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Abstract
The article gives an introduction to equivariant formal group

laws, and explains its relevance to complex oriented cohomol-
ogy theories in general and to complex cobordism in particular.
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1. Introduction

1.A. Purpose.
This article is designed to give an introduction to the notion of an equivariant for-

mal group law, and to explain its relevance to complex oriented cohomology theories
in general and to complex cobordism in particular. Historically, the definition came
directly from topology, but only as the algebraic picture emerged did the notion
seem natural. The extraordinary effectiveness of formal groups in non-equivariant
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topology has become so familiar that we barely need to explain the purpose of the
enterprise. The idea is to construct algebraic models of certain basic structures in
topology, and to exploit the rigidity of the algebra, both as a skeleton and as a tool
in calculation. In particular we hope to have accurate algebraic models of K theory
and cobordism. Since K theory encodes representation theory, a full realization of
this dream would include a higher representation theory.

The article summarizes results of [4, 14, 5, 16, 15, 21] and other unpublished
preprints, but with growing hindsight some of this appears in rather a new light. In
any case, the account is arranged rather differently from [4], and it contains a num-
ber of new results and examples. Wherever it makes statements more digestible we
restrict to the case where the group is of prime order. Quite in accordance with the
philosophy of algebraic topology, we have found that the topological constructions
are clarified once the relevant algebra is distilled. In practice the distillation was
greatly assisted by the topology, but exposition need not be historical, and we have
arranged the article as if the algebra had already existed. We resisted the temp-
tation to follow Adams’s alternation of algebra and topology in [1]: in a written
account we hope to achieve a similar effect with effective cross-referencing.

1.B. Organization.
Part 1 gives a purely algebraic account of A-equivariant formal group laws and

Part 2 discusses complex oriented equivariant cohomology theories, identifying topo-
logical counterparts of various structures already seen in algebra. Finally, Part 3
gives a very brief discussion of the non-abelian case: N.P.Strickland and the author
plan a more thorough and systematic account.

1.C. Notation
We are concerned with A-equivariant cohomology theories and A-equivariant

formal groups, where A is an abelian compact Lie group.
First we take the dual group A∗ = Hom(A,S1), which is a finitely generated

abelian group; we write α, β, γ, . . . for its elements, and ε is the trivial representation,
its identity.

We are also concerned with algebraic groups of various sorts. In Part 1 we write
G for an algebraic group (a group object in a category of schemes), and G for a
formal group (a group object in a category of formal schemes). In Section 12 and
Part 3 we use G for a compact Lie group.

Part 1. Equivariant formal group laws.
In Part 1 we give an algebraic introduction to equivariant formal group laws, post-
poning application to topology to Parts 2 and 3. We have used the language of
algebraic geometry for motivation, but most of the development is in terms of rep-
resenting rings of functions as this is more familiar (to topologists) from the non-
equivariant case. Section 2 introduces equivariant formal group laws from several
points of view. Sections 3 and 4 discuss the underlying ring structure of an equiv-
ariant formal group law and Euler clases. Sections 6, 7 and 8 describe examples:
Euler-local, Euler-complete, multiplicative and rational.
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2. Algebraic introduction to equivariant formal groups.
We begin with an informal motivation of the definition, before formalizing it as

Definition 2.1. We then return to discuss the additive structure, the group scheme
point of view and the universal ring.

2.A. Multiplication in a neighbourhood of a discrete subgroup.
This subsection is intended to motivate the formal definition of an equivariant

formal group (Definition 2.1): it is informal, and some may prefer to skip to Sub-
section 2.B

In all algebraic discussion we find it helpful to state things first in geometric
terms, and then make it more explicit in terms of functions. The scheme-theoretic
language is very suggestive, but some of the issues only become apparent when it
is unpacked.

We confine ourselves throughout to formal groups which are one dimensional and
commutative. Before giving the equivariant case we briefly recall the familiar, clas-
sical, non-equivariant case. The idea is that a formal group encodes the behaviour
of an algebraic group in an infinitesimal neighbourhood of the identity. Suppose
then that G is a group with multiplication µ : G×G −→ G. We can look at µ in a
formal neighbourhood of the identity e, thought of as a tiny patch around e. Since
G is smooth, the formal neighbourhood of e is isomorphic to a formal neighbour-
hood Â1 of 0 in affine space A1, but it inherits a multiplication from G which gives
it the structure of a group object G in the category of formal schemes: this is a
formal group. There are many examples of formal groups G which do not arise as
the formal completion of an algebraic group G.

To rigidify the structure and to make calculations, we choose a coordinate y
around the identity e. This is a function y : G −→ A1, only defined near e, with the
properties (i) that y(e) = 0 and (ii) that it gives an identification of a neighbourhood
of e in G with a neighbourhood of 0 in the affine line A1. If g ∈ G is a point near
e with y(g) = s, we use the identification to write the more suggestive equation
g = e + s (the reason for making the identity explicit on the right hand side will
emerge in the equivariant case). Now consider µ(e + s, e + t) for small s and t and
write

µ(e + s, e + t) = e + F (s, t).

We then view F (s, t) as a power series in s and t. This power series will inherit
properties corresponding to commutativity, associativity, identity and inverse from
G. An arbitrary power series satisfying these conditions is called a formal group
law. A formal group law is equivalent to a formal group with a specified choice of
coordinate.

We can also define these notions explicitly in terms of the ring R of functions
on Â1. A coordinate function y generates the functions on Â1 in the sense that
R = k[[y]], and F may be viewed as defining a map

∆ : R = k[[y]] −→ k[[y ⊗ 1, 1⊗ y]] = R⊗̂R

by ∆(y) = F (y ⊗ 1, 1 ⊗ y). The conditions on F show that ∆ makes R into a
commutative and cocommutative complete topological Hopf algebra. In these terms,
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a formal group corresponds to a bicommutative complete topological Hopf algebra R
so that the underlying ring is isomorphic to k[[y]], but with no isomorphism specified.
The coordinate is a chosen generator y of the augmentation ideal ker(R −→ k),
which specifies an isomorphism R ∼= k[[y]]; a formal group law corresponds to R
with a chosen coordinate.

The idea of an A-equivariant formal group may be obtained analogously. We
suppose given a homomorphism ζ : A∗ −→ G, and then look at the multiplication
µ of G in a formal neighbourhood of the image of ζ. We think of the formal neigh-
bourhood as a collection of little patches around the elements ζ(α), giving a formal
scheme G; it is a group object because the image of A∗ is a group. An A-equivariant
formal group is a formal group G together with a homomorphism A∗ −→ G with
properties modelled on this one. As in the non-equivariant case, there are equiv-
ariant formal groups G which cannot be obtained by completing a group scheme
G.

