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Abstract
In this paper, we introducé — limit operation for sequences in p-adic linear
2-normed space X,N(s,*) ) is linear with respect to summation and scalar

multiplication and we investigate the relation beem | — cluster points and
ordinary limit points of p-adic linear 2-normed Sjess.
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1 Introduction

Kummer, in 1850, first introduced t@-adic numbers. Then the German
Mathematician, Kurt Hensel (1861-1941) developeel gh-adic numbers in a
paper which was concerned with the developmentgehaaic numbers in power
series, around the end of the nineteenth centary,807. Therp-adic numbers
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were generalized to ordinals (or valuation) by Ktek in 1913, and Minkowski
(1884), Tate (1960), Kubota-Leopoldt (1964), lwasaserre, Mazur, Manin,
Katz, and the others. There are numbers of all kiedch as rational, real,
complex, p-adic numbers. Henselg-adic’'s numbers are now widely used in
many fields such as analysis, physics and commaience. The-adic numbers
are less well known than the others, but they pldyndamental role in humber
theory in other parts of mathematics. Although,ytlave penatrated several
mathematical fields, among them, number theoryelaigc geometry, algebraic
topology and analysis. These numbers are now w&béshed in mathematical
world and used more and more by physicists as Wekr the last centuny-adic
numbers andp-adic analysis have come to play an important mlenumber
theory. They have many applications in mathematorsgxample: Representation
theory, algebraic geometry, and modern number thaond many applications in
mathematical physics since 1897, for example; &ttimory, QFT, quantum
mechanics, dynamical systems, complex systems, Rw&cently, Branko
Dragovich in his study ([4]) he constructpehdic approach to the genetic code
and the genome and gave a new approach betwadit fields and biology with
chemistry, especially organic chemistry. The otfessiearchers gave the different
approach wittp-adic on various disciplines of mathematics asdilied subjects
(see ([1], [2], [3], [9], [10], [11], [12], [15]F21], [24], [25]) for more detalils).

The concept of linear 2-normed spaces has beestigated by Gahler in 1965
([5]) and has been developed extensively in differsubjects by others.
Lewandowska published a series of papers on 2-rbsats and generalized 2-
normed spaces, convergent sequences, 2-Banaclsspatie (see ([8], [16], [17],
[18], [20], for more details) . The notion of ideainvergence was introduced first
by P.Kostyrko et al [14] as an interesting geneation of statistical convergence.
The concept of arl —cluster point andl —limit point of a sequence in metric
space was introduced and some results for thefdetloster points and I-limit
points obtained in [13]. A.Sahiner et al [22] oduced | —cluster points
convergence sequences in 2-normed linear spacesn@n@urdal [7] investigated
the relation betweelh — cluster points and ordinary limit points of sequesn 2-
normed spaces.

Mehmet Acikgoz ([17]) introduced a very understdrida and readable
connection between the conceptgiadic numbers p-adic analysis and linear 2-
normed spaces. Recently B.Surender Reddy [23]doted some properties pf
adic linear 2-normed spaces and obtain necessdrgudficient conditions fop-
adic 2-norms to be equivalent pradic linear 2-normed spaces.

The main aim of this paper is to we introduce cluster points limit operation for
sequences ip-adic linear 2-normed spaceX(N(e,*) ) is linear with respect to

summation and scalar multiplication and we inveddgthe relation between
| — cluster points and ordinary limit points pfadic linear 2-normed spaces.
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2 Preliminaries

In this paper, we will use the notationg; for a prime number, Z - the ring of
rational integersZ" - the positive integersQ- the field of rational numberR -

the field of real numbersR" - the positive real numberg,, - the ring ofp-adic
rational integers,Q, - the field of p-adic rational numbersC- the field of
complex numbers an@, - thep-adic completion of the algebraic closure@f.

Definition 2.1:

(1) The p-adic ordinal (valuation) of x and y, forz x,yZ is
ord, (x,y) =max{r: p"/x and p"/y}=0.

