

Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp. 68-78 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Extremally Disconnectedness in Ideal Bitopological Spaces

Mandira Kar¹ and S.S. Thakur²

¹Department of Mathematics, St. Aloysius College, Jabalpur E-mail: karmandira@gmail.com ²Department of Applied Mathematics Government Engineering College, Jabalpur E-mail: samajh_singh@rediffmail.com

(Received: 25-2-14 / Accepted: 8-4-14)

Abstract

The concept of (i,j)- *extremally disconnected ideal bitopological space have been introduced and studied in this paper.

Keywords: *Ideal bitopological spaces, (i,j)- *extremally disconnected, (i,j)- extremally disconnected.*

1 Introduction

Pervin [24] introduced the concept of connectedness in bitopological spaces in 1967. And it was further studied by Birsan [2] in 1968, Reilly [27] in 1971 and by Ekici and Noiri [7] in 2008. Extremally disconnected topological spaces were studied by Gillman and Jerison [9] in 1960. Extremally disconnected spaces play an important role in Set-theoretical topology, Boolean algebra and Functional analysis. Extremally disconnectedness in bitopological spaces has been studied by Balasubramaniam [1] in 1991 and *- extremally disconnected ideal topological

spaces were studied by Ekici & Noiri [8] in 2009. The purpose of this paper is to introduce and study $(i,j)^*$ - extremally disconnected ideal bitopological space.

Bitopological spaces were introduced by Kelly [16] in 1963 as an extension of topological spaces. A bitopological space (X, τ_1, τ_2) is a nonempty set X equipped with two topologies τ_1 and τ_2 . The concept of ideal topological spaces was initiated by Kuratowski [17] and Vaidyanathaswamy [29]. An Ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies: (i) $A \in I$ and $B \subset A$ then $B \in I$ and (ii) $A \in I$ and $B \in I$ then $A \cup B \in I$. If $\mathcal{P}(X)$ is the set of all subsets of X, in a topological space (X, τ) a set operator (.)^{*}: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ called the local function of A with respect to τ and I and is defined as $A^*(\tau, I) = \{x \in X | U \cap A \notin I, \forall U \in \tau(x)\}$, where $\tau(x) = U \in \tau | x \in U\}$ ($A^*(\tau, I)$ is written in short A^*). A Kuratowski closure operator Cl^{*} (.) for a topology $\tau^*(\tau, I)$, called the *-topology [12], and is defined by Cl^{*}(A) = A $\cup A^*(\tau, I)$.

2 Preliminaries

Definition 2.1: A subset A of a topological space (X, τ) is said to be

- *i.* [18] semiopen if for some τ -open set O in X, $O \subseteq A \subseteq Cl(O)$ Also since int(A) is τ -open then $A \subseteq Cl(int(A))$
- *ii.* [20] preopen open if $A \subseteq int(Cl(A))$
- iii. [21] strongly β open if $A \subseteq Cl(int(Cl(A)))$
- *iv.* [24] α open if $A \subseteq int(Cl(int(A)))$

Definition 2.2: A subset A of an ideal topological (X, τ, I) space is said to be

- *i.* [22] semi-**I** open if for some τ open set O in X, $O \subseteq A \subseteq Cl^*(O)$ Also since int(A) is τ open then $A \subseteq Cl^*(int(A))$
- ii. [6] pre-I open if $A \subseteq int(Cl^*(A))$
- iii. [10] strongly β -I open if $A \subseteq Cl^*(int(Cl^*(A)))$
- iv. [11] α -**I** open if $A \subseteq int(Cl^*(int(A)))$

Definition 2.3: A subset A of a bitopological space (X, τ_1, τ_2) ; $i j = 1, 2, i \neq j$ is said to be

i. [19] (i,j)- semiopen; i, $j = 1, 2, i \neq j$ if for some τ_i - open set O in X, $O \subseteq A \subseteq \tau_j$ -Cl(O).