Again we may choose a coordinate y(ε) around e = ζ(ε), and by translation
we obtain a coordinate y(α) around ζ(α) for each α ∈ A∗. Now we can consider
µ(ζ(α) + s, ζ(β) + t) for small s and t and write

µ(ζ(α) + s, ζ(β) + t) = ζ(αβ) + Fα,β(s, t)

for a power series Fα,β(s, t) in s and t. Again the collection of power series Fα,β(s, t)
will have formal properties inherited from those of µ. However the completion of
G around ζ(A∗) is not the formal neighbourhood of a single point, so its ring of
functions R is not a power series ring. If the coordinate patches around the different
points ζ(α) do not interact then R will be a product of power series rings, but in
general this need not happen. Accordingly, some care is necessary in interpreting
the axioms in terms of the expressions Fα,β(s, t). If they are assumed to take values
in separate power series rings we obtain the notion of an Okonek equivariant formal
group law [26]. In general the appropriate packaging of the functions Fα,β(s, t) is
in terms of the coproduct

∆ : R −→ R⊗̂R,

which encodes how functions on the formal group behave under multiplication:
∆ = µ∗. This gives all the ingredients for an A-equivariant formal group law: the
most subtle new question in the equivariant case is how to axiomatize the properties
of the coordinate y(ε) at the identity ζ(ε).

2.B. The definition.
We now begin the formal development: first we need the ring theoretic counter-

part of the discrete group A∗. We let kA∗ denote the ring of k-valued functions on
A∗. If A is finite, this is a Hopf algebra over k using the group multiplication of A∗

to give the coproduct, and the inclusion of the identity element in A∗ to give the
counit. If A is not finite, kA∗ is topologized as a product of copies of k and becomes
a complete topological Hopf algebra.

We shall give the axioms for an equivariant formal group law may in terms of
the coproduct ∆ and the map

θ : kA∗ −→ R
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corresponding to ζ, and a coordinate y(ε).

Definition 2.1. ([4]) If A is an abelian compact Lie group, an A-equivariant formal
group law over a commutative ring k is

(Afgl1) a complete topological Hopf k-algebra R with
(Afgl2) a homomorphism θ : R −→ kA∗ of topological Hopf k-algebras so that the

topology on R is defined by the finite intersections of kernels of its components
θα : R −→ k for α ∈ A∗.

(Afgl3) an element y(ε) ∈ R which is (i) regular and (ii) generates the kernel of
the εth component, θε of θ; equivalently, y(ε) gives an exact sequence

0 −→ R
y(ε)−→ R −→ k −→ 0.

Remark 2.2. (i) If A is finite, (Afgl2) shows that the topology on R is defined by
the single ideal ker(θ).
(ii) Since θ is a map of Hopf algebras it follows that θε is the counit of R.
(iii) The element y(ε) is called the coordinate of the formal group law, since in
geometric terms it is a function whose vanishing defines the identity of the group.
If the coordinate is not specified, the resulting structure represents an equivariant
formal group. Indeed, by (Afgl1), R may be viewed as the ring of functions on a
group object G in the category of formal schemes over k. In these terms, (Afgl2)
states that we are given a homomorphism ζ : A∗ −→ G, so that G is a formal
neighbourhood of the image, and (Afgl3) states that y(ε) is a good coordinate
at ζ(ε). The geometry of an equivariant formal group is best understood using
Strickland’s notion of a multicurve [31].

2.C. Additive structure of an equivariant formal group law.
The k-module structure of every equivariant formal group law is topologically

free, and we may therefore express the structure maps of R in terms of the ba-
sis. To describe the basis, we note that we may define an action of A∗ on R via
lαr = (θα−1⊗1)∆(r). Thus the element y(ε) determines elements y(α) for α ∈ A∗ by
the formula y(α) = lαy(ε). The completeness is thus equivalent to completeness with
respect to the system of principal ideals generated by all finite products

∏

α y(α). In
the following statement, a complex complete A-universe is a countably infinite di-
mensional complex representation of A in which every simple representation occurs
infinitely often.

Theorem 2.3. [4, 13.2] If we choose a complete A-invariant flag F = (V 1 ⊂ V 2 ⊂
· · · ) in a complex complete A-universe, then an equivariant formal group law R
has an additive topological k-basis 1, y(V 1), y(V 2), . . . where y(V n) = y(α1)y(α2)
· · · y(αn) if V = α1 ⊕ α2 ⊕ · · · ⊕ αn.

Remark 2.4. Note that if A is the trivial group, Theorem 2.3 shows that Def-
inition 2.1 reduces to the usual concept of a (non-equivariant, commutative, one
dimensional) formal group law.
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2.D. Formal group schemes.
We return to make explicit how the topological k-algebra R represents a formal

group G, restricting attention to the case that A is finite. By definition, G is the
set valued functor on k-algebras whose l-valued points are the continuous k-algebra
homomorphisms into l:

G(l) = k-Algcts(R, l).

The coproduct on R gives G(l) the structure of an abelian group. Furthermore the
homomorphism θ defines a group homomorphism

ζ : A∗ −→ G(l)

by the formula ζ(α)(r) = θα(r).

Lemma 2.5. Evaluation at the elements y(α) gives an identification

G(l) ⊆ A-nil(l)

where A-nil(l) ⊆ lA
∗

is defined by

A-nil(l) = {(yα) | Παyα is topologically nilpotent}.

Under this identification, the group operation is given by

[(y′α) � (y′′β)]γ = ∆(y(γ))((y′α ⊗ 1), (1⊗ y′′β)) :

the element ∆(y(γ)) may be expressed in terms of any flag basis, and then evaluated
by putting y(α)⊗ 1 = y′α and 1⊗ y(β) = y′′β .

This shows that G(l) can be viewed as a subset of the affine space lA
∗
: we will

identify the defining equations for this algebraic set when A is of order 2 in Section 3
below. We should draw attention to several differences from a classical formal group
law. Firstly, the element y(ε) is not usually topologically nilpotent, and secondly, it
is not a free generator. From the geometric point of view, we may ask how to think
of a point (yα) ∈ G(l). Because y(ε) does not generate R, the coordinate yε does
not generally determine all the others, so that the projection onto the εth factor of l
need not be injective. Nonetheless, we consider the εth coordinate. Classically, only
topologically nilpotent elements of l qualify: these are points infinitesimally close
to the identity 0 = ζ(ε). In the equivariant case, a point of l infinitesimally close to
any of the points ζ(α) in the image of ζ qualifies as a candidate for yε. Thus the
projection of G(l) onto the εth factor is an infinitesimally thickened copy of A∗ in
l.