(i) For 2, EDQ, The p-adic value og andE IS
b d b d

ordp(g,g) =ord, (a,c)-ord, (a,d) - ord, (b,c) +ord, (b, d)

(i)  For %, cdQ, withd =1, The p-adic value o% andc is
a
ordp(g,c) =ord,(ac)-ord,(bc).

Notice that in all cases,ord, in 2-norm, gives an integer and that for rational

I

numberE andE the value ofordp(E,E) is well defined. i.e., ifE:i and
b d b d b b

I

U

ac

bd)

c ac
—= thenord (—,—) =ord
d ' p(b d) p(

Q.lO

We also introduce the convention theat , (0, y) = ord,, (X,0) = .

Thep-adic valuation has the following properties:
Proposition 2.2: For all x,yJQ, we have forord,, ;

0] ord,(x,y) = iff x=0 or y=0,

(i) ord,(xzy)=ord,(x,y) +ord,(zy),

(iii) ord,(x+zy)=min{ord, (x,y),ord (z y)}and with equality when
ord,(x,y) #Zord (zY) .
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Definition 2.3: Let X be a linear space of dimension greater thavdr K, where
K is the real or complex numbers field. Suppds@,») be a non-negative real
valued function onX x X satisfying the following conditions:

(2—N,) : N(x,y) >0 and N(x,y) = Oif and only ifx andy are linearly
dependent vectors,
(2-N,) : N(X,¥y)=N(y,x) forall x,y X,

(2-N;) 1 N, y)=|AN(x,y) forall ADK andx,yO X,
(2-N,) : N(x+Vy,2<N(x2)+N(y,z) for all x,y,z00 X.

Then N ¢ ¢ ) is called a 2-norm oK and the pair(X,N <(, )5 called a linear 2-
normed space.

Definition 2.4: For all x,y[0Q, let the p-adic norm of x , y be given by
N(x,y), =p "™ for x,y# 0
=p”= Qfor x=0o0ry=0
Where ord (X, y) = max{r : p'/x and p'/y}.
Proposition 2.5: Let the functionN(s,*) ; be a non-negative real valued function

on Qx Q satisfying the following conditions:
N(e),:QxQ - R"0{0} ={r :r 20}
(1) N(x2), =0 ifand only if x=0or z=0,
(i) N(xy,z), =N(x2),.N(y,2), forallx,yandzUlQ,
(i) N(x+y,2), <max{N(xz),,N(y 2 ,} and with equality when
N(x2), # N(y,2),, whereN(e,*), is a non-Archimedean norm &

Let N(x 2, be a non-negative real valued function definedtioa rational
numbersQx=Q such thatN(x z), = Ofor x=0 or z=0, N(x 2,>0 when
x#0,z# 0. N(xy,2),=N(x2),.N(y,2), forall x,y,z0Q and

(2.6) NOx+y 9,< K(Nx 3,+ Ny ¥

for someK =1 and all x, y,zJQ . For the usual triangle inequality one ask that
this condition holds witlK =1, i.e.,

(2.7) N(x+Vy,2,< N(x2,+ Ny
forall x,y,z0Q.

The ultrametric version of the triangle inequaigystronger still and asks that
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(2.8) N(x+y,2), < max(N(x2),,N(%.2),)

for all x,y,zOQ. If N(»), satisfies (2.6), n is a positive integer and
X Xy Xgsoey X 0,71 C, then

(2.9) N %, 2),< KD NX, 3,

as one can check using induction on n. Foaald, N(x, 2); is a non-negative
real valued function orQxQ which vanished at 0, is positive at all nhonzero
x0Q and sends products to products.NIfx, 2) , satisfies (2.6), then

(2.10) NOx+y i< K(Nx 8+ Ny E)
whenO<a<1and

(2.11) NOx+y 22 <220 K ( N(x 22+ Ny %)
when a>1.