Also If int(A) is τ_i open then $A \subseteq \tau_j$. $Cl(\tau_i - int(A))$

- *ii.* [25] (*i*,*j*)- preopen; *i*, *j* = 1, 2, *i* \neq *j* if $A \subseteq \tau_i$ int(τ_j . Cl(A)
- *iii.* [14] (i,j)- β open; $i, j = 1, 2, i \neq j$ if $A \subseteq \tau_i$ $Cl(\tau_i$ $int(\tau_i Cl(A)))$
- iv. [13] (i,j)- α open; $i, j = 1, 2, i \neq j$ if $A \subseteq \tau_i$ int $(\tau_i$ $Cl(\tau_i$ -int(A))

Definition 2.4: A subset A of an ideal bitopological space (X, τ_1, τ_2, I) ; $i j = 1, 2, i \neq j$ is said to be

- i. [4] (i,j)-*I* semiopen if for some τ_i open set $O, O \subseteq A \subseteq \tau_j^*$ Cl(O). Also int(A) is τ_i - open therefore $A \subseteq \tau_j^*$ - $Cl(\tau_i$ - int(A))
- ii. [3] (i,j)-I- preopen if $A \subseteq \tau_i$ int $(\tau_j^* Cl(A))$

iii. [4] (i,j)-I- α - open if $A \subseteq \tau_i$ -int $(\tau_i^* Cl(\tau_i$ -int(A)))

Definition 2.5: [9] A topological space (X, τ) is said to be extremally disconnected if for every open set A in X, Cl(A) is also open.

Definition 2.6: [8] An ideal topological space (X, τ, I) is said to be *- extremally disconnected if for every open set A in X, $Cl^*(A)$ is also open.

Definition 2.7: [1] A bitopological space (X, τ_1, τ_2) is said to be (i,j)- extremally disconnected if τ_i closure of each τ_i open set is τ_i open where; $i, j = 1, 2, i \neq j$.

Definition 2.8: [23] A topological space (X, τ) is said to be normal if, for any two disjoint open sets A and B, there exist two disjoint closed sets U and V such that A $\subset U$, and $B \subset V$.

Definition 2.9: [8] An ideal topological space (X, τ, I) is said to be *- normal if for any two disjoint open set and *- open set A and B, respectively there exists disjoint *- closed and closed sets U and V such that $A \subset U$, and $B \subset V$.

Definition 2.10: [28] A bitopological space (X, τ_1, τ_2)); $i, j = 1, 2, i \neq j$ is said to be binormal if for any two disjoint τ_i - open set and τ_j - open set A and B, respectively there exists disjoint τ_j - closed and τ_i - closed sets U and V such that $A \subset U$, and B $\subset V$.

Definition 2.11: [8] A subset A of an ideal topological space (X, τ, I) is said to be *R*-*I*- open if $A = Int(Cl^*(A))$. The complement of a *R*-*I*- open set is *R*-*I*- closed.

Definition 2.12: [8] A subset A of an ideal topological space (X, τ, I) is said to be semi*-*I*- open if $A \subseteq Cl(int^*(A))$. The complement of a semi*-*I*- open set is semi*-*I*- closed.

Definition 2.13: [15] An ideal bitopological space is a quadruple (X, τ_1, τ_2, I) where I is an ideal defined on a bitopological space (X, τ_1, τ_2)

Throughout this paper, τ_i - Cl(A) (resp. τ_j - Cl(A)) and τ_i - int(A) {resp. τ_j - int(A)} denote the closure and interior of a subset A of X with respect to topology τ_i (resp. τ_j } and τ_i^* - Cl(A) (resp. τ_j^* - Cl(A)) and τ_i^* - int(A) {resp. τ_j^* - int(A)} denote the closure and interior of a subset A of X with respect to *- topology τ_i (resp. τ_j^*)

3 (i,j)*- Extremally Disconnected Ideal Bitopological Spaces

Definition 3.1: An ideal bitopological space (X, τ_1, τ_2, I) is said to be $(i,j)^*$ -extremally disconnected if τ_j^* - closure of each τ_i . open set is τ_i open for; i,j = 1,2, $i \neq j$.

Theorem 3.1: In an ideal bitopological space (X, τ_1, τ_2, I) if A is a τ_i - open set and B is a τ_j^* - open set such that $A \cap B = \emptyset$ then $(\tau_j^* - Cl(A)) \cap (\tau_i - Cl(B)) = \emptyset$ if and only if the space is $(i,j)^*$ - extremally disconnected; $i,j = 1,2, i \neq j$.