2.E. The universal ring for A-equivariant formal group laws.
First we note that the set A-fgl(k) of A-equivariant formal group laws over k is

a functor of the ring k. Indeed, if f : k −→ l is a ring homomorphism and R is an
A-equivariant formal group law over k then we may define an A-equivariant formal
group law f∗R over l by applying ⊗̂l. The result is again an A-equivariant formal
group, since by 2.3 R is a topologically free k-module. In other words, we use the
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fact that the structure of R may be described by certain structure constants in k,
and let f∗R be described by their images in l.

It follows quite easily [4, 14.3] that the functor A-fgl(·) is represented by a ring
LA in the sense that

A-fgl(k) = Ring(LA, k).

Indeed, LA may be constructed by giving generators for each of the structure con-
stants, and imposing relations to ensure that the axioms of Definition 2.1 hold.
The A-equivariant formal group law over k corresponding to a ring homomorphism
f : LA −→ k is the one with structure constants given by the image of the corre-
sponding generators of LA.

3. The underlying ring of an equivariant formal group law.

We want to describe the ring R (or equivalently the underlying formal scheme) of
an equivariant formal group. We will give a satisfactory answer when A is of order
2, but not in general. If A is finite it is natural to choose an ordering of the simple
representations α1 = ε, α2, . . . , αn of A and use the flag obtained by repeatedly
adding these representations in order. Thus V n, V 2n, . . . are multiples of the regular
representation and the topology is defined by the powers of x = y(V n) = Παy(α).
It is thus natural to view R as an extension of k[[x]], but we warn that k[[x]] is not
usually closed under the coproduct.

Example 3.1. (A of order 2.) Suppose A is of order 2, with non-trivial simple
representation α and let y = y(ε), y′ = y(α). Using the periodic flag, the basis is
1, y, x, yx, x2, yx2, x3, . . . so we may write

y′ = p(x) + yq(x).

Rotating by α we find

y = p(x) + y′q(x),

so that

y2 = yp(x) + xq(x).

Furthermore, substituting the expression for y′ into that for y, we find

y = p(x) + [p(x) + yq(x)]q(x) = p(x)(1 + q(x)) + yq(x)2

and therefore

p(x)(1 + q(x)) = 0 and q(x)2 = 1.

In particular we note that q(x) is a unit, so that working modulo any power of x we
can recursively express every element as a polynomial in y: this is Cole’s theorem [3]
that the theorem on projective bundles holds for all complex oriented cohomology
theories provided A is of order 2 (it does not hold in general if A is of any larger
order). We also conclude

R = k[[x]][y]/(y2 = yp(x) + xq(x)),
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telling us that the formal group of R is a ramified double cover of the formal affine
line Â1.

Example 3.2. (A of order 3.) Suppose A is of order 3 with A∗ = 〈α〉, and
let y = y(ε), y′ = y(α) and y′′ = y(α2). Using the periodic flag, the basis is
1, y, yy′, x, yx, yy′x, x2, . . . so we may write

y′ = p′(x) + yq′(x) + yy′r′(x) and y′′ = p′′(x) + yq′′(x) + yy′r′′(x).

One may then deduce in turn expressions for yy′′, y2, (y′′)2, yy′, y′y′′, (y′)2 in terms
of the standard bases. Of course the element yy′ is already a basis element, so the
expression gives relations amongst the power series. The coefficient of yy′ shows
that q′′(x) + r′′(x) is a unit, and then the three coefficients together allow one to
express p′(x), q′(x) and r′(x) in terms of p′′(x), q′′(x) and r′′(x). This gives

R = k[[x]][y, y′]/(y′ = p′ + yq′ + yy′r′, y2 = a + yb + yy′c, (y′)2 = a′ + yb′ + yy′c′)

where p′, q′, r′, a, b, c, a′, b′, c′ are polynomials in p′′(x), q′′(x), r′′(x) and (q′′(x) +
r′′(x))−1. It is straightforward to make these polynomials explicit, or to rewrite the
above as a quotient of k[[x]][y, (yy′)].

One point to note is that q′(x) turns out to be a unit, but if we write y′ =
e(α) + yw for a scalar e(α), it need not be true that w is a unit (the analogue of
Example 6.2 below for the group of order 3 provides an example).

4. Euler classes.
One view is that an equivariant formal group law is a structure precisely designed

to encode the formal properties of Euler classes.

Definition 4.1. Given an A-equivariant formal group law we may define the Euler
class of a one dimensional representation α by

e(α) = θε(y(α)).

Remark 4.2. (i) In geometric terms, e(α) is the value of the coordinate y(α) at
the identity, or equivalently, the value of y(ε) at the point ζ(α−1).
(ii) When the formal group law arises from a complex oriented cohomology theory
as described in Section 9 below, these coincide with Euler classes in the topological
sense [4].
(iii) Note that e(ε) = 0 by (Afgl3) (ii).

Lemma 4.3. The Euler classes determine the structure map θ.

Proof: Since θ is a continuous ring homomorphism it suffices to identify θ(y(β))
for all β ∈ A∗. Indeed, we calculate

θ(y(β))(α−1) = θ(y(ε))(α−1β−1) = e(αβ),

where the first equality follows by applying lβ , since θ is a Hopf map.
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To see that an equivariant formal group law encodes the formulae for the Euler
class of a tensor product, we consider the diagram

R

� �

θ
/ / kA∗

��

R⊗̂R
θ⊗̂θ

/ / kA∗×A∗

encoding the fact that θ respects coproducts. Choose a complete flag V 1 ⊆ V 2 ⊆
V 3 ⊆ · · · with V i = α1 ⊕ · · · ⊕ αi and α1 = ε. We may then write the coproduct in
terms of this basis

∆(y(ε)) =
∑

i,j

fi,jy(V i)⊗ y(V j);

the coefficients fi,j depend on the flag, although this is not displayed in the notation.
Now consider the effect of ∆ on the coordinate y(ε) and evaluate at (β−1, γ−1). We
see

e(βγ) = (µ∗ ◦ θ(y(ε)))(β−1, γ−1)
= ((θ ⊗ θ) ◦∆y(ε))(β−1, γ−1)
= ((θ ⊗ θ)(

∑

i,j fi,jy(V i)⊗ y(V j))(β−1, γ−1)
= e(β) + e(γ)+

e(β)e(γ)
[

∑

i,j>1 fi,je(βα2)e(βα3) · · · e(βαi)e(γα2)e(γα3) · · · e(γαj)
]

The usefulness of this is most obvious when fi,j = 0 for i > 2 or j > 2: it then
says e(βγ) = e(β) + e(γ) + f1,1e(β)e(γ). In general higher terms are zero modulo
progressively higher powers of the ideal of Euler classes. In any case, since both β−1

and γ−1 occur in any complete flag, the sum is finite.

