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Abstract
Let α be an infinite ordinal. We show that not all epimorphisms are

surjective in the class Diα of diagonal cylindric algebras (regarded as a concrete
category). It follows that Diα does not have the strong amalgamation property.
This answers a question of Pigozzi.
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1 Introduction

The class of diagonal cylindric algebras is studied by Henkin Monk and Tarski,
cf. Theorem 2.6.50 in [2]. In [10] p. 327 this class is denoted by Diα where
α is an infinite ordinal. We follow the notation of [10] which is in conformity
with that adopted in [2]. One of the main results in [10] is that Diα has the
amalgamation property AP , cf. Theorem 2.2.20 therein, and it was asked in
[10] whether this class has the strong AP (SAP ). Here we give a negative
answer to this question. In fact, we prove a stronger result. We show that
not all epimorphisms (i.e right cancellative maps) are surjective in Diα. Inde-
pendently of us Madárasz [7] proves that Diα does not have SAP even if the
amalgam is sought in the bigger class of representable cylindric algebras. 1 In

1This result is only announced in [4] without proof.
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our proof we use extensively the notation of [2] without reference or any kind
of warning. All these are collected at the end of [2] under the title “index and
symbols” p.489. In what follows α is an infinite ordinal.

2 The Main Result

Definition 2.1 A ∈ Diα if all non-zero x ∈ A and finite Γ ⊆ α, there are
distinct k, l /∈ Γ such that x · dkl 6= 0.

Theorem 2.2 In Diα not all epimorphisms are surjective. In fact, there
are A,A0 ∈ Diα such that the inclusion map A ⊆ A0 is not surjective and such
that for all A1 ∈ Diα and homomorphisms m : A0 → A1 and n : A0 → A1,
if m and n coincide on A, then m = n. In particular, Diα does not have the
strong amalgamation property.

We shall need several lemmas before embarking on the proof:

Lemma 2.3 Let α ∈ Γ ⊆ β and i, j ∈ β \ Γ. Let A ∈ CAβ. Then αs(i, j)
is a complete one to one endomorphism of ClΓA. Furthermore, αs(0, 1) is an
automorphism if |Γ| > 1

Proof We may assume that i 6= j since αs(i, i)|ClΓA = Id by [2] 1.5.13(iii)
and 1.5.8(i). αs(i, j) is a complete boolean endomorphism of BlA by [2] 1.5.16.
To prove that it is one to one on ClΓA it is enough to show that x > 0 →
αs(i, j)cαx > 0. By definition

αs(i, j)cαx = sα
i si

js
j
αcαx = cα(dαi.ci(dij.cj(djα.cαx))).

By 1.3.8 [2], 0 < x → 0 < dkl.clx for every k, l ∈ β. The required follows. The
rest of the statement follows from [2] 1.6.13 and 1.5.17.

Lemma 2.4 Let k, l, u 6= v all in α. Let A ∈ CAα. Then the following
hold for all x ∈ A:

us(k, l)cucvx = us(l, k)cucvx

us(k, l)us(k, l)cucvx = cucvx.

Proof [2] 1.5.14, 1.5.17.
The equations in the above Lemma are sometimes called the merry go

round indentities (MGR).

Lemma 2.5 Let A0 and A1 ∈ Diα. Then there exist B0, B1 ∈ CAα+ω

i0 : A0 → NrαB0 and i1 : A1 → NrαB1 such that for every homomorphism
f : A0 → A1 there exists a homomorphism g : B0 → B1 such that g◦i0 = i1◦f .
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Proof The argument we use is a typical step-by step construction. Let
A0, A1 ∈ Diα. We construct the desired algebras using ultraproducts. Let R
be the set of all ordered quadruples 〈Γ, n, k, l〉 such that: Γ ⊆ω ω, n ∈ ω, k, l
are one to one (finite) sequences with

k, l ∈ n(ω ∼ Γ), Rng(k) ∩Rng(l) = ∅.

