= )sin(),,(

..

wtuutfu
w

b βε
 

 
Integration of equation (8) with respect to t, for 0 < t < 2πlw, give   
The autonomous system:  
 

                     ∫ 




 +=
w

dtwtuutfua

π

β
π
ε

2

0

..

)cos(,,(
2

 

                                                                                                         (9) 

                     dtwtuutfub
w

)sin(,,(
2

2

0

..

∫ 




 +−=

π

β
π
ε

 

 
After integration of eq. (9) we have (10), or, in general, we can assume that (with 
out any loss of generality) expression (10) takes the form.  
               

               { }n
narararaba 2

2
4

4
2

2

.

... χχχµβ +++−+=  

                                                                                                       (11) 

                { } Bbrbrbrbab n
n −+++−+−= 2

2
4

4
2

2

.

... χχχµβ  

 

Where B,,βµ  and n242 ,...,, χχχ  are parameters and 22 bar +=  is the 

Amplitude. Thus the foregoing eq. (11) is our desired averaged system arising 
from the general from of the NLDE (1).  
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3  Catastrophic Manifold (CM) 
The equilibrium points of the averaged system (11) occur when ,0

..

== ba  hence, 
equaling to zero the right hand side of the equation 
 
(11) We obtain, after some simplifications.  

                   [ ] ,0)...( 222212
2

5
4

3
2 =−++++− + Brrrrr n

n βχχχµ      (12) 

 
Where we have made use of the polar coordinate transformations: 
 

.sin,cos φϕ rbra ==  . Putting γ 2r=  and making suitable change of coordinates, 
we may reduce eq. (12) to the standard form of some type of elementary 
catastrophe, that is, we may find some standard form of the eq. (12) for CM as 
follows.  
 

0... 1
3

2
2

1 =++=+ −
−−

m
mmm uuu γγγ  

 
This is our desired form of the eq. (12) where .12 += nm  . Let us define a 
function F ′  such that. 
 
After integrating with respect to γ, we can find the nonlinear dynamic model as 

follows )...( 1
3

2
2

1

.

−
−− ++++−= m

mmm uuu γγγγ                                     (13)           

 
And we can find the canonical form for the potential function as follows  

        γγγγ 1
111

21 11

1
,...),,( −

−+ +
−

−+
+

= m
mm u

m

u

m
uuF                           (14) 

 
Arising from the averaged system (12), for which if n=1 then m=3  
And F represents the potential function for cusp type catastrophe, which may 
written as follows  

                      γγγγ 2
2

1
4

21 2

1

4

1
),,( uuuuF ++=                                      (15) 

The stationary points of F are given by  
 

                       021
3 =++=

∂
∂

uu
F γγ
γ

                                                   (16) 

We are considering F and γ also to be function of the control variables, in this 
case, ., 21 uu  . We consider the nonlinear dynamic model  

)( 21
3

.

uu ++−= γγγ ,                                                                            (16a)    
and investigate the Lipsanos function of this dynamic. Construct  
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a function γγγγ 2
2

1
4

21 2

1

4

1
),,( uuuuF ++=  which is the cusp catastrophe. [12].  

It is easily seen that 15 is a Liapunov function with 

00)( 21
22

21
3 ≠++⇔<++−= uuuu

dt

dF γγγγ   

So, the solution of the nonlinear dynamic (16a) is asymptotically stable in this 
section, we also study the set of equations (2) in their various aspects: existence, 
stability (or instability), splitting (or coalescing) of limit cycles and other 
qualitative properties of limit cycles, we shall use a diagrammatic device to show 
these properties, which is shown in Figure 3. This shows the control space, 
atypical trajectory on the control space, and asset of limit cycles for typical points 
on that trajectory. This shows clearly how  
There is one possible stable limit cycle outside the critical region and two inside it, 
and that one of them crashes into the unstable limit cycle to form a semi- stable 
limit cycle and splitting and bifurcation curve. The surface represented by eq. (16) 
can be plotted on figure 2. Figure (2) and (3) are sufficiently rich to illustrate the 
set of phenomenon (splitting (or coalescing), appearance (or disappearance) of 
limit cycles) to be a catastrophic phenomenon. These phenomenon are related, 
respectively, to the phenomenon (splitting (or coalescing), appearance (or 
disappearance) of equilibrium points). The cubic equation (160 can have one or 
three real roots and then the system (2), other is unstable, since F has two 
minimum points and one maximum points, and the condition of three limit cycles 
is  
               0274 2

2
3
1 <+ uu                                                                  (17) 

The boundary of the region (of one limit cycle or three) is defined by 
                0274 2

2
3
1 =+ uu                                                                 (18) 

Note that 22 γ∂∂ Fl  is zero on this curve and hence the function F has semi-stable 
limit cycles in the u, v plane. We have shown in section (4) that the projection of 
the degene- rate singularities is saddle-node bifurcation for the dynamical system 
arising from Van Der Pol oscillator which can be said as a particular case of this 
NLDE which corresponds to a cusp type catastrophe. For example,  
If n=1, then we obtain from expression (12) 
              0)(2 22224

2
62

2 =−++− BrBrr µµχχ                             (19) 
 
To obtain standard form of catastrophic manifold of some type  
Of elementary catastrophes. We may put 38,2,4 2

2 lrx +== γµ  Expression (19) 
becomes  
                 03827128)3)316( 2223 =−++−− Blll βγβγ              (20) 
This is our desired form of the expression (12) for RM. Further, the folding curve 
equation in standard form of cusp catastrophe may be written as  
                        0)3827128(27)3)163((4 22232 =−++− Blll ββ    (21) 
Which is called the bifurcation set. We further proceed to prove that the forgoing 
expression (21) is nothing but saddle-node bifurcation represents a catastrophic 
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set (cusp type). Thus we should obtain the expression of saddle- node bifurcation 
and compare it with expression (21).   
          