Remark 4.4. It is shown in [4, 16.1] that, for any choice of flag, the universal ring
LA is generated by the Euler classes e(α) and the coefficients fi,j in the coproduct.

5. The identity component of an equivariant formal group.

We are used to the idea that when dealing with a compact Lie group G it may
be useful to consider the short exact sequence

1 −→ G0 −→ G −→ π0(G) −→ 1

where the normal subgroup G0 is its identity component and π0(G) = G/G0 is
its group of components. The purpose of this section is to explain the analogue
for equivariant formal groups: its usefulness is that the identity component and the
component group are more familiar objects. In fact, an equivariant formal group may
be thought of as an extension of a non-equivariant (one dimensional, commutative)
formal group, with a “discrete group” as the quotient.

Theorem 5.1. If G is an A-equivariant formal group over k, there is a short exact
sequence

0 −→ G0 −→ G −→ Gét −→ 0
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of formal groups, where

• G0 is a classical non-equivariant formal group and

• the composite A∗ −→ G −→ Gét is surjective; indeed, over a field Gét is a
discrete group and a quotient of A∗. More precisely, if the k-algebra l is a
field,

Gét(l) = A∗/B∗
l

where

B∗
l = {β | e(β) = 0 in l}

is the subgroup of representations whose Euler classes are trivial in l.

Proof: The group G0 is constructed as a formal neighbourhood of the identity in
G so that we have a homomorphism G0 −→ G: this corresponds to completing the
ring of functions R with respect to the ideal of functions vanishing at the identity,
i.e., to the map

R −→ R∧(y(ε)),

of topological Hopf algebras. It is easy to check R∧(y(ε)) = k[[y(ε)]], so that G0 is a
non-equivariant formal group. The quotient group Gét is represented by the Hopf
kernel R2R∧(y(ε))

k.
The idea for proving the statement about Gét is as follows. If e(β) = 0 it fol-

lows from [4, 16.7] that y(α) = y(αβ), so that, over l, the distinct coordinates are
parametrized by A∗/B∗

l . Corresponding to the inclusion of the coordinate neigh-
bourhoods we consider the map

R −→
∏

γ∈A∗/B∗
R∧(y(γ))

whose components are completions. Over a field, the other Euler classes are units,
and so one may check the the coordinates y(γ) are coprime. The Chinese Remainder
Theorem shows the map is an isomorphism, so that Gét(l) = A∗/B∗

l as required.

Remark 5.2. (i) We refer to G0 as the “identity component” of G.
(ii) A coordinate y(ε) on the group G giving rise to an equivariant formal group law
also provides a coordinate on G0 so that it gives rise to a non-equivariant formal
group law.
(iii) We refer to Gét as the étale quotient, although the terminology is really only
appropriate if A is finite. We will see in Section 6 that the Gét is usually not a
constant group.

6. Complete and local examples.

We describe two examples representing the two extremes in the behaviour of an
equivariant formal group. A general equivariant formal group can be constructed
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by amalgamating them, at least over a Noetherian ring [17]. The corresponding
topological constructions are described in Section 11.

We start with a non-equivariant formal groupG over k, and form an A-equivariant
formal group in two ways; if a coordinate is specified on G we describe a coordinate
on the equivariant formal group. In both cases the minimal additional data we need
is something to specify the Euler classes, but the data required is very different in
the two cases.

Non-equivariant ingredients 6.1. We assume given a non-equivariant formal
group: notation related to this is indicated by a bar.

• G, the (non-equivariant, commutative, one dimensional) formal group
• R, its ring of functions
• k, its ground ring
• ∆ : R −→ R⊗̂R, its coproduct
• θ : R −→ k, its counit
• y, a coordinate on G

We construct two quite different equivariant formal groups G with identity compo-
nent G0 = G.

6.A. Euler-invertible extensions.
In this example the ground ring k is unaltered (so that k = k) but the formal

group G is replaced by its product with A∗: the A-equivariant formal group is

A∗ = 1×A∗ −→ G×A∗ =: G.

This is essentially an equivariant formal group law in the sense of Okonek [26].
Translating this description into statements about functions, we take

k = k,R = R
A∗

, and θ = θ
A∗
: R = R

A∗ −→ k
A∗

= kA∗ .

Given y and the Euler classes e(α) there are many ways to specify the coordinate,
but the one needing no further choice is

y(ε) = (y, e(α−1), e(β−1), . . .),

where we have recorded the εth, αth and βth components.
There is one constraint: the Euler classes must be units. This is necessary to

ensure that a sum such as
∑

i(aiyi, 0, 0, . . .) converges in R. Indeed, since lβ simply
permutes the factors,

y(β) = (e(β), e(α−1β), y, . . .)

(in general y(β)(γ) = y(ε)(γ−1β)). Now, to see that e(α) must be a unit we attempt
to express y(α) in terms of the basis 1, y(ε), y(ε)y(α), y(ε)y(ε)y(α), . . .. In the αth
component, this basis has 1, e(α), ye(α), followed by terms divisible by y2 whereas
y(α) has y.

Example 6.2. It is perhaps worth a short calculation with A of order 2 to show
how great the difference between equivariant and non-equivariant formal groups
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can be. Let α denote the nontrivial one dimensional representation, and we suppose
e = e(α) is invertible. Thus

R = k[[y]]A
∗

= k[[y]]× k[[y]],

and we may take

y(ε) = (y, e),

so that

y(α) = (e, y).

We can thus write y(α) in terms of the ε, α, ε, α, ε, . . . basis

y(α) = (0, e) · 1 + (1,−1) · y(ε) + (0, e−1) · y(ε)y(α).