Proof:

Necessary Part: Let A be any τ_i - open set and B = (X-(τ_j^* - Cl(A)). Obviously B is τ_j^* open and A \cap B = \emptyset . Given (τ_j^* - Cl(A)) \cap (τ_i - Cl(B)) = \emptyset , thus (X-(τ_i - Cl(B))) = (τ_j^* - Cl(A)). This implies (τ_j^* - Cl(A)) is τ_i - open. Similarly (τ_i^* - Cl(B)) is τ_j - open for a τ_j - open set B. Therefore (X, τ_1 , τ_2 , I) is (i,j)*- extremally disconnected.

Sufficient Part: Let (X, τ_1, τ_2, I) be $(i,j)^*$ - extremally disconnected. Let A be a τ_i open set and B be a τ_j^* - open set s. t. $A \cap B = \emptyset$. So $A \subseteq X$ -B, then τ_j^* - Cl(A) \subseteq τ_j^* - Cl(X-B) = X-B (as B is τ_j^* open). Since X is $(i,j)^*$ - extremally disconnected τ_j^* - Cl(A) is τ_i open. Therefore τ_j^* - Cl(A) = τ_i - int(τ_j^* - Cl(A)) $\subseteq \tau_i$ - int(X-B) or τ_j^* -Cl(A) \subseteq X- (τ_i - Cl(B)) Hence, τ_j^* - Cl(A) $\cap \tau_i$ - Cl(B) = \emptyset

Theorem 3.2: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties are equivalent:

- (a) X is $(i,j)^*$ extremally disconnected
- (b) $(\tau_j^* Cl(A)) \cap (\tau_i Cl(B)) \subset \tau_i Cl(A \cap B)$ where A is a τ_i open set and B is a τ_i^* open set
- (c) $(\tau_i^* Cl(\tau_i int(\tau_i^* Cl(A)))) \cap \tau_i Cl(B) = \emptyset$ where A is any subset of X and
- (d) B a τ_i^* open set with $A \cap B = \emptyset$

Proof:

(a) \Rightarrow (b) Let A be a τ_i - open set and B be a τ_{j}^* open set. Since X is $(i,j)^*$ extremally disconnected τ_j^* - Cl(A) is τ_i - open. Then $(\tau_j^* - Cl(A)) \cap (\tau_i - Cl(B)) \subset \tau_i - Cl((\tau_j^* - Cl(A)) \cap B)) \subset \tau_i - Cl(\tau_j^* - Cl(A \cap B) \subset \tau_i - Cl(A \cap B))$ Cl(A \cap B)

(b) \Rightarrow (c) Let A be any subset of X. B a τ_{j}^* open set with A \cap B = \emptyset . Since τ_{i} int(τ_{j}^* - Cl(A)) is τ_{i} - open and from (b) and the fact τ_{i} - int(τ_{j}^* - Cl(A)) \cap B = \emptyset as A \cap B = \emptyset we get

 $(\mathbf{\tau}_{j}^{*} - \operatorname{Cl}(\mathbf{\tau}_{i}^{-} \operatorname{int}(\mathbf{\tau}_{j}^{*} - \operatorname{Cl}(A)))) \cap (\mathbf{\tau}_{i} - \operatorname{Cl}(B)) \subset \mathbf{\tau}_{i}^{-} \operatorname{Cl}(\mathbf{\tau}_{i}^{-} \operatorname{int}(\mathbf{\tau}_{j}^{*} - \operatorname{Cl}(A)) \cap B) \subset \mathbf{\tau}_{i}^{-} \operatorname{Cl}(\emptyset) = \emptyset$

(c) \Rightarrow (a) Let B be a τ_{j-}^* open set and A be any subset of X. Then τ_{i-} int(τ_{j-}^* Cl(A)) = U is τ_{i-} open. Given τ_{j-}^* Cl(U) $\cap \tau_{i-}$ Cl(B) = \emptyset , U \cap B = \emptyset Hence from theorem 3.1(necessary part) X is (i,j)*- extremally disconnected.

