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Abstract
Let o be an infinite ordinal. We show that not all epimorphisms are

surjective in the class Di,, of diagonal cylindric algebras (regarded as a concrete
category). It follows that Di, does not have the strong amalgamation property.
This answers a question of Pigozzi.
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1 Introduction

The class of diagonal cylindric algebras is studied by Henkin Monk and Tarski,
cf. Theorem 2.6.50 in [2]. In [10] p. 327 this class is denoted by Di, where
« is an infinite ordinal. We follow the notation of [10] which is in conformity
with that adopted in [2]. One of the main results in [10] is that Di, has the
amalgamation property AP, cf. Theorem 2.2.20 therein, and it was asked in
[10] whether this class has the strong AP (SAP). Here we give a negative
answer to this question. In fact, we prove a stronger result. We show that
not all epimorphisms (i.e right cancellative maps) are surjective in Di,. Inde-
pendently of us Madérasz [7] proves that Di, does not have SAP even if the
amalgam is sought in the bigger class of representable cylindric algebras. ! In

!This result is only announced in [4] without proof.
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our proof we use extensively the notation of [2] without reference or any kind
of warning. All these are collected at the end of [2] under the title “index and
symbols” p.489. In what follows « is an infinite ordinal.

2 The Main Result

Definition 2.1 A € Di, if all non-zero x € A and finite I' C «, there are
distinct k,l ¢ T' such that x - dy; # 0.

Theorem 2.2 In Di, not all epimorphisms are surjective. In fact, there
are A, Ag € Di,, such that the inclusion map A C Ay is not surjective and such
that for all Ay € Di, and homomorphisms m : Ay — Ay and n : Ag — Ay,
if m and n coincide on A, then m = n. In particular, Di, does not have the
strong amalgamation property.

We shall need several lemmas before embarking on the proof:

Lemma 2.3 Let a € ' C B and i,5 € B\TI. Let A€ CAz. Then o5(3,5)
is a complete one to one endomorphism of ClrA. Furthermore, ,s(0,1) is an
automorphism if |I'| > 1

Proof We may assume that ¢ # j since ,s(,7)|ClrA = Id by [2] 1.5.13(iii)
and 1.5.8(i). 4s(7,7) is a complete boolean endomorphism of BIA by [2] 1.5.16.
To prove that it is one to one on ClrA it is enough to show that x > 0 —
aS(7, j)cax > 0. By definition

aS(1, j)Cat = ss's) cot = €o(dai-Ci(dij.Cj(dja-ca))).

2 e

By 1.3.8 [2], 0 < x — 0 < dy.cx for every k,l € 3. The required follows. The
rest of the statement follows from [2] 1.6.13 and 1.5.17.

Lemma 2.4 Let k,l,u # v all in «. Let A € CA,. Then the following
hold for all x € A:
uS(k, Deyeyr = sl k)eycor

uS(k, D) ys(k, l)cycor = cuc, .

Proof [2] 1.5.14, 1.5.17.
The equations in the above Lemma are sometimes called the merry go
round indentities (MGR).

Lemma 2.5 Let Ay and Ay € Di,. Then there exist By, By € CA,iw
19 : Ag — NroBy and i1 : Ay — NroBy such that for every homomorphism
f: Ag — Ay there exists a homomorphism g : By — By such that goig = 110 f.
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Proof The argument we use is a typical step-by step construction. Let
Ao, A1 € Di,. We construct the desired algebras using ultraproducts. Let R
be the set of all ordered quadruples (I, n, k,{) such that: I' C, w, n €w, k,l
are one to one (finite) sequences with

kle™w~T), Rng(k)n Rng(l) =0.
For I' C, w, and n € w put
Xrn={(A,m, k) e R: T CA, n<m}.

It is straighforward to check that the set consisting of all the Xr,,’s is closed
under finite intersections. Accordingly, we let M be the proper filter of p(R)
generated by the Xt ,’s. so that

M={YCR: Xr, CY, I C, w, n € w}.