Other possible choices of the coordinate y(ε) must have a non-equivariant co-
ordinate in the εth factor and the Euler classes must still be the constant terms
in other factors, but these are the only constraints. Thus the εth factor is a unit
multiple of y and any power series yfα(y) may be added in the αth factor where
α 6= ε. Accordingly the universal ring for A-equivariant formal group laws of this
sort is

L[e(α), e(α)−1, γ1(α), γ2(α), . . . | α 6= ε],

where L is Lazard’s universal ring for non-equivariant formal group laws.
For any given equivariant formal group law we can discuss Euler classes. We

consider the case when e(α) is invertible in the ground ring k for all α 6= ε.

Theorem 6.3. (Localization theorem.) If R is an A-equivariant formal group law

with all Euler classes invertible, then R = R
A∗

for some non-equivariant formal
group law R as above.

The idea is the same as in the proof of 5.1: when Euler classes are invertible, the
elements y(α) are coprime, and we can use the Chinese remainder theorem to say
that R splits. Details are given in [16].

The localization theorem immediately gives us the universal ring for Euler-
invertible equivariant formal group laws.

Corollary 6.4. If E denotes the multiplicatively closed subset generated by the Euler
classes e(α) for α 6= ε, we have

E−1LA = L[e(α), e(α)−1, γ1(α), γ2(α), . . . | α 6= ε].

The Localization Theorem suggests alternative nomenclature. After all, e(α) is
the value of y(ε) at ζ(α−1), whereas y(ε) takes the value 0 at ε: thus if e(α) is a unit,
patches around the different points ζ(α) are completely independent. Pictorially, the
map G = A∗ × G −→ G is projection. In this case G0 = G and Gét = A∗, so it
would also be reasonable to call G the unramified extension of G.
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6.B. Euler-complete extensions.
This time we adjoin new Euler classes: the ground ring has various roots of n-

series adjoined, but the group itself is unchanged. We want the equivariant formal
group to be given by a homomorphism

ζ : A∗ −→ G,

but it may well happen that A∗ is finite and G has no points of finite order over k,
so we must adjoin some. This is closely related to constructions of Hopkins-Kuhn-
Ravenel [22].

We need to use the formal group law F associated to G, and the associated n-
series [n](z) = [n]F (z) defined recursively by [1](z) = z and [n+1](z) = F (z, [n](z))
as usual; equivalently [n](z) is the pullback of the function z along n : G −→ G.
For notational simplicity we restrict attention to the case of a cyclic group of order
n, and suppose A∗ = 〈α〉. The general case behaves just as this suggests. Thus the
homomorphism ζ is to be specified by giving a point ζ(α) of order n, and we take

k = k[[z]]/([n](z)), R = R, and θ : R −→ kA∗ .

As our coordinate we may use the non-equivariant coordinate y of G:

y(ε) = y.

We then have Euler classes

e(αs) = θα−s(y) = [s](z).

It is immediate from the definition that this gives an A-equivariant formal group
law. It is clear by construction that the universal ring for A-equivariant formal group
laws of this form is

L[[z]]/([n](z)).

For any given equivariant formal group law we can discuss Euler classes. We
consider the case when k is complete for the ideal

IE = (e(α) | α ∈ A∗).

Theorem 6.5. (Completion Theorem.) If R is an A-equivariant formal group law
complete for the ideal IE generated by Euler classes, then R is constructed in this
way from a non-equivariant formal group law R.

The idea of proof is as follows. Quite generally, the coordinates y(α) are all
congruent modulo Euler classes, and hence in the Euler-complete case y(ε) itself is
topologically nilpotent and its powers are dense. Details are given in [16].

This immediately gives us the universal ring for Euler-complete equivariant for-
mal group laws.

Corollary 6.6. If A is cyclic of order n and IE denotes the ideal generated by the
Euler classes e(α) for α 6= ε, we have

(LA)∧I = L[[z]]/([n](z)).
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The Completion Theorem suggests alternative nomenclature. After all, e(α) is
the value of y(ε) at ζ(α−1): if k is complete for the ideal IE of Euler classes, this
states that y(ε) is topologically nilpotent in the patches around the different points
ζ(α). In this case G0 = G ⊗k k, and Gét = 0 so an alternative terminology would
state that G is the totally ramified extension of G.

7. Multiplicative equivariant formal group laws.

In this section we consider equivariant formal group laws of a very simple form,
summarizing results from [14], to which we refer for all proofs. The topological
counterparts of these results are discussed in Section 12.

7.A. The definition.
We first give the definition apparently by simple transposition from the non-

equivariant case. In the final subsection we give a more helpful geometric explana-
tion.

Definition 7.1. (i) An equivariant formal group law R is multiplicative if its co-
product has the property

∆y(ε) = 1⊗ y(ε) + y(ε)⊗ 1− vy(ε)⊗ y(ε)

for some v ∈ k.
(ii) Given a multiplicative equivariant formal group law over k, we define a binary
operation on k-algebras by x � y = x + y − vxy.

Remark 7.2. (i) From 2.3 the products y(V i)⊗y(V j) give a basis of R⊗̂R for any
flag, so the coproduct determines the element v. The letter v is chosen to correspond
to the Bott element in topological K-theory.
(ii) Note that v is not required to be a unit. In particular, we allow the degenerate
case v = 0, which is usually referred to as an additive law. If v is a unit we say the
formal group law is strictly multiplicative.
(iii) The notion depends heavily on the coordinate: it is a property of the formal
group law and not of its associated formal group.

For such a simple coproduct it is easy to make the structure quite explicit. For
example the equivariance equation ∆ ◦ lα = (1⊗ lα) ◦∆ may be applied to y(ε) to
give an expression for y(α).

Lemma 7.3.

y(α) = e(α) + (1− ve(α))y(ε).

7.B. Euler classes.
First we define the polynomial [n](x) inductively by [0](x) = 0 and [n](x) =

([n− 1](x)) � x. Thus

[n](x) = (1− (1− vx)n)/v.



Homology, Homotopy and Applications, vol. 3(10), 2001 240

The notation is consistent with the usage in Subsection 6.B above because this is
the n-series [n]m(x) for the non-equivariant multiplicative formal group.

Because of the very simple form of the coproduct, the formula in Section 4 for
Euler classes of a tensor product is considerably simplified.

Lemma 7.4. The Euler class of a tensor product is described by the formula

e(αβ) = e(α) � e(β).

Furthermore,

e(αn) = [n](e(α)),

so that if α is of order n, we have [n](e(α)) = 0, and

e(αn) = e(αn−1) + e(α)(1− ve(α))n−1.