For Γ ⊆ω ω, and n ∈ ω put

XΓ,n = {〈∆,m, k, l〉 ∈ R : Γ ⊆ ∆, n ≤ m}.

It is straighforward to check that the set consisting of all the XΓ,n’s is closed
under finite intersections. Accordingly, we let M be the proper filter of ℘(R)
generated by the XΓ,n’s. so that

M = {Y ⊆ R : XΓ,n ⊆ Y, ∃Γ ⊆ω ω, n ∈ ω}.

For each 〈Γ, n, k, l〉 ∈ R, choose a bijection ρ(〈Γ, n, k, l〉) from α + ω onto α
such that

ρ(〈Γ, n, k, l〉)|Γ ⊆ Id

and

ρ(〈Γ, n, k, l〉)(α + j) = kj,∀j < n.

Now fix i ∈ {0, 1}. Let

F(Ai) =
∏

φ∈R

Rdρ(φ)Ai/M

Here Rdρ(φ)Ai - the ρ(φ) reduct of Ai - is a CAα+ω, and so F(Ai) - an ultra-
product of these - is also a CAα+ω. Note too, that for each φ ∈ R, the algebra
RdρφAi has universe Ai. Now let ji be the function from Ai into F(Ai) defined
as follows

jix = 〈(sk0
l0

)Ai ◦ . . . (s
kn−1

ln−1
)Aix : 〈Γ, n, k, l〉 ∈ R〉/M.

In [10] it is proved in Theorem 2.2.19 that ji ∈ Ism(Ai, NrαF(Ai)). Let g be
the function from F(A0) into F(A1) defined by:

g(〈xφ : φ ∈ R〉/M) = 〈fxφ : φ ∈ R〉/M.

Then it is straightforward to check that g is the desired “lifting” function.
Proof of the Main theorem Let α ≥ ω and F is field of characteristic

0. Let

V = {s ∈ αF : |{i ∈ α : si 6= 0}| < ω}.
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As is the custom in algebraic logic V a weak space is denoted by αF (0), where
0 is the constant 0 sequence. Note that V is a vector space over the field F .
Let

C = 〈℘(V ),∪,∩,∼, ∅, V, ci, dij〉i,j∈α.

Let y denote the following α-ary relation:

y = {s ∈ V : s0 + 1 =
∑

i>0

si}.

and

w = {s ∈ V : s1 + 1 =
∑

i6=1

si}.

For each s ∈ y we let ys be the singleton containing s, i.e. ys = {s}. Let

A = SgC({y, ys : s ∈ y})

A0 = SgC({y, w, ys : s ∈ y}).
Here Sg is short for the subalgebra generated by. Clearly A and A0 are in
Diα. We first show that w /∈ A. We follow closely the argument in [8], where
a similar construction using the field of rationals is used. Let

Pl = {{s ∈ αF (0) : t +
∑

(risi) = 0} : {t, ri : i < α} ⊆ F}.

P l< = {p ∈ Pl : ∃i < α, cip = p}.
Note that for p ∈ Pl, p = {s ∈ αF (0) : t +

∑
i risi = 0} say, then cip = p (i.e.

p is parallel to the i-th axis) iff ri = 0. Note too, that

{y, w, dij : i, j ∈ α} ⊆ Pl.

y, w /∈ Pl<, 1 ∈ Pl<

and

{dij : i 6= j, i, j ∈ α} ⊆ Pl< ↔ α ≥ 3.

Now let

G = {y,−y, p,−p, c(∆){0},−c(∆){0} : p ∈ Pl< ∪ {d01} ∆ ⊆ω α, 0 ∈ ∆}.

G∗ = {⋂

i∈n

gi : n ∈ ω, gi ∈ G}.

and

G∗∗ = {⋃

i∈n

gi : n ∈ ω, gi ∈ G∗}.