In particular, if N(x 2, satisfies the well-known triangle inequality (2.7)
and0<as<1, thenN(x, 2); also satisfies the the well-known triangle inegyal

If N(x 2, satisfies the ultrametric version (2.8) of thargle inequality, then
N (X, z)";‘, satisfies the ultrametric version of the trianiglequality for alla= Q

3  p-Adic 2-Metric Space:

Suppose a mappingl, : Xx X xX - Ron a non-empty sefsatisfying the

following conditions, for allx, y,zO X

D,) For any two different elements x and y in X thisran element in X such
thatd (x y,2) # O

D,) d, (% ¥,2) =0 when two of three elements are equal

D;) d, (X, ¥,2)=d (xzy)=d,(VzX)

D,)d,(x,¥,2)<d, (X, y,w) +d (x,w,2) +d (W, y,2) foranyw inX. Thend,

is called p-adic 2-metric onX and the pair (Xd,) is calledp-adic 2-metric

space. If p-adic 2-metric also satisfies the condition

d, (X, y,2) <max{d, (x,y,w),d (x,w,2),d (v, w 2)} for xy,z,wOX,thend,is

called ap-adic ultra 2-metric and the paiX,d, 9 called gp-adic ultra 2-metric

space.
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Definition 3.1: Let X be a linear space of dimension greater thavdr K, where
K'is the real or complex numbers field. Suppde,+), be a non-negative real

valued function onX x X satisfying the following conditions:

(2-pN,): N(x 2, =0 if and only ifx andz are linearly dependent vectors.
(2= PpN,) : N(xy, 2, = N(x 2,. N y }, forall x,y, zI0 X,

(2-pN;)  N(x+y, 2, < N(x2,+ Ny} forall x,y,z00 X,

(2= pN,) : N(Ax2), =|A| N(x 2), forall ADK and xzOX .

Then N(e,¢),
p-adic linear 2-normed space.

is called ap-adic 2-norm orX and the pai(X, N(¢,*),)is called

For everyp-adic linear 2-normed spac€X,N « <(, Jhg function defined on
XxXxX by d,(X¥2)=N(x-2zy-2), is ap-adic 2-metric.Thus everp-
adic linear 2-normed spadgX,N « «( , ) Will be considered to be g-adic 2-
metric space with this 2-metric.

A sequence(x},, of p-adic 2-metric spacg¢X,d, gonverges toxlX in p-
adic 2-metric if for everg>0, there is an |> 1 such that
d,(X,,%2) =N(x, - zx-2), <¢ foreverynz=I.

For the given two sequences phdic 2-metric spadeX,d, Jvhich are{x}
and{y,},, converges tox,y X in thep-adic 2-metric respectively, then the

sequence of sumg, +y, and the produck,y, converges to the sum+y and
to the productxy of the limits of initial sequences.

A sequence X}, of p-adic 2-metric spac¢X,d, I a Cauchy sequence with
respect to thep-adic 2-metric if for each> Qthere is anl> 1such that
d, (%, % 2) = N(x, -z x,-2), <&, foreverynmz=].

Definition 3.22 A sequence{x,},., in a p-adic linear 2-normed space
(X,N(*,*),) is called convergent if there exists amlJ X such that
lim N(x, - x 2 ,=0 forall z0 X.

Definition 3.3: A sequence{x,},., in a p-adic linear 2-normed space
(X,N(¢,*),) is called Cauchy sequence if for eaglr 0, there is anl =1 such
that N(x, —X,,2), <&, forall n,m=I and forallz0J X.
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Proposition 3.4: If a sequence {x,}in a p-adic linear 2-normed
spacgX,N(,*),) is convergent tallX, thenlim N(x,,2),=N(x2), for
n- oo

each zIX.

Definition 3.5: A p-adic linear 2-normed spadeX, N(s,¢),) is called complete
if every Cauchy sequence is convergent in p-ade&ali 2-normed space.