Definition 3: A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be (i,j)-I- strongly β - open; $i,j = 1,2, i \neq j$ if $A \subseteq \tau_i^*$ - $Cl(\tau_i$ - $int(\tau_i^*$ - Cl(A)))

Theorem 3.3: For an ideal bitopological space (X, τ_1 , τ_2 , I) the following properties are equivalent:

- (a) X is $(i,j)^*$ extremally disconnected
- (b) τ_i^* int(A) is τ_i closed for every τ_i closed subset A of X
- (c) $\tau_i^* \operatorname{Cl}(\tau_i \operatorname{int}(A)) \subseteq \tau_i^- \operatorname{int}(\tau_i^* \operatorname{Cl}(A))$ for every subset A of X
- (d) Every (i,j)-I- semiopen set is (i,j)-I- preopen
- (e) The τ_i^* closure of every strongly ((i,j)-I- β open subset of X is τ_i open
- (f) Every (i,j)-I- strongly β open set is (i,j)-I- preopen
- (g) For every subset A of X, A is (i,j)-I- α open if A is (i,j)-I- semiopen

Proof:

(a) \Rightarrow (b) Let A be a τ_i - closed subset of X. then (X-A) is τ_i - open. Since X is (i,j)*- extremally disconnected τ_j^* - Cl(X-A) = (X-(τ_j^* - int(A)) is τ_i - open in X. Therefore τ_j^* - int(A) is τ_i - closed in X.

 $(b) \Rightarrow (c)$ Let A be any subset of X. Then (X-(τ_i - int(A)) is τ_i - closed in X and τ_j^* int(X-(τ_i - int(A)) (by (b)) is τ_i - closed in X. Thus τ_j^* - Cl(τ_i - int(A)) is τ_i - open in X. Hence τ_j^* - Cl(τ_i - int (A)) is a subset of τ_i - int(τ_j^* - Cl(A))

 $(c) \Rightarrow (d)$ Let A be a $(i,j)^*$ semiopen set of X. Then A is a subset of τ_j^* - Cl $(\tau_i$ -int(A)) and by $(c) A \subseteq \tau_i$ - int $(\tau_j^*$ - Cl(A)). Hence is (i,j)-I- preopen.

(d) \Rightarrow (e) Let A be a (i,j)* strongly β -I- open subset of X. Then τ_j^* - Cl(A) is (i,j)-I- semiopen and by (d) is (i,j)-I- preopen. Thus τ_j^* - Cl(A) $\subseteq \tau_i^-$ int(τ_j^* - Cl(A)). Therefore τ_i^* - Cl(A) is τ_i^- open.

 $(e) \Rightarrow (f)$ Let A be a (i,j)* strongly β -I- open subset of X. then by $(e) \tau_j^*$ - Cl(A) $\subseteq \tau_i$ - int $(\tau_i^*$ - Cl(A). Hence A is (i,j)-I- preopen.

(f) \Rightarrow (g) Let A be a (i,j)-I- semiopen set. Since every (i,j)-I- semiopen is (i,j)-Istrongly β - open, by (f) A is (i,j)-I- preopen. A is (i,j)-I- semiopen and (i,j)-I- preopen. Hence A is (i,j)-I- α - open.

 $(g) \Rightarrow (a)$ Let A be a τ_i - open set in X. Then, τ_j^* - Cl(A) is (i,j)-I- semiopen by (g), τ_j^* - Cl(A) is (i,j)-I- α - open. Therefore τ_j^* - Cl(A) is the subset of τ_i - int(τ_j^* . Cl(τ_i - int(τ_j^* - Cl(A)))) = τ_i - int(τ_j^* . Cl(A). Thus, τ_j^* - Cl(A) $\subseteq \tau_i$ - int(τ_j^* . Cl(A). Hence τ_j^* - Cl(A) is τ_i - open set in X. By definition of (i,j)*- extremally disconnectedness and the fact that τ_j^* - closure of A (which is a τ_i - open) is τ_i open we prove that X is (i,j)*- extremally disconnected.

Definition 3.3: An ideal bitopological space (X, τ_I, τ_2, I) is called (i,j)-I- normal if for any τ_i - open set A and τ_j^* - open set B s.t $A \cap B = \emptyset \exists a \tau_j^*$ - closed set M and τ_i - closed set N s.t. $A \subset M$ and $B \subset N$ and $M \cap N = \emptyset$; $i, j = 1, 2, i \neq j$

Theorem 3.2: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties are equivalent:

(a) X is (i,j)-I-normal

(b) X is $(i,j)^*$ - extremally disconnected

Proof:

(a) \Rightarrow (b) Let (X, τ_1, τ_2, I) be (i,j)-I- normal and A be a τ_i - open set of X. Put $(X-\tau_j^* - Cl(A)) = B$. (B is τ_j^* - open) then $A \cap B = \emptyset$. Hence $\exists a \tau_j^*$ - closed set M and τ_i - closed set N s.t. $A \subset M$ and $B \subset N$ and $M \cap N = \emptyset$. Since $\tau_j^* - Cl(A) \subset \tau_j^* - Cl(M) = M$ (because M is τ_j^* - closed) $\subseteq (X-N) \subset (X-B) = \tau_j^* - Cl(A)$. Hence $M = \tau_j^* - Cl(A)$. Also $B \subset N \subseteq (X-M) = (X-\tau_j^* - Cl(A)) = B$. Therefore N = B. But N is τ_i - closed so τ_i - Cl(B) = N. Given $M \cap N = \emptyset$ (From Theorem 3.1) X is (i,j)*-extremally disconnected.

(b) \Rightarrow (a) Let X be (i,j)*- extremally disconnected and let A be a τ_i - open set and B be a τ_j^* - open set s.t A \cap B = Ø. Put M = τ_j^* - Cl(A) and N = τ_i - Cl(B) where B = (X-(τ_j^* - Cl(A))). Then M is a τ_j^* closed set and N is a τ_i closed set s.t. A \subset M and B \subset N. Clearly M \cap N = Ø. Hence (X, τ_1, τ_2, I) is (i,j)-I- normal.

4 **R-I- Open Sets**

Definition 4.1: A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be (i,j)-R-I- open if $A = \tau_i$ - $Int(\tau_j^* - Cl(A))$; $i,j = 1,2, i \neq j$. The complement of a (i,j)-R-I- open set is (i,j)-R-I- closed.

Theorem 4.1: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties are equivalent:

- (a) X is $(i,j)^*$ extremally disconnected
- (b) Every (i,j)-R-I- open subset of X is τ_i^* closed in X
- (c) Every (i,j)-R-I- closed subset of X is τ_i^* open in X

Proof:

(a) \Rightarrow (b) Let X be (i,j)*- extremally disconnected and A be a (i,j)-R-I- open subset of X. Then A = τ_i - Int(τ_j^* - Cl(A) thus, A is τ_i - open. X is (i,j)*- extremally disconnected therefore τ_j^* - Cl(A) is τ_i - open. In other words, A = τ_j^* - Cl(A), hence A is τ_i^* - closed in X.

(b) \Rightarrow (c) The result is obvious as the complement of a (i,j)-R-I- open set is (i,j)-R-I- closed and complement of a τ_i^* - closed in X is τ_i^* - open in X

 $(c) \Rightarrow (a)$ Given every (i,j)-R-I- closed subset of X is τ_j^* - open in X that is, every (i,j)-R-I- open subset of X is τ_j^* - closed in X. Let A be a τ_i - open subset of X. τ_i - Int $(\tau_j^*$ - Cl(A)) = A. Hence is (i,j)-R-I- open and thus τ_j^* - closed in X. Therefore τ_j^* - Cl (A) \subseteq A = τ_i - Int $(\tau_j^*$ - Cl(A)). Hence τ_j^* - Cl(A) is τ_i - open. τ_j^* of a τ_i - open set is τ_i - open .So X is (i,j)*- extremally disconnected.

Theorem 4.2: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties hold:

- (a) If A, B are (i,j)-R-I- closed subsets of X, $A \cap B$ is also a (i,j)-R-I- closed subset of X.
- (b) If A, B are (i,j)-R-I- open subsets of X, $A \cup B$ is also a (i,j)-R-I- open subset of X.

Proof:

(a) Let X be $(i,j)^*$ - extremally disconnected and let A, B be (i,j)-R-I- closed subsets of X. Since A, B are τ_i - closed by theorem 3.2 (b) τ_j^* - int(A) and τ_j^* - int(B) is τ_i - closed. This implies

 $A \cap B = (\tau_i \text{-} \operatorname{Cl}(\tau_i^* \text{-} \operatorname{int}(A))) \cap (\tau_i \text{-} \operatorname{Cl}(\tau_i^* \text{-} \operatorname{int}(B))) =$

 $\begin{aligned} (\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A)) &\cap (\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(B)) = (\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A \cap B)) \subseteq \boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A \cap B)) \\ \text{Also,} \\ \boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A \cap B)) &= \boldsymbol{\tau}_{i} - \operatorname{Cl}((\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A) \cap (\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(B))) \\ &\subseteq (\boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A))) \cap (\boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(B))) = A \cap B \\ \text{Hence,} \\ \boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{j}^{*} - \operatorname{int}(A \cap B)) = A \cap B \end{aligned}$

Therefore $A \cap B$ is a (i,j)-R-I- closed subset of X.