For each (I',n, k,l) € R, choose a bijection p((I',n, k,1)) from a + w onto «
such that
p((T',n, k,)|T" C Id

and
p((Lyn, k, D) (o + j) = k;, Vi < n.

Now fix ¢ € {0,1}. Let

F(A) =[] Rd"9A,/M
PER

Here Rd"? A, - the p(¢) reduct of A; - is a CA,4,,, and so F(4;) - an ultra-
product of these - is also a CA ... Note too, that for each ¢ € R, the algebra
RdP? A; has universe A;. Now let j; be the function from A; into F(A;) defined
as follows

jir = ((sf) 4 o (s (Tyn, k1) € R)/M.
In [10] it is proved in Theorem 2.2.19 that j; € Ism(A;, Nr,F(A;)). Let g be
the function from F(Ap) into F(A;) defined by:

9({zy - o € R)/M) = (fry: ¢ € R)/M

Then it is straightforward to check that ¢ is the desired “lifting” function.
Proof of the Main theorem Let a > w and F' is field of characteristic
0. Let
V={seF:|{ieca:s #0} <w}.
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As is the custom in algebraic logic V' a weak space is denoted by ®F©) where
0 is the constant 0 sequence. Note that V is a vector space over the field F.
Let

C= <p(V), U, N, ~, @7 V> Ci, dij>l}j€a~

Let y denote the following a-ary relation:

y={seV:isg+1=> s}

>0

and

w={seV:si+1=>_ s}
21

For each s € y we let ys be the singleton containing s, i.e. ys = {s}. Let
A=59"(y,ys : s € y})

Ag = Sg°({y,w,ys : s € y}).

Here Sg¢ is short for the subalgebra generated by. Clearly A and Ay are in
Di,. We first show that w ¢ A. We follow closely the argument in [8], where
a similar construction using the field of rationals is used. Let

Pl={{s €*FO:t+> (rs;) =0} : {t,r;:i <a} C F}.

Pl<={pe Pl:3i<a,cp=np}
Note that for p € Pl, p = {s € *°F© : ¢t + 3, r;5; = 0} say, then ¢;p = p (i.e.
p is parallel to the i-th axis) iff r; = 0. Note too, that
{y,w,d;; :4,j € a} C PL.

y,w ¢ Pl=,1€ PI®
and
{dwl%],’l,jéa}gpl<<—>cy23
Now let

G ={y,—vy, p,—p, ca){0}, —c(2){0} :p e PI"U{dn} A C, a0, 0 € A}

G'={(Ngi:ncw,g €G}.

1EN
and
G*={Jg:necwgeG}

1EN
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It is easy to see that {y,ys : s € y} € G*, and G** is a boolean field of sets.
We prove that w ¢ G*™* and that G** is closed under cylindrifications. To this
end, we set:

L={pe P~ :cop#p}, P(0)=LU{dn}.

Next we define
Gir={9€G :gCy}

and
Go={9€G :9Zy, gCp peP(0)}
We have G; NGy = (). Now let

Gs={piNp2...Npr: k€w, {p1,p2,....0} CTG~ ({y} UP0))}.

It is easy to see that G* = G U G5 U G3. To prove that w ¢ G** we need: If
g € Gz and 0 # g, then g ¢ w. But this follows from the following. Assume
that g = p1 Npa... N pg say, with p; € G and p; ¢ ({y} U P(0)) for 1 <i <k,
and let z € g. Let [| be the function from Pl into F defined as follows:

Pl = {1/ro(—t = _mizi)}, p=—{s € “FO 1t +> ris; = 0},19 # 0,

and else

Let

be arbitrary, and let

279 =cn {(07 ZO>} U {(0,7“)}

Then
wegrw, gZuw.