Definition 3.6: A p-adic linear 2-normed spadeX, N(s,¢),) is called p-adic 2-
Banach space if p-adic linear 2-normed space ispieta.
Proposition 3.7: If lim N(x, 2, exists then we say thgk}, ., is a Cauchy

sequence with respect t(,) .

Proof: Let us suppose that lid x( z,, ¥ x. Then we can obtain a constavif
such than>M,; = N(x-x, 2, <§.

£ £
If m,n>M, thenN(x-x, 2, <E and N(x- x,, z)p<5,
Hence by using the triangle inequality, we have

N(Xn_)ﬂuz)p: N x,— X x X% )stN(xn—x,z)p+ N x X, ;p<§+%:‘g_

Definition 3.8: A sequencégx,},., is called a null sequence in p-adic linear 2-
normed space ifim N(x,, 2 ;=0 for all z[J X.

Example 3.9: Let x, = p" and z= p with r <n in the p-adic 2-norm over
X =Q.

Then, N(p", p), = p°®® "), if p"#0

and p' #0=p~,if p"=0orp =0.

n

In this caséN(p", p'), = p" =pi=0, as n - . Therefore,lim N(x, 2,=0

for all zO X. Hence this sequence is a null sequence witlect$p thep-adic 2-
norm.

Definition 3.10: A p-adic numbeKa, 8) can be uniquely written in the form

@B=Y @p.hp)

i=n,j=m
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Where eaciD< g ,b < p-1 and p-adic 2-norm of the numbéw, 3) is defined
asN(a,B),=n, (nOR) and the double series

(1+ p+ p°+ p’+...,1+ p+ P+ p+ ..)converges teli in the p-adic 2-norm.
-p

4 Main Results:

In this section, we prove that- limit operation for sequences in p-adic linear 2-
normed space X,N(e,*),) is liner with respect to summation and scalar

multiplication. We investigate the relation betwdetiuster points and ordinary
limit points of p-adic linear 2-normed spaces.

A family of sets | 02 (power set of) is said to be an ideal dfd0l ,| is
additive i.,e.,ABOIl = A BOI and hereditary i.eA0l ,BO A= B .

A non empty family of setsF 02" is a filter onY if and only if®OF,
An BOF for eachABOF, and any subset of an elementffis in F. An

ideal | is called non-trivial ifl Z#@®andY 1. Clearly I is a non-trivial ideal if
andonly if F =F ( )={Y - A: All} is afilter inY, called the filter associated

with the ideall .

A non-trivial ideal | is called admissible if and only §fn} : nOY} O 1 .

An admissible ideal 0 2" is said to have the property (AP) if for any sequen
{A,A,,A,,.} of mutually disjoint sets of there is a sequend®,,B,,B,,..} of

sets such that each symmetric differeAd,, i= 123.. is finite and

B=0B 0l

Definition 4.1: Let (X,N(-,-)) be a linear 2-normed space. A sequefigg} of

elements of X is called to be statistically convergentxd X the set
A(E) ={n ON:N(x,—-x2)= 5} has natural density zero for each 0.

Definition 4.2: Let | 0 2"be a non trivial ideal in N andX,N(¢,*)) be a linear
2-normed space. The sequende,} of elements ofX is said to be

| —convergent tox[] Xif for each& > 0the set
AE) ={nON:N(x,- x2)2 &0l .

Definition 4.3: Let | 02" be a non trivial ideal inN . A sequenée,}in a p-
adic linear 2-normed spa¢&X,N(-,*) ;) is said to bel —convergent to x if for

eache >0 and non- zere in X the set\(&) ={nON: N(x, - x2), 2 £}01.
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If {x,} is |-convergent txlX, then we write | -IlimN(x,-x2),=0
orl = limN(x,,2),=N(x2), for each non-zerp1X. The numberx is called

| —Ilimit of the sequendex,} .

Theorem 4.4: Let | be an admissible ideal andX(N(-,*) ,) be a p-adic linear
2-normed space. For eachl] X

0] If 1=1mN(x,,2),=N(x2),andl = IlimN(y,,2), =N(y,2), then
I = lim N(x, +V,,2), = N(x+V,2),

(i) | = limN(ax,,2), =N(ax,z),, alUR or K.