(b) If A, B are (i,j)-R-I- open subsets of X, A^c and B^c are (i,j)-R-I- closed subsets of X therefore from (*a*) we get $A^c \cap B^c = (A \cup B)^c$ is also a (i,j)-R-I- closed subset of X. Therefore $A \cup B$ is a (i,j)-R-I- open subset of X.

Theorem 4.3: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties are equivalent:

- (a) X is $(i,j)^*$ extremally disconnected
- (b) The τ_i^* closure of every (i,j)-*I* semiopen subset of X is τ_i open
- (c) The τ_i^* closure of every (i,j)-*I* preopen subset of X is τ_i open
- (d) The τ_i^* closure of every (i,j)-R-I- open subset of X is τ_i open

Proof:

 $(a) \Rightarrow (b)$ Let X be $(i,j)^*$ - extremally disconnected and let A be a (i,j)-I- semiopen subset of X. hence from Theorem 3.3, A is strongly ((i,j)-I- β - open and τ_j^* closure of every strongly ((i,j)-I- β - open subset of X is τ_i - open (by theorem 3.3(*e*)), therefore τ_i^* - closure of every (i,j)-I- semiopen subset of X is τ_i - open.

(b) \Rightarrow (c) Let A be (i,j)- \mathbf{I} - semiopen then A is (i,j)- \mathbf{I} - preopen. (by theorem 3.3(d)). Thus the result follows and we get $\mathbf{\tau}_{j}^{*}$ - closure of every (i,j)- \mathbf{I} - preopen is $\mathbf{\tau}_{i}$ - open.

(c) \Rightarrow (d) Let A be (i,j)-R-**I**- open then A = τ_i - int(τ_j^* - Cl(A)), therefore A \subseteq (τ_i - int(τ_j^* - Cl(A))) thus A is (i,j)-**I**- preopen. Obviously, τ_j^* - closure of every (i,j)-R-**I**- open subset of X is τ_i - open.

(d) \Rightarrow (a) Let A be a τ_i - open subset of X. Then, τ_i - int(τ_j^* - Cl(A)) is (i,j)-R-Iopen. Given τ_j^* - closure of every (i,j)-R-I- open is τ_i - open. Thus τ_j^* - Cl(τ_i - int(τ_j^* -Cl(A))) is τ_i - open.

 $\tau_j^* - \operatorname{Cl}(A) \subset \tau_j^* - \operatorname{Cl}(\tau_i - \operatorname{int}(\tau_j^* - \operatorname{Cl}(A))) = \tau_i - \operatorname{int}(\tau_j^* - \operatorname{Cl}(\tau_i - \operatorname{int}(\tau_j^* - \operatorname{Cl}(A)))) = \tau_i - \operatorname{int}(\tau_j^* - \operatorname{Cl}(A))$

Hence τ_i^* -Cl(A)) is τ_i - open. Thus X is $(i,j)^*$ - extremally disconnected.

5 (i,j)-I- Semi^{*}- Open

Definition 5.1: A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be (i,j)-I- semi*- open if $A \subseteq \tau_i$ - $Cl(\tau_j^*$ - int(A)); $i,j = 1,2, i \neq j$. Complement of a (i,j)-I- semi*- open set is (i,j)-I- semi*- closed.

Theorem 5.1: A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is (i,j)-*I*-semi*- open if and only if τ_i - $Cl(A) = \tau_i$ - $Cl(\tau_j^* - int(A))$

Proof:

Necessary Part: Let A be (i,j)-I- semi*- open thus $A \subseteq \tau_i$ - $Cl(\tau_j^*- int(A))$. Therefore we have τ_i - $Cl(A) \subseteq \tau_i$ - $Cl(\tau_j^*- int(A))$ but, τ_i - $Cl(\tau_j^*- int(A)) \subseteq \tau_i$ - Cl(A). Thus τ_i - $Cl(A) = \tau_i$ - $Cl(\tau_j^*- int(A))$

Sufficient Part: Let τ_i - Cl(A) = τ_i - Cl(τ_j^* - int(A)). But A $\subseteq \tau_i$ - Cl(A) hence A is (i,j)-I- semi*- open.