(Here we are using that when cx){0} € G, then 0 € A.) We now proceed to
show that w ¢ G**. Assume that

v=J{gi i<mPUJ{gl i <nm}UU{g} i <ns}

where . .
{g] :i<n;} CGy, gl Cw,Vje{l,23}

We show that = # w. By the above, we have = C (,.,, p; for some {p; : i <
n} C P(0). Note that if & > 2 then P(0) = L and P(0) = LU{do; } otherwise.
If « = 2 then w C —dy; otherwise P(0) = L. Now it is enough to show
that w is not contained in J F for any finite £ C L. But it can be seen by
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implementing easy linear algebraic arguments that, for every n € w, and for

every system
to —|— Z(TOZ‘ZL‘Z‘) = 0

t, + Z(rmxl) =0,

of equations, such that for all j < n, there exists i < «, such that

rji=0 15 #0,
the equation
<o

has a solution s in the weak space *F(© such that s is not a solution of

t+ Y (rjm) =0,

<o

for every j < n. We have proved that w ¢ G**. To show that w ¢ A, we will
show that G** is closed under the cylindric operations (i.e it is the universe of
a CA,. It is enough to show that (since the ¢;’s are additive), that for j € «
and g € G* arbitrary, we have c;g € G**. For this purpose, put for every
p e Pl

p(jl0) = ci{s € p:s; =0}, (=p)(jl0) = —p(j[0).
Then it is not hard to see that

p(jl0) = {s € “FO : ¢ + > (r;s;) = 0},

i#£j
if
p={s¢€ ap©) .4 4 Z(risi) =0},
<o
and so

p(j|0) € PI=Vp € PI.

Let 7 and g be as indicated above. We can assume that
g=eNpiN...Np,N—=P..N—F,Nz

N —c@an{0}...N —c@ay{0},
where
ec {y7 -v, 1}
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n,m, Newn~ {0}71)“ R € PI~ U {d01}7
Cipi # pi, ¢ # P,
ze{ca {0}, 1: Aecp,a, 0€A, j¢ A}

and
{Ay,..., A} C{repoa: j¢a0ceua}

We distinguish between 2 cases:

Case 1.
zZ = C(A){O}, j §é A.
Then
cj(eﬂplﬂpnﬂ—Plﬂ—Pm
ﬂC(A){O} N _C(AI){O} .M _C(AN){O})
p1(410) N ... pu(5]0) N =P1(4]0) ... N =P (4]0)
Ncjea){0} N —cjcan{0} NN —cjean){0}-
Case 2.
z=1
Then
cileprnN...Np,N—="P,...N—P,
n— C(Al){O} ...N _C(AN){O}>
= f(€) Ni<n ((Ni<nC;(Pr NV Pi) N Ni<mC; (1 — F;)
Ni<n€;(Pr — ¢(a,){0}))-
where

f(y) = ((Nignc;(y N pi) N Nicme;(y — F)
Ni<nGi (Y — can10})).
F(=y) = Dk<nc;(pr — y)
f) =1
Now for every p,q € Pl, there are p/, ¢, p” and ¢” € PI< such that
pNg =pnNd,
Cj(p ~ (]> :p// -~ q//

and if j € Ap ~ T, then

ci(p\ c{0}) = *F© ~ p(;|0) U (p(j]0) ~ c;cr{0}).
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We have proved that w ¢ A. Now let A; € Di, and assume that h and k are
given homomorphisms from Ag to A; that agree on A. It clearly suffices to show
that k(w) = h(w). By the above Lemma, By,,B; be w-extensions of Ay and A
via ig and i1, respectively, that is ig : Ag — Nr,By and i1 : Ay — Nr,B;. Let
k* : By — B; be a homomorphism such that

k* o io = il o k’,
and let h* : By — By be a homomorphism such that
h* o io = il oh.

We define
To(x) = 4s(0,1)x.

We will show that (*)
750 (doy) = tow.

By (*) we will be done because of the following:

ko dg(w) = k* (15" (i0y)) = 7, (k" 0o (y))-
But since h and k agree on A and y € A, we have

k" oig(y) = i1 o k(y) =110 h(y) = h" oio(y).
From which we get that

k*oig(w) = 70 (K 0 ig(y)) = 121 (h* 0 ig(y))

= (7% (io(y)) = h*(igw) = h* o ig(w).

We have shown that
k* oig(w) = h* oig(w).