Proof:

(i) Let I = lim N(x,,2), =N(x2), andl = lim N(y,,2), =N(y,2), then

| = IimN(x,-x2),=0andl - limN(y, - y,2), =0.

Let £ >0 then A, A, U1, whereA = A (g) ={n0N:N(x, - x2), 2%} and

A, =A(e) ={nON:N(y, - %2, 2%}, for eachz 0 X .

Let A=A(e) ={nON:N((x, +y,)—(x+Y),2), ¢}, foreachzOX.

Let nO(A OA)C thennOA” n Ay = nOA” andnO A
= N(xn—x,z)p<%andN(yn—y,z)p<§.
Now, N((x,+VY,)=(X+V),2),=N((X, =X +(Y, = ¥),2),
< N, = %2, +N(y, ~ ¥,2),
£ €
<—+-_=¢
= nOA°.
Thus, (AOA) OA = AOAOA,.

Since A, A, 01, thereforea, 0 A, 01 and AOI .
Hence, A= A(&) ={nON:N((x, +V,) —(x+Yy),2), =2 Ul
= = lim N((x +Yn) = (x+Y),2), =0
n— o

= I =limN(x, +v,,2), =N(x+Vy,2),,
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for eachz X . Thus| —limit operation for sequences padic linear 2-normed
spaces is linear with respect to summation.

(ii) Let I = lim N(x,,2), =N(x2),, aldK, a# 0. Then for eacte > Qthe set

{NON:N(x - %x2) = }DI :>thesel{nDN [AN(x, - x2), = } Ol

"l

= the sefnON: N(ax, —ax,2) , 2 &f 01

= | = lim N(ax, —ax 2), =0
n— o

= I = lim N(ax,,2), = N(ax 2)
n— o

for eachz 0 X .Thus I-limit operation for sequences in p-adiceéin 2-normed
spaces is linear with respect to scalar multipicat

Lemma 4.5: Let | be an admissible ideal ana={u,,u,,...,u,} be a basis for a
p-adic linear 2-normed space X(N(e,),). A sequence{x,} in X is

| —convergent to x in X if and only if |- Lirrl N(x, = xu),=0 for
i=12,...d.

Proof: Suppose that a sequende, i} a p-adic linear 2-normed space
(X,N(s,),) is | —convergent tox in X .

Then, | - Lifr; N(x, = x2), =0 for each non zerpl] X

=1 - !]inl N(x, - xu),=0,fori=12,...d.

Supposé thdt— Li[rgo N(x, = xu),=0,fori=12..d.

Then A U1, whereA ={n0ON:N(x, = xu), = m} i=12,....d.

Now we have to prove that the sequefige in }X is | —convergent tox in X .
It suffices to prove that - Lifr; N(x, = x2), =0 for each non zera[J X.

Since every z in X can be written asz=au +a,u,+...+a,u,, for
a.a,,.a, UK . LetA(g) ={nD N:N(x, - %x2), 2 5}, for each non zero .zX.
Let nOAOA O...0A)¢ then nO(A n A n....n A )=>ndA° and
nOAS and, ....., aanAé:

£
= N( XU;), <———, N( XUy), < ———— . yN(X, —xu,), <
R 1|d AINTAT T

= |ay | N(x, = xu), < Ja, [ N(x, = xuy), <O| ...... , and

|ad |N(Xn - X'ud)p <a
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= a, [N, %, =), <§,|a2 IN(U,, %, = %), <§, ....... , and

lay IN(Ug, %, = %), <§

= N(au,;, X, =X), <§, N(a,U,, X, =X), <§, ......... » N(ayug, X, =X), <§
£ £ £
= N(x, = x,a,u,) , <E' N(X, =X,a,U,), <E' ....... » N(X, =x,a4Uy), <E
Now N(x, = %2),= N(zx,=X), = N(au, +a,u, +....+ ayu;, X, = X),
< N(auy, X, =X) , + N(@ Uy, X, = X) Feeenns +N(a4uy, X, = X),
E £ £
<—F—F. —=£
d d d

Thereforend A®

= ADAOD...OA))OA =>AOADOAD..OA).
SinceA, A, , ..., A,UI, therefore(A O A, O...0 A;)O1 and henceAll
= | = lim N(x, = % 2), =0 for each non zeral] X. Thus the sequendex, ih

X is | —convergent tox in X .