202 Tarek Sayed Ahmed

It is easy to see that {y, ys : s ∈ y} ⊆ G∗∗, and G∗∗ is a boolean field of sets.
We prove that w /∈ G∗∗ and that G∗∗ is closed under cylindrifications. To this
end, we set:

L = {p ∈ Pl< : c0p 6= p}, P (0) = L ∪ {d01}.
Next we define

G1 = {g ∈ G∗ : g ⊆ y}
and

G2 = {g ∈ G∗ : g 6⊆ y, g ⊆ p, p ∈ P (0)}.
We have G1 ∩G2 = ∅. Now let

G3 = {p1 ∩ p2 . . . ∩ pk : k ∈ ω, {p1, p2, . . . , pk} ⊆ G ∼ ({y} ∪ P (0))}.

It is easy to see that G∗ = G1 ∪ G2 ∪ G3. To prove that w /∈ G∗∗ we need: If
g ∈ G3 and 0 6= g, then g 6⊂ w. But this follows from the following. Assume
that g = p1 ∩ p2 . . . ∩ pk say, with pi ∈ G and pi /∈ ({y} ∪ P (0)) for 1 ≤ i ≤ k,
and let z ∈ g. Let [] be the function from Pl into F defined as follows:

[p] = {1/r0(−t−∑
rizi)}, p = −{s ∈ αF (0) : t +

∑
risi = 0}, r0 6= 0,

and else
[p] = 0.

Let
r ∈ F ∼ ((

⋃

1≤i≤k

[pi]) ∪ [−w])

be arbitrary, and let

z0
r = z ∼ {(0, z0)} ∪ {(0, r)}.

Then
z0

r ∈ g ∼ w, g 6⊆ w.

(Here we are using that when c(∆){0} ∈ G, then 0 ∈ ∆.) We now proceed to
show that w /∈ G∗∗. Assume that

x =
⋃{g1

i : i < n1} ∪
⋃{g2

i : i < n2} ∪
⋃{g3

i : i < n3}

where
{gj

i : i < nj} ⊆ Gj, gj
i ⊆ w, ∀j ∈ {1, 2, 3}.

We show that x 6= w. By the above, we have x ⊆ ⋃
i<n pi for some {pi : i <

n} ⊆ P (0). Note that if α > 2 then P (0) = L and P (0) = L∪{d01} otherwise.
If α = 2 then w ⊆ −d01 otherwise P (0) = L. Now it is enough to show
that w is not contained in

⋃
E for any finite E ⊆ L. But it can be seen by
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implementing easy linear algebraic arguments that, for every n ∈ ω, and for
every system

t0 +
∑

(r0ixi) = 0

·
·

tn +
∑

(rnixi) = 0,

of equations, such that for all j ≤ n, there exists i < α, such that

rji = 0 rj0 6= 0,

the equation ∑

i<α

xi = 2x1 + 1

has a solution s in the weak space αF (0), such that s is not a solution of

tj +
∑

i<α

(rjixi) = 0,

for every j ≤ n. We have proved that w /∈ G∗∗. To show that w /∈ A, we will
show that G∗∗ is closed under the cylindric operations (i.e it is the universe of
a CAα. It is enough to show that (since the ci’s are additive), that for j ∈ α
and g ∈ G∗ arbitrary, we have cjg ∈ G∗∗. For this purpose, put for every
p ∈ Pl

p(j|0) = cj{s ∈ p : sj = 0}, (−p)(j|0) = −p(j|0).

Then it is not hard to see that

p(j|0) = {s ∈ αF (0) : t +
∑

i 6=j

(risi) = 0},

if
p = {s ∈ αF (0) : t +

∑

i<α

(risi) = 0},

and so
p(j|0) ∈ Pl<∀p ∈ Pl.

Let j and g be as indicated above. We can assume that

g = e ∩ p1 ∩ . . . ∩ pn ∩ −P1 . . . ∩ −Pm ∩ z

∩ − c(∆1){0} . . . ∩ −c(∆N ){0},
where

e ∈ {y,−y, 1}
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n,m, N ∈ ω ∼ {0}, pi, Pi ∈ Pl< ∪ {d01},
cjpi 6= pi, cjPi 6= Pi,

z ∈ {c(∆){0}, 1 : ∆ ∈ ℘ωα, 0 ∈ ∆, j /∈ ∆},
and

{∆1, . . . , ∆n} ⊆ {x ∈ ℘ωα : j /∈ x, 0 ∈ x}.
We distinguish between 2 cases:

Case 1.
z = c(∆){0}, j /∈ ∆.