Theorem 5.2: For an ideal bitopological space (X, τ_1, τ_2, I) the following properties are equivalent:

- (a) X is $(i,j)^*$ extremally disconnected
- (b) If A is (i,j)-I- strongly β open and B is (i,j)-I- semi*- open then, $(\tau_i^* - Cl(A)) \cap (\tau_i - Cl(B)) \subseteq \tau_i - Cl(A \cap B)$
- (c) If A is (i,j)-I- semiopen and B is (i,j)-I- semi*- open then, $(\tau_j^* Cl(A)) \cap (\tau_i Cl(B)) \subseteq \tau_i Cl(A \cap B)$
- (d) $\tau_j^* Cl(A) \cap \tau_i Cl(B) = \emptyset$ for every (i,j)-I- semiopen set A and (i,j)-Isemi*- open set B with $A \cap B = \emptyset$
- (e) If A is (i,j)-I- preopen and B is (i,j)-I- semi*- open then, $(\tau_j^* Cl(A)) \cap (\tau_i Cl(B)) \subseteq \tau_i Cl(A \cap B)$

Proof:

(*a*) \Rightarrow (*b*) Let A be (i,j)-I- strongly β - open hence from Theorem 3.3(*e*) τ_j^* - Cl(A) is τ_i - open. Also let B be a (i,j)-I- semi*- open thus B $\subseteq \tau_i$ - Cl(τ_j^* - int(B)). Therefore,

 $(\boldsymbol{\tau}_{i}^{*}\text{-}\operatorname{Cl}(A)) \cap (\boldsymbol{\tau}_{i}\text{-}\operatorname{Cl}(B)) \subseteq (\boldsymbol{\tau}_{i}^{*}\text{-}\operatorname{Cl}(A)) \cap (\boldsymbol{\tau}_{i}\text{-}\operatorname{Cl}(\boldsymbol{\tau}_{i}\text{-}\operatorname{Cl}(\boldsymbol{\tau}_{i}^{*}\text{-}\operatorname{int}(B))))$

 $= (\boldsymbol{\tau}_{i}^{*} - \operatorname{Cl}(A)) \cap (\boldsymbol{\tau}_{i} - \operatorname{Cl}(\boldsymbol{\tau}_{i}^{*} - \operatorname{int}(B))) = \boldsymbol{\tau}_{i} - \operatorname{Cl}((\boldsymbol{\tau}_{i}^{*} - \operatorname{Cl}(A)) \cap (\boldsymbol{\tau}_{i}^{*} - \operatorname{int}(B)))$

 $\subseteq \tau_i$ - Cl(A $\cap (\tau_j^*$ - int(B)) $\subseteq \tau_i$ - Cl(A \cap B)

Hence we have $(\tau_i^* - Cl(A)) \cap (\tau_i - Cl(B)) \subseteq \tau_i - Cl(A \cap B)$

(*b*) ⇒ (*c*) Let A be (i,j)-I- semiopen this implies A is (i,j)-I- strongly β- open (by Theorem 3.3). Also let B be (i,j)-I- semi*- open. Hence from above, $(\tau_j^* - Cl(A)) \cap (\tau_i - Cl(B)) \subseteq \tau_i - Cl(A \cap B)$

(c) \Rightarrow (d) Let A be (i,j)-I- semiopen and B be (i,j)-I- semi*- open with A \cap B = \emptyset . From the above result it is obvious that τ_i^* - Cl(A) $\cap \tau_i$ - Cl(B) = \emptyset .

 $(d) \Rightarrow (e)$ Let A be (i,j)-I- preopen and let B be a (i,j)-I- semi*- open. The result follows from Theorem 3.3(d)

(e) \Rightarrow (a) Let A and B be τ_i - open and τ_j^* - open respectively with A \cap B = Ø. Obviously A is (i,j)-I- preopen and B is (i,j)-I- semi*- open. So from (e) we get $(\tau_j^* - Cl(A)) \cap (\tau_i - Cl(B)) \subseteq \tau_i - Cl(A \cap B) = \emptyset$. This implies (by Theorem 3.1) X is (i,j)*- extremally disconnected.