Remark 4.6: With respect to the bagis,,u,,....,u, , we can define a norm on
X, which we shall denote it HN(X) ,]., = max{N(xu;), :i =12,...,.d}.

Lemma4.7: Let | be an admissible ideal. A sequedoeg} in a p-adic linear 2-
normed space X,N(*,*),) is | —convergent tox in X if and only if
| - Lirrl’max{N(xn -XU),:i=12..,d} =0, where {u,,u,,...u;} be a basis
for X.

Proof: Suppose a sequende, i3 | —convergent tox in a p-adic linear 2-
normed spaceX,N(e,*) ). Then by Lemma 4.5]) - Lirrl N(x, = xu), =0,

fori=1, 2,...... , d, wherdu,u,,.....u; Be a basis foiX
= | = limmax{N(x,—xu), i =12,....d} =0.

n-oo

Conversely suppose thatlith max{N(x, = xu;), i =12,....d} =0.
Then| = lim N(x, = xu), =0, fori=12...d.

By Lemma 4.5, we havelim N(x, - x2z) , = ,dor eachzJ X

= {x,} is | —convergent tox in X.
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Lemma4.8: Let | be an admissible ideal. A sequedoeg} in a p-adic linear 2-
normed space X,N(*,*),) is | —convergent tox in X if and only if
| = lim[N(¥) ], =0.

We can define the open ballB, x £ , gentered atx having radiusr by
B, (x,€) ={y:[N(x-Vy) ], <&, where u={u,u,,...,u, joe a basis foxX. By
using open balls definition, Lemma 4.8 becomeols\s,

Lemma4.9: Let | be an admissible ideal. A sequedoe} in a p-adic linear 2-
normed space X,N(s,*),) is | —convergent tox in X if and only if
A(e) ={nON:x,0B/(x &)} belong to ideal, wherdu,,u,,....,u,} be a basis
for X..

Definition 4.10: Let | be a non trivial ideal in NA sequencdx.} in a p-adic
linear 2-normed spaceX,N(s,*),) is called | —cauchy sequence if for each
£>0, there is al =1 such that{kOON:N(x —X,,2), =20 |, for all
k,m=>1, for each non zerplJ X .

Theorem 4.11: Let | be an admissible ideal. A p-adic linear 2-normgehce
(X,N(s,),) is p-adic 2-Banach space if and only(X,[N(x) ]..) is a p-adic
Banach space.

Proof: By Lemma 4.8,1 —convergence in thp-adic 2-norm is equivalent to that
in the derived norm. To prove above Theorem, ifised to show tha{x, }is

Cauchy sequence with respect to fhadic 2-norm if and only if it is Cauchy
sequence with respect to the derived ndrr). is Eauchy sequence with respect

to thep-adic 2-norm if and only if for eacla > @nd non zerae [ X, there is a
| 21such thafk ON : N(x, = x,,2), 201, for all k,m=1, for each non zero

20X, ifand only if | — kIim N(X, = X,,,2), =0 for each non zera[J X ,if and
only if |- I(Iim N(X, =X, u;), =0 for i =12,...d where{u,,u,,...u, Joe a
basis for X (by Lemma(4.7)), if and only ifl - I(Iim [N(X = X) o] =0(by

Lemma (4.8)), if and only ifx, }is | —Cauchy sequence with respect to derived
norm ,if and only if(X,[N &), ] )is ap-adic Banach space.