 

 
 
Crose Sections of(CM)  
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4 Saddle-Node Bifurcaion 
 
For the same values of χ 2 =1and µ= 4, equation (11) becomes  

         ),(4 1
2

.

baXaraba =−+= β         (say)                           (22) 

          ),(4 2
2

.

baXBbrbab =−−+−= β      (say)  
 
Let X (a,b) be the vector field of the system (22) defined by X(a,b) = (X1  (a,b), 

X 2 (a,b) and (a0  , b0 )be an equilibrium point of X which represents the periodic 

solution of NLDE {eq.(1)}. Therefore, X (a0  , b0 ) Must be equal to zero. Further, 

we define, we define the linear part of X by  
 

     =
















∂Χ∂∂Χ∂

∂Χ∂∂Χ∂
=

ba

bal
DX ba

//

/

22

11

)0,0(                                     (23) 

A
baabB

abBba
=














−−−−

−−−
22

22

342

234
. 

 
The stability of the system can be calculated and analyzed. The analysis 
performed by eigenvalues methods. 
The eigenvalues iλ  are calculated for the A-matrix, which are the non-trivial 

solutions of the equation 

 xAx λ=                                                                   (23a) 
 
where x is an 2x1 vector. Rearranging (23a) to solve for λ  yields 

0)det( =− IA λ                                                                (23b) 
 
The two solutions of (23b) are the eigenvalues ( 21,λλ ) of the 2x2 matrix A. These 
eigenvalues may be real or complex, and are of the form iβα ± . If A is real, the 
complex eigenvalues always occur in conjugate pair. 
 
The eigne values of the matrix  A are  

242
1 24 βλ −−−= rr                                                           (24) 

242
2 24 βλ −+−= rr                                                 

 
Now, we able to determine some kinds of bifurcation sets under certain different 
condition: Case 1: when 1λ  and 2λ  are imaginary, we may obtain Hopf 
bifurcation set which represents a non- elementary catastrophe set. Case 2: when 
the determinant of the linear part( )1  of vector field is zero (or one of the eigne 
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values is zero), we obtain other kind of bifurcation set as follows: Assume1λ =0, 
we obtain after some simplifications  

                      231631 βγ −= l∓                                             (25) 

Where 2r=γ . Eliminating γ between (20) and (25), we obtain  

                         { } { } 03827128273)316(4
22232 =−++−− Blll ββ         

 
 
Note that the Eigen- values  are not imaginary (Hartman 1963) 
 
This is the same expression as given in (21) which we wish to prove it to be 
exactly saddle –node bifurcation set: NOTE: we have proved that ,0),()2,0( ≠Bg β , 

for proof see [8], where ),( Bβ  is any element in bifurcation set. So we have the 
following proposition. The occurrence of the folding of the RM is always 
accompanied with the saddle – node bifurcation. If n=2 then m=5 and the 
response manifold for the averaged system (11) is  
                        0... 43

3
1

5 =++++ uuu γγγ  

 
Which represents a catastrophic manifold for butterfly. Hence the catastrophic 
phenomena appears in the averaged system (11) where n=2 is butterfly. And so 
the projection of the folding part (i.e., the saddle- node bifurcation) represents a 
butterfly catastrophe. For example take the function f in (1) as follows:   
                        )sin(),,( 5 wtBuuutf += µ                                  (27) 
 
The averaged system is:  

                             Bbrb
w

a ++−= 4
2

.

516( µβε
 

                                                                                                            (28) 

                               )516( 4
2

.

ara
w

b µβε +=  

Let µ=615 and the response manifold (RM) is. 
                                  02 2235 =−++ Bγββγγ  
 
Which is a catastrophic manifold of butterfly. And the nonlinear dynamic system 
is written as follows  

)2( 2235 B−++−= γββγγγɺ                                                               (28a) 

Let 2
3

2
21 ,,2 βββ −=== uuu  and investigate the Liapunov function. Of this 

dynamic. Construct a function γγγγγ 3
2

2
4

1
6

321 4

1

6

1
).,,( uuuuuuF +++=   

 
Which is the Butterfly catastrophe. [12]. It is easily seen that )(γF  is a Liapunov 

function with 0)2(0)2( 223522235 ≠−++−⇔<−++−= BB γββγγγββγγγɺ  
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5     Conclusion 
 
The solution of the nonlinear dynamic (26a) is asymptotically stable. And there 
are the following propositions:  

 
Proposition 4.1 The saddle- node bifurcation can be classified as cusp type 
catastrophe).  
Proposition 4.2 There exist asymptotically stable solution for any nonlinear 
dynamical systems arising from NLDE.  
Proposition 4.3 The occurrence of the folding of Cusp Catastrophe is always 
accompanied with saddle- node bifurcation.  
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