Thus
il e} ]{}(U)) == 7:1 ¢) h(w)

But since 7 is one to one, it readily follows thus that

We are done modulu (*). We now prove (*). We write i instead of 9. Now
thoy = ,s(0,1)Poz is always evaluated in By, hence for better readability we
omit the superscript By. Let 7(x) be the following CA, term:

7(z) = sciz.55¢o.
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Let
We show that

We start by showing that

Note first that a = cja.coa. Now we have
o8(0,1)i(a) = 4s(0,1)(cri(a).coi(a))

= 45(0,1)c1i(a).os(1,0)coi(a)
Here we use that ,s(0,1) is an endomorphism and the M GR, namely that

oS(0, 1)cpi(a) = 4s5(0, 1)caCaricoi(a)

= as(la O)Caca+lc0i(a) = as<17 O>C0i(a’)'
We compute

o8(0, 1)cri(a) = ssis,ci(i(a)) = sgsyci(i(a))

= s0s)caci(a) = sgcasici(i(a)) = sici(i(a)).

Similarly
s(1,0)coi(a) = spcoi(a).
From this we get (+). (1) follows from (+) by noting that 7,(i(a)) < 7,(i(y)).
Let X7 = {7(ys) : s € y}. Then clearly w = UX” Now A is atomic.
Indeed, A contains all singletons. To see this, let s € “F(©) be arbitrary. Then

<50a30 + 1— Zsu Si)i>1

i>1

and

Z S — Si z>1

O<i<a

are elements in y. Since

{s} =ca{(so,s0+1 =D si,si)yisit Ncof( D si— 1, 8:)i>1},

1>1 0#i<a

it follows that {s} € A. Let At(A) denote the set of all atoms of A, i.e. the
singletons. We can assume that By = Sg0i(4,). Upon noting that A contains
all singletons, we obtain the following density condition.

(2)(¥d)(d € NroBo Ad # 0 — 3a € At(A) Ai(a) < d).
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From (1), (2) we get the desired conclusion i.e that i(w) = 7,(i(y)), because,
roughly, any atom in A below w is of the form 7(a) for singleton a below y. In
more detail, we we shall show that

i(w) < 7ali(y)), 7ali(y)) <i(w).
Let us start with the first inclusion. Assume seeking a contradiction that it
does not hold. This means that

i(w) = 7a(i(y)) # 0.
But then applying (2), we get an atom z € A, such that i(z) < i(w) and
i(2) < —7a(i(y)).
But z = 7(a) for some a € X, thus
i(2) = 7(i(a)) < 7a(i(y))-

But this means that i(z) < —7,(i(y)).7a(i(y)) = 0. This is impossible since z

is an atom and ¢ is one to one. Now we want to establish the other inclusion,

namely that
Ta(i(y)) < i(w).
Now assume again, seeking a contradiction, that it is not the case that
Ta(i(y)) < i(w).
Thus we have
Ta(i(y)) - —i(w) # 0.
By (2) there exists an atom z € A such that
i(2) < 7aliy)), i(z) < —i(w).
From the first inclusion we get
i(2).a5(0,1)i(y) # 0,
hence
(++4) i(2) < as(0,1)i(y),
since z is a singleton. Let
a = s5C02.57C12 = 45(0,1)z.
Applying ,s(0, 1) to both sides of (++) we get
i(a) < as(0, 1)as(0, L)i(y) = i(y).
The latter equality follows from the MG R, indeed
250, 1)a(0, 1)i(y) = a5(0, 1)a5(0, 1)eaCasi(y) = i(y).
Then a < y and so z = 7(a) < w. From this we get i(z) < i(w) which is a

contradiction since z is an atom and i is one to one and i(z) < —i(w). By this
(*) is proved and so is our main Theorem.
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3 Conclusion

This paper solves a long outstanding problem in algebraic logic posed by
Pigozzi in his landmark paper [10] published in algebra universalis in 1971.
The proof is an adaptation of techniques of Nemeti used in [8], to solve a
problem on neat reducts for cylindric algebras. The notion of neat reducts
is strongly related to the amalgamation property, see [1]. More on that and
related problems can be found in [4].
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