Definition 4.12: Let | 02" be an admissible ideal and={x,} be sequence in
a p-adic linear 2-normed spa¢¥,N(s,»),). A number¢ is called to be a
| —limit point of x ={x} if there isaseM ={m,m,,....}0O N such thatM O 1|
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and kIim N(xmK —¢,2), =0 for each non zer@ inX. The set of alll - limit

points of x ={x.} is denoted byl (A>). A numberé is called to be a - cluster
point of x={x.} if{nON:N(x,-¢,2), <& Ol , for eache >0 and non zero

20 X . The set of all —cluster points ofx ={x_} is denoted bi(I'?).

Proposition 4.13: Let | 02" be an admissible ideal a,N(,*),) be a p-
adic linear 2-normed space. Then for each sequéngk of X, I(A2) O 1(I?)

and the set (I'?) is a closed set.

Proof: Let £ 01 (A2) .Then there exists a sbt ={m, <m, <....}O| such that
Li[TJON(XW -¢,2), =0, for each non zeralJ X . (4.14)

Letd > 0. According to (4.14) there existg O N such thatk >k, and for each
non zere [l X, We have,N(x, —¢,2), <0.
Then{nON:N(x, -¢,2), <} OM -{m,m,,....m_}

= {nON:N(x,=¢,2), <d Ul

= E012). Thusl(N) D I(T2).
Clearly, 1 (F2) O 1(F2) (4.15)

Let yOI(F?). For & > 0, there existsf, O1(F?) n B, { & )Choosed >0 such that

B.(¢0,0) O B,(Y,&).
Obviously{nUON :N(y-x,,2), <& O{nON:N(¢ —X,,2), <J}.

Hence{nON:N(y-x,,2), <& 0l andyUl (r2)
This implies that

L(r2) 012 (4.16)
from (4.15) and (4.16) we get(I'?)=1(?) and hencd (I? )s a closed set.

Definition 4.17: Let | 02" be an admissible ideal and={x,} be sequence in
a p-adic linear 2-normed spa¢¥,N(s,*) ;). IfK ={k; <k, <,....}O1, then the
subsequence x, ={x,} is called |-thin subsequence of the
sequence.lfM ={m <m, <....}00I, then the subsequence, ={x,} is called

| —non thin subsequence of the sequexnce
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We can easily verify that, ifé is a | —limit point ofx ={x_}, then there is a
| —non thin subsequence, that converges t§. Let L’ be the set of all
ordinary limit points of sequenc&={x_}. It is obvious that I(A%) O L’ and
(rx oL .

Lemma4.18: Let | 02" be an admissible ideal anxi={x_} be sequence in a p-
adic linear 2-normed spa¢&,N(s,*),). If x is | —convergent iX, then

I (A%) and I (I?) are both equal to the singleton gét-lim N(x, 2 .} for each
non zere [l X .

Proof: Suppose thak ={x, }s | —convergenttaf inX .
Then!| = lim N(x, —¢,2), =0 for each non zeral X

n-oo

= A(e) ={nD N:N(x,-¢,2), 2£}DI , for eachke >0 and non zera[ X .

Sincel is an admissible ideal, we can choose thdwet{n, <n, <...}ON
such thatn, [ A(%) andN(x, -¢,2), <%, forall KON and non zer@ [ X

= II(im N(x, —¢,2),=0.

Supposd U1 . SinceM O{nON:N(x, -¢,2), <1} for each non zerall X,
Then(N-M)n{nON:N(x,-¢,2), <1} =¢, butN-M UOF(l)and

{nON:N(x,-¢,2), <1} OF(I) for each non zerpl] X .This is a contradiction.
ThereforeM 1 .

Hence we geM ={n, <n, <,.....}00 Nand M 01 such that
lim N(x, -¢,2), =0. This impliesf 0| (A?). Since (N2) O I(T? )
Thereforeé O1(I'?).