Corollary 7.5. For any one dimensional representation α, the element 1− ve(α)
is a unit with inverse 1− ve(α−1).

Proof: We have

(1− ve(α))(1− ve(β)) = 1− ve(α) � e(β) = 1− ve(αβ),

so that 1− ve(α−1) is inverse to 1− ve(α).

7.C. Universal rings.
Since multiplicative formal group laws are defined by the vanishing of most terms

in the coproduct, the set A-fglm(k) of multiplicative equivariant formal group laws
is also a functor of k. It follows from the existence of LA that there is also a
representing ring Lm

A for the multiplicative A-equivariant formal group law functor:

A-fglm(k) = Ring(Lm
A , k).

Similarly, there are representing rings La
A and Lsm

A for additive and strictly multi-
plicative A-equivariant formal group laws. The results in this subsection give explicit
presentations of these representing rings.

We have seen that the entire structure of a multiplicative A-equivariant formal
group law over k is determined by polynomials in the element v and the Euler classes
e(α) of a set of characters α generating A∗: this shows that Lm

A is generated by
elements v and e(α) corresponding to these structure constants. The main content
in the descriptions of the universal rings is in showing that all relations follow from
relations on the Euler classes that we have already met.

Theorem 7.6. For any compact abelian Lie group A there is a representing ring
Lm

A for multiplicative equivariant formal group laws. The ring Lm
A is a Z[v]-algebra

and may be described as follows.
(i) If A = B × C then

Lm
A = Lm

B ⊗Z[v] Lm
C
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(ii) If A is a finite cyclic group of order n with dual group A∗ = 〈α〉 then

Lm
A = Z[v, e]/([n](e)),

where e = e(α). This becomes a graded ring if v has degree 2 and e is of degree −2.
(iii) If A is a circle group and A∗ = 〈z〉 then

Lm
A = Z[v, f, f ′]/(vff ′ − f − f ′),

where f = e(z) and f ′ = e(z−1). This becomes a graded ring if v has degree 2 and
both f and f ′ have degree −2.

The resulting description of Lm
A depends strongly on the chosen presentation of

the group A. In some cases this can be avoided by using a standard construction in
commutative algebra. The Rees ring Rees(R, J) associated to an ideal J of a ring
R is the graded subring of the graded ring R[v, v−1] generated by R, v and v−1 · J ,
where v has degree 2. It is thus R in degree 0 and each positive even degree, and
it is Jn in degree −2n. Since the Euler classes in representation theory satisfy the
universal relations, and the Rees ring is generated by v together with e’s, f ’s and
f ′’s we find a useful connection.

Corollary 7.7. There is a natural map

` : Lm
A −→ R(A)[v, v−1],

with image equal to the Rees ring.

If A is topologically cyclic we have a more satisfactory description of Lm
A .

Proposition 7.8. (i) If A is topologically cyclic then the map ` of 7.7 induces an
isomorphism

Lm
A
∼= Rees(R(A), J).

(ii) For any abelian group A, the map ` is the localization away from v:

Lm
A [v−1] ∼= R(A)[v, v−1].

(iii) If A is not topologically cyclic then Lm
A contains Z-torsion and v-torsion.

Corollary 7.9. If A is topologically cyclic, the representing ring Lm
A for multiplica-

tive A-equivariant formal group laws, may be identified with the Rees ring

Lm
A = Rees(R(A), J).

For an arbitrary abelian compact Lie group A, the representing ring for strictly
multiplicative A-equivariant formal group laws is given by

Lsm
A = R(A)[v, v−1].

Finally, we record the corresponding results for additive formal group laws, which
follow by setting v = 0.
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Corollary 7.10. There is a universal ring La
A for additive A-equivariant formal

group laws. It is the free commutative ring on the abelian group A∗, and if A∗ =
Z/(n1)⊕ · · · ⊕ Z/(nr)⊕ Zd, it has the presentation

La
A = Z[e1, e2, . . . , er, f1, f2, . . . , fd]/(n1e1, n2e2, . . . , nrer),

where e1, . . . , er, f1, . . . , fd are the Euler classes of the cyclic generators of A∗.

7.D. Outline via group schemes.
First recall the multiplicative group scheme Gm over k, defined for k-algebras l

by

Gm(l) = k-Alg(k[z, z−1], l) = Units(l)

where the group multiplication is induced by the coproduct ∆(z) = z ⊗ z and the
inverse by ι(z) = z−1. The universal example is the case with k = Z. Now take
x = 1 − z as a coordinate and note that the coproduct takes the form ∆(x) =
x ⊗ 1 + 1 ⊗ x − x ⊗ x. If v is a unit we may replace x by y = v−1x and obtain
the coproduct ∆(y) = y ⊗ 1 + 1⊗ y − vy ⊗ y in the form we have been discussing.
But note that to define the inverse it is essential that z = 1 − vy is invertible. Of
course, this holds for the rings k[y, (1 − vy)−1] = k[z, z−1] and k[[y]], which define
the multiplicative group Gm and the multiplicative formal group Gm over k, at least
provided v is invertible in k.

By contrast, we need to discuss the multiplicative monoid scheme Mm,v with
parameter v. This is defined by

Mm,v(l) = k-Alg(k[y], l)

with monoid structure defined by the coproduct ∆(y) = y⊗ 1 + 1⊗ y− vy⊗ y. We
choose y as a coordinate at the identity to obtain a monoid law. By construction,
for any multiplicative equivariant formal group law (G, y(ε), v) there is a canonical
homomorphism

G −→Mm,v

of monoid schemes determined by the coordinate y(ε). Furthermore, behaviour of
Euler classes shows that any monoid homomorphism ζ ′ : A∗ −→ Mm,v factors
uniquely through a group homomorphism ζ : A∗ −→ G. Thus A-equivariant formal
group laws with parameter v correspond to homomorphisms ζ ′, and

A-fglm,v(l) = Monoid(A∗,Mm,v(l)).