References

- [1] G. Balasubramanian, Extremally disconnectedness in bitopological spaces, *Bull. Cal. Math. Soc.*, 83(1991), 247-252.
- [2] T. Birsan, Surles espaces bitopologiques connexes, *An. Sti. Univ. Al. Cuza Iasi. N Sect. I XIV Face*, 2(1968), 293-96.
- [3] M. Caldas, S. Jafari and N. Rajesh, Preopen sets in ideal bitopological spaces, *Bol. Soc. Paran. Mat.*, 3(29) (2) (2011), 61-68.
- [4] M. Caldas, S. Jafari and N. Rajesh, Some fundamental properties of βopen sets in ideal bitopological spaces, *European J. of Pure and Applied Mathematics*, 6(2) (2013), 247-255.
- [5] M.C. Datta, Contributions to the theory of bitopological spaces, *Ph.D. Thesis*, (1971), B.I.T.S. Pilani, India.
- [6] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, *arXiv:math/9901017v1* [*math.GN*], (1999), 1-13.
- [7] E. Ekici and T. Noiri, Connectedness in ideal topological spaces, *Novi Sad J. Math.*, 38(2) (2008), 65-70.
- [8] E. Ekici and T. Noiri, *-Extremally disconnected ideal topological spaces, *Acta Math. Hunger*, 122(1-2) (2009), 81-90.
- [9] L. Gillman and M. Jerison, Rings of continuous functions, *Univ. Series in Higher Maths*, Van Nostrand, Princeton N.J., (1960).
- [10] E. Hatir, A. Keskin and T. Noiri, A note on strong β -I- sets and strongly β -I- continuous functions, *Acta Math. Hungar*, 108(1-2) (2005), 87-94.
- [11] E. Hatir and T. Noiri, On decomposition of continuity via idealization, *Acta Math. Hungar*, 96(2002), 341-349.
- [12] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer.

Math. Monthly, 97(4) (1990), 295-310.

- [13] M. Jelic, Feeble P-continuious mappings, *Rend. Circ. Math. Palermo*, 24(1990), 387-395.
- [14] F.H. Khedr and S.M. Al-Areefi, Precontinuity and semi-pre-continuity in bitopological spaces, *Indian. J. Pure. Appl. Math.*, 23(9) (1992), 625-633.
- [15] M. Kar and S.S. Thakur, Pair-wise open sets in ideal bitopological spaces, *Int. J of Mathematical Sciences and Applications*, 2(2) (2012), 839-842.
- [16] J.C. Kelly, Bitopological spaces, *Proc. London Math. Soc.*, 13(1963), 71-89.
- [17] K. Kuratowski, *Topology (Vol. 1)*, Academic Press, New York, (1966).
- [18] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36-41.
- [19] S.N. Maheswari and R. Prasad, Semi open sets and semi continuous functions in bitopological spaces, *Math Notae*, 26(1978), 29-37.
- [20] A.S. Mashhour, M.E.A. El. Monsef and S.N. El. Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math and Phys. Soc.*, Egypt, 53(1982), 47-53.
- [21] M.E.A. El. Monsef, S.N. El. Deeb and R.A. Mahmoud, β- open sets and βcontinuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12(1983), 77-90.
- [22] M.E.A. El. Monsef, E.F. Lashien and A.A. Nasef, On I-open sets and I-continuous functions, *Kyungpook Math. J.*, 32(1) (1992), 21-30.
- [23] J.R. Munkers, *Topology (Second Edition)*, Pearson Education Asia, (2000).
- [24] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.*, 15(1965), 961-970.
- [25] T. Noiri, Hyperconnetedness and preopen sets, *Rev. Roumania Math. Pure Appl.*, 29(1984), 329-334.
- [26] W.J. Pervin, Connectedness in bitopological spaces, *Indag. Math.*, 29(1967), 369-372.
- [27] I.L. Reilly, On pairwise connected bitopological spaces, *Kyungpook Math J.*, 11(1971), 25-28.
- [28] I.L. Reilly, On bitopological separation properties, *Nanta Math.*, V(2) (1972), 14-25.
- [29] R. Vaidyanathaswamy, The localization theory in set topology, *Proc. Indian Acad. Sci.*, 20(1945), 51-61.