Now suppose thag 01 () such thag # & . Then

A={nON:N(x, -£,2), z'”;‘tl}ml and

B={nON:N(x,-¢,2), <|'7—;E|}DI , for each non zemn[ X .

On the other hand, since

ln-¢|
2

N(x, =¢,2), = N(x, =n+1n-¢,2,2N(|x, =n|-|n-¢1,2),>
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for eachnOBand non zere O X , we havaB 0 A | . This contradiction shows
thatl (F?) ={¢&}. Thusl (A2) =1(T'?) ={&}.

Theorem 4.19: Let | 02" be an admissible ideal axd={x.}, y={y,} are
sequences in a p-adic linear 2-normed sEACEN(s,),) such that
M={nON:x, #y,} Ol then

L(A3) = 1(A,) andl (F2) = 1(T)).

Proof: Let £ 01(A\%) then there is a seK ={k, <k, <,.....}OI such that

| — ,Li[Tl,N(an -$,2),=0.LetK, ={nON:nOK andx, #y, }thenK, M

and henceK, Ol . Let K, ={nON:nOK andx, =y, }thenK, I .

(If K,OI Then,K =K,0K, O, butKOl).

Now the sequencg, ={y,}x, is al —non thin subsequence of={y } ., and
Yk, converges taf in X . This implies thaté O | (/\Zy)

= 1(A\2) O I(/\Zy) (4.20)
In the similar way, we can prove that (A7) O 1 (A3) (4.21)
From (4.20) and (4.21) we géfA3) = I (AY).

Let £O01(F?) thenK, ={nON:N(x, - ¢, z), <& Ul foreache >0 and non zero
zOXandK, ={nON:nOK; andx, =y,}O1I.

This implies thatk, O{nTN:N(y, =¢,2) , <& }or each non zerol] X . This
shows that, for eack > @nd non zere X, {nON:N(y, =¢,2), <& Ol .

= £ isal —cluster point ofy ={y, }in X = fDI(ryz).

Therefore L(r) o)) (4.22)
In the similar way, we can easily show tHgF ;) O 1 (') (4.23)
From (4.22) and (4.23) we getl';) = 1(;).

Theorem 4.24: Let | 02" be an admissible ideal with the property (AP) and
x={x,}is sequence in a p-adic linear 2-normed SpACEN (*,*) ,). Then there

is a sequencey ={y,}such thatL? = I(F?)and{nON:x, # y,} O |, where L}
is ordinary limit points set of the sequence{y,}. Moreover
{y,:nON} O{x, :nON}.
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Proof: If L} =1(F) theny =xand this case is trivial.

Let I1(I?) is a proper subset bf. ThenL’ —1(I'?) # ¢ and for each

EOLE —1(rf) there is an open intervdl, = (¢ - J,& +J)

such thatl —Il(i[r; N(x; —¢,2), =0.Hence, there is an open interval
E.=({-9,6+Jd)suchthafk ON:x OE;}O1I. Itis obvious that the collection
of all the intervalsE, is an open cover af —1(r'? ,)so by covering Theorem
there is a countable and mutually disjoint subcd¥gs |, such that eaclk,

contains anl —thin subsequence foft, .}

Now, letA, ={nON:x, 0OE;,jON}. It is clear that\ OI, j=123..
andA n A =¢. Then by (AP) property of there is a countable collection

{B,}j, of subsets ofN such thatB = DlBj and A -B is a finite set for
J:

eachjON.LetM =N-B={m <m, <,....}J0ON.

Now the sequencg ={y, i$ defined byy=y, if kOB andy, =x, ifkOM.
Obviously{kON:x #y} O BOI
So by Theorem (4.19) we haM@?) = I(I'}) .

Since A, - B is a finite set then the subsequenge={y,} s has no limit point

that is not also am —limit point of y = L =1(I';).

Therefore, we have provedl.zy =1(r?). Moreover, the construction of the
sequencey ={y, phows thaty, :nON} O{x,:nON }
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