The universal case has k = Z[v], and we conclude

A-fglm = Monoid(A∗,Mm)

whereMm is the universal multiplicative nonequivariant formal group lawMm,v over
Z[v]. Thus the representing ring Lm

A is the ring of functions on Monoid(A∗,Mm).
To calculate the ring of functions, we remark that the fact the coproduct lies in

the polynomial ring in the coordinate shows that if A = B × C then

Monoid(A∗,Mm,v) = Monoid(B∗,Mm,v)×Monoid(C∗,Mm,v),
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so that the ring of functions is the tensor product of the rings of functions of the
cyclic factors. Finally, when A∗ is cyclic of order n

Monoid(A∗,Mm,v) = Mm,v[n]

is the group scheme of points of order dividing n, and this is represented by the ring
k[y]/([n](y)). However, the infinite cyclic group A∗ = 〈z〉 is generated as a monoid by
the elements z and z−1, subject to the relation zz−1 = ε, so that Monoid(A∗,Mm,v)
is represented by the ring k[y, y′]/(y � y′). The case when k = Z[v] gives the cal-
culation of Lm

A , and hence Theorem 7.6.

8. The easy life over the rationals.

In this section we assume that A is finite and its order is invertible in k: this
drastically simplifies the situation. In fact, idempotents show that any example is
essentially a product of the Euler-local and Euler-complete examples. As might be
expected, for a general finite group A there is one factor for each (conjugacy class
of) subgroups of A, but for simplicity we restrict attention to the case that A is
cyclic of prime order p and A∗ = 〈α〉.

Proposition 8.1. If A is of prime order p and p is invertible in k, then if R is an
A-equivariant formal group law over k there is an idempotent f ∈ k giving rise to
splittings

k = k′ × k′′, R = R′ ×R′′ and y(ε) = (y(ε)′, y(ε)′′)

so that

• R′ is an Euler-local A-equivariant formal group law over k′ and

• R′′ is an A-equivariant formal group law over k′′ with trivial Euler classes.

Accordingly the universal ring for A-equivariant formal group laws over Z[1/p] is

LA[1/p] = L[1/p]× L[1/p][e(αi), e(αi)−1, γ1(αi), γ2(αi), . . . | i = 1, 2, . . . , p− 1].

Proof: The formula for the Euler class of a product gives

0 = e(αp) = pe(α) + e(α)r

for some r in k. Equivalently, if we take f = −e(α)r/p, we have f2 = f . Inverting
f inverts e(α), and inverting (1− f) kills e(α).

If e(α) is inverted, then expressing e(α) in terms of e(αi) for i 6= 0 mod p we
see that we invert e(αi) as well, so that inverting e gives an Euler-invertible A-
equivariant formal group law. Similarly, if e(α) = 0 then all Euler classes are zero
and we have a trivial example of an Euler-complete formal group law. The result
now follows from Section 6.
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Part 2. Complex oriented equivariant cohomology theories.
Complex oriented cohomology theories are more complicated in the equivariant
setting, even when the ambient group of equivariance is abelian. The main source
of the complexity is that topologically trivial line bundles need not be trivial: they
are classified by one dimensional representations. A secondary problem, which won’t
appear explicitly here, is that to exploit the good behaviour of complex oriented
theories one must decompose spaces into cells based on representations rather than
on homogeneous spaces.

By design, the language of equivariant formal group laws is ideally suited to ex-
plain this more complicated structure. In Part 2 we re-examine topological examples
in this framework, and give a number of examples.

9. Complex oriented cohomology theories.
Equivariant formal group laws were introduced to study complex oriented coho-

mology theories in general and equivariant bordism in particular. These are theories
well behaved on line bundles, so we begin by summarizing properties of relevant
spaces.

9.A. The classifying space for line bundles.
For each complex representation V we may form the A-space CP (V ) of complex

lines in V . It is sometimes useful to view projective space as the quotient CP (V ) =
S(V ⊗ z)/T, where z is the natural representation of the circle group T, V ⊗ z is
the resulting representation of A× T, and S(V ⊗ z) is its unit sphere.

Note that if W is one dimensional, CP (W ) is a point, so that a one dimensional
subspace of V specifies a basepoint of CP (V ): this is significant because basepoints
may lie in different components of the fixed point set. At the other extreme, if α is
one dimensional one may verify there is a cofibre sequence

9.1.

CP (V ) −→ CP (V ⊕ α) −→ SV⊗α−1
.

The A-invariant complex lines are exactly the subrepresentations of V , so it is
easy to see that

9.2.

CP (V )A =
∐

α

CP (Vα)

where Vα = HomA(α, V ) is the α-isotypical part of V .
For convenience we take U =

⊕

k>0

⊕

α∈A∗ α as our complete A-universe and
consider CP (U), with its topology as a colimit of its subspaces CP (V ) with V finite
dimensional.

The importance of projective spaces is the following standard fact.

Lemma 9.3. The A-space CP (U) classifies line bundles.
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The tensor product of line bundles is commutative and associative up to coherent
isomorphism, and has ε as a unit: we constantly use the represented counterpart.

Corollary 9.4. The A-space CP (U) is an abelian group object up to homotopy,
and the inclusion of fixed points is a group homomorphism.

We have seen
CP (U)A =

∐

α

CP (Uα) ∼= A∗ × CP (Uε).

Two maps arising from this are important. Firstly, note that since CP (Uα) is con-
nected, there is a unique homotopy class

ζ ′ : A∗ −→ (CP (U))A

splitting the natural augmentation (CP (U))A −→ A∗, and it is a group homo-
morphism up to homotopy. In particular A∗ acts on CP (U) through A-maps, by
α · L = α⊗ L. Secondly, there is the group homomorphism

j : CP (Uε) −→ CP (U),

which is a non-equivariant equivalence.

9.B. Complex stability and Euler classes.
We have already seen that the fixed point spaces of interesting A-spaces are

disconnected, so it is rare for there to be a preferred basepoint. This is one reason
it is convenient to work throughout in the unbased context.

A genuine equivariant cohomology theory E∗
A(·) is an exact contravariant functor

on A-spaces, which admits an RO(G)-graded extension so that we have coherent
suspension isomorphisms

ẼV +n
A (SV ∧X) ∼= Ẽn

A(X)

for all real representations V . Amongst these, many familiar ones have a stronger
stability property

Ẽ|V |+n
A (SV ∧X) ∼= Ẽn

A(X)

when V is a complex representation, where |V | denotes the space V with trivial
action. This is very convenient: for most purposes we only need to look at the theory
in integer gradings. Following tom Dieck we call these theories complex stable. As
examples, we have the cohomology theory of the Borel construction, defined in terms
of a complex orientable nonequivariant cohomology theory by X 7−→ E∗(EA×AX).
A Serre spectral sequence argument shows this is complex stable, since A acts
trivially on H |V |(SV ) when V is complex. The other examples we discuss below
include complex equivariant K-theory and complex cobordism MU .