Then
cj(e ∩ p1 . . . ∩ pn ∩ −P1 . . . ∩ −Pm

∩c(∆){0} ∩ −c(∆1){0} . . . ∩ −c(∆N ){0})
p1(j|0) ∩ . . . pn(j|0) ∩ −P1(j|0) . . . ∩ −Pm(j|0)

∩cjc(∆){0} ∩ −cjc(∆1){0} ∩ ∩ − cjc(∆N ){0}.
Case 2.

z = 1

Then

cj(e.p1 ∩ . . . ∩ pn ∩ −P1 . . . ∩ −Pm

∩ − c(∆1){0} . . . ∩ −c(∆N ){0})
= f(e) ∩k≤n ((∩i≤ncj(pk ∩ pi) ∩ ∩i≤mcj(pk − Pi)

∩i≤Ncj(pk − c(∆i){0})).
where

f(y) = ((∩i≤ncj(y ∩ pi) ∩ ∩i≤mcj(y − Pi)

∩i≤Ncj(y − c(∆i){0})).
f(−y) = ∩k≤ncj(pk − y)

f(1) = 1.

Now for every p, q ∈ Pl, there are p′, q′, p′′ and q′′ ∈ Pl< such that

cj(p ∩ q) = p′ ∩ q′,

cj(p ∼ q) = p′′ ∼ q′′

and if j ∈ ∆p ∼ Γ, then

cj(p \ c(Γ){0}) = αF (0) ∼ p(j|0) ∪ (p(j|0) ∼ cjc(Γ){0}).
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We have proved that w /∈ A. Now let A1 ∈ Diα and assume that h and k are
given homomorphisms from A0 to A1 that agree on A. It clearly suffices to show
that k(w) = h(w). By the above Lemma, B0,,B1 be ω-extensions of A0 and A1

via i0 and i1, respectively, that is i0 : A0 → NrαB0 and i1 : A1 → NrαB1. Let
k∗ : B0 → B1 be a homomorphism such that

k∗ ◦ i0 = i1 ◦ k,

and let h∗ : B0 → B1 be a homomorphism such that

h∗ ◦ i0 = i1 ◦ h.

We define
τα(x) = αs(0, 1)x.

We will show that (*)
τB0
α (i0y) = i0w.

By (*) we will be done because of the following:

k∗ ◦ i0(w) = k∗(τB0
α (i0y)) = τB1

α (k∗ ◦ i0(y)).

But since h and k agree on A and y ∈ A, we have

k∗ ◦ i0(y) = i1 ◦ k(y) = i1 ◦ h(y) = h∗ ◦ i0(y).

From which we get that

k∗ ◦ i0(w) = τB1
α (k∗ ◦ i0(y)) = τB1

α (h∗ ◦ i0(y))

= h∗(τB0
α (i0(y)) = h∗(i0w) = h∗ ◦ i0(w).

We have shown that
k∗ ◦ i0(w) = h∗ ◦ i0(w).

Thus
i1 ◦ k(w) = i1 ◦ h(w).

But since i1 is one to one, it readily follows thus that

k(w) = h(w).

We are done modulu (*). We now prove (*). We write i instead of i0. Now
tB0
α x = αs(0, 1)B0x is always evaluated in B0, hence for better readability we

omit the superscript B0. Let τ(x) be the following CA2 term:

τ(x) = s01c1x.s10c0x.
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Let
X = {ys : s ∈ y}, a ∈ X.

We show that
(1) i(τ(a)) ≤ τα(i(y)).

We start by showing that

(+) i(τ(a)) = τα(i(a)).

Note first that a = c1a.c0a. Now we have

αs(0, 1)i(a) = αs(0, 1)(c1i(a).c0i(a))

= αs(0, 1)c1i(a).αs(1, 0)c0i(a)

Here we use that αs(0, 1) is an endomorphism and the MGR, namely that

αs(0, 1)c0i(a) = αs(0, 1)cαcα+1c0i(a)

= αs(1, 0)cαcα+1c0i(a) = αs(1, 0)c0i(a).

We compute

αs(0, 1)c1i(a) = sα
0 s01s

1
αc1(i(a)) = sα

0 s01ci(i(a))

= sα
0 s01cαc1(a) = sα

0 cαs01ci(i(a)) = s01c1(i(a)).

Similarly

αs(1, 0)c0i(a) = s10c0i(a).

From this we get (+). (1) follows from (+) by noting that τα(i(a)) ≤ τα(i(y)).
Let X” = {τ(ys) : s ∈ y}. Then clearly w =

⋃
X”. Now A is atomic.

Indeed, A contains all singletons. To see this, let s ∈ αF (0) be arbitrary. Then

〈s0, s0 + 1−∑

i>1

si, si〉i>1

and
〈 ∑

0<i<α

si − 1, si〉i≥1

are elements in y. Since

{s} = c1{〈s0, s0 + 1−∑

i>1

si, si〉i>1} ∩ c0{〈
∑

06=i<α

si − 1, si〉i≥1},

it follows that {s} ∈ A. Let At(A) denote the set of all atoms of A, i.e. the
singletons. We can assume that B0 = SgB0i(A0). Upon noting that A contains
all singletons, we obtain the following density condition.

(2)(∀d)(d ∈ NrαB0 ∧ d 6= 0 → ∃a ∈ At(A) ∧ i(a) ≤ d).
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From (1), (2) we get the desired conclusion i.e that i(w) = τα(i(y)), because,
roughly, any atom in A below w is of the form τ(a) for singleton a below y. In
more detail, we we shall show that

i(w) ≤ τα(i(y)), τα(i(y)) ≤ i(w).

Let us start with the first inclusion. Assume seeking a contradiction that it
does not hold. This means that

i(w)− τα(i(y)) 6= 0.

But then applying (2), we get an atom z ∈ A, such that i(z) ≤ i(w) and

i(z) ≤ −τα(i(y)).

But z = τ(a) for some a ∈ X, thus

i(z) = τ(i(a)) ≤ τα(i(y)).

But this means that i(z) ≤ −τα(i(y)).τα(i(y)) = 0. This is impossible since z
is an atom and i is one to one. Now we want to establish the other inclusion,
namely that

τα(i(y)) ≤ i(w).

Now assume again, seeking a contradiction, that it is not the case that

τα(i(y)) ≤ i(w).

Thus we have
τα(i(y)) · −i(w) 6= 0.

By (2) there exists an atom z ∈ A such that

i(z) ≤ τα(i(y)), i(z) ≤ −i(w).

From the first inclusion we get

i(z).αs(0, 1)i(y) 6= 0,

hence
(++) i(z) ≤ αs(0, 1)i(y),

since z is a singleton. Let

a = s10c0z.s
0
1c1z = αs(0, 1)z.

Applying αs(0, 1) to both sides of (++) we get

i(a) ≤ αs(0, 1)αs(0, 1)i(y) = i(y).

The latter equality follows from the MGR, indeed

αs(0, 1)αs(0, 1)i(y) = αs(0, 1)αs(0, 1)cαcα+1i(y) = i(y).

Then a ≤ y and so z = τ(a) ≤ w. From this we get i(z) ≤ i(w) which is a
contradiction since z is an atom and i is one to one and i(z) ≤ −i(w). By this
(*) is proved and so is our main Theorem.
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3 Conclusion

This paper solves a long outstanding problem in algebraic logic posed by
Pigozzi in his landmark paper [10] published in algebra universalis in 1971.
The proof is an adaptation of techniques of Nemeti used in [8], to solve a
problem on neat reducts for cylindric algebras. The notion of neat reducts
is strongly related to the amalgamation property, see [1]. More on that and
related problems can be found in [4].
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