Now let us suppose given a multiplicative, complex stable equivariant cohomology
theory E∗

A(·). For any complex representation V , complex stability provides an
element

λ(V ) ∈ Ẽ|V |
A (SV )
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corresponding to the unit in E0
A, and the E∗

A-module Ẽ∗(SV ) is free of rank 1
on this generator. All complex stability isomorphisms are given by multiplication
by λ(V ), and we have λ(V ⊕ W ) = λ(V )λ(W ). We then define the Euler class
χ(V ) = e∗V (λ(V )) ∈ E|V |

A , where eV : S0 −→ SV is the inclusion. Thus we have
χ(V ⊕W ) = χ(V )χ(W ).

9.C. Orientations and the cohomology of CP (U).
Notice that for any α we have containments ε ⊆ ε⊕ α ⊆ U, so that

∗ε = CP (ε) ⊆ CP (ε⊕ α) = Sα−1
⊆ CP (U).

Definition 9.5. [3] We say that x(ε) ∈ E∗
A(CP (U),CP (ε)) is an orientation if for

all one dimensional representations α ∈ A∗,

resU
ε⊕αx(ε) ∈ E∗

A(CP (ε⊕ α),CP (ε)) ∼= Ẽ∗
A(Sα−1

)

is a generator. The Euler class arising from this particular generator is denoted
e(α−1).

We may generate many other elements from an orientation. Firstly, pulling back
along the action

α−1 : (CP (U),CP (α)) −→ (CP (U),CP (ε))

we have x(α) ∈ E∗
A(CP (U),CP (α)). Writing lα = (α−1)∗, we have x(α) = lαx(ε).

Taking external products, if V = α1⊕· · ·⊕αn we obtain x(V ) ∈ E∗
A(CP (U),CP (V )).

Forgetting the subspace, x(V ) defines an element y(V ) ∈ E∗
A(CP (U)) which restricts

to zero on CP (V ). It turns out that the pair (CP (V ⊕W ),CP (V )) defines a short
exact sequence

0 ←− E∗
A(CP (V )) ←− E∗

A(CP (V ⊕W )) ←− E∗
A(CP (V ⊕W ),CP (V )) ←− 0.

In particular y(ε) is the image of x(ε), and, since the restriction is injective, either
one determines the other. It is clear that y(0) = 1, that y(V ⊕ W ) = y(V )y(W ),
and that (α−1)∗y(V ) = y(V ⊗α). Thus all the elements y(V ) can be obtained from
y(ε) using the action of A∗ and the multiplication.

To obtain a topological additive basis of E∗
A(CP (U)) we choose a complete flag

F = (V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ),

so that dimC(V i) = i, and
⋃

i>0 V i = U. Associated to any such complete flag
F we have the sequence α1, α2, . . . of subquotients αi = V i/V i−1, so that V n ∼=
α1 ⊕ · · · ⊕ αn, and y(V n) = y(α1)y(α2) · · · y(αn). The basis only depends on the
isomorphism classes of the sequence V n, so the important structure is represented
by the sequence α1, α2, α3, . . .. We use the notation k{{yi|i ∈ I}} to denote the
product

∏

i∈I k where yi is the characteristic function of the ith factor.
The Splitting Theorem of [3] is the appropriate substitute for the collapse of the

Atiyah-Hirzebruch spectral sequence in the non-equivariant case.
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Theorem 9.6. (Cole [3]) A complete flag F = (V 0 ⊂ V 1 ⊂ V 2 · · · ) specifies a
basis of E∗

A(CP (U)) as follows:

E∗
A(CP (U)) = E∗

A{{y(V 0) = 1, y(V 1), y(V 2), . . .}}.

Similar results hold for products of copies of CP (U), in the sense that the Künneth
theorem holds with completed tensor products.

Proof: The cofibre sequence

(Sα−1
n+1 , ∗) = (CP (V n+1),CP (V n)) −→ (CP (U),CP (V n+1)) −→ (CP (U),CP (V n))

is split in cohomology by x(V n+1).

For our purposes the main consequence it that we obtain an equivariant formal
group law from a complex oriented cohomology theory.

Corollary 9.7. A complex oriented cohomology theory E∗
A(·) gives rise to an A-

equivariant formal group law

• k = E∗
A

• R = E∗
A(CP (U))

• the coproduct ∆ : R −→ R⊗̂R is induced by ⊗ : CP (U)× CP (U) −→ CP (U)
• the map θ : R −→ kA∗ is induced by ζ ′ : A∗ −→ CP (U)
• the coordinate y(ε) is obtained from the orientation x(ε)
• the inclusion of the identity component G0 −→ G is induced by j : CP (Uε) −→
CP (U)

Proof: The Künneth theorem, together with the properties of CP (U), shows that
R = E∗

A(CP (U)) satisfies (Afgl1) and (Afgl2) with k = E∗
A, except perhaps the

statement about topologies. The particular basis shows that y(ε) is a coordinate in
the sense of (Afgl3), and that the topology on R is as required.

10. Equivariant K-theory.
We include this section on K theory partly because it is one of the few cases

where calculations are easy, but also because it is a template for an illuminating
general approach to global equivariant formal group laws (see Remark 10.1). In fact,
Bott periodicity shows K-theory is complex stable, and that we may work entirely
in degree 0. Thus the coefficient ring KA = R(A) is the complex representation
ring. It is important not to confuse the action of R(A) on KA(CP (U)) with action
of A∗ through ring homomorphisms induced from its action on CP (U).

The key observation is the change of group isomorphism

KA×T(S(V ⊗ z)) = KA(CP (V )),

where z is the natural representation of T. This fundamental observation is a process
of “uncompleting” the associated formal group (although the uncompleted object
need no longer be a group).
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Now we may exploit the based cofibre sequence S(V )+ −→ D(V )+ −→ SV and
its associated Gysin sequence. By Bott periodicity, it takes the form

0 ←− KA×T(S(V ⊗ z)) ←− R(A)[z, z−1]
χ(V⊗z)←− R(A)[z, z−1] ←− · · · .

Furthermore, if V = α1 ⊕ · · · ⊕ αn, then

χ(V ⊗ z) = χ(α1z)χ(α2z) · · ·χ(αnz) = (1− α1z)(1− α2z) · · · (1− αnz),

which is a regular element. Thus

KA(CP (V )) = KA×T(S(V ⊗ z)) = R(A)[z, z−1]/χ(V ⊗ z).

Next, note that z is already invertible in R(A)[z]/χ(V ⊗ z); indeed

1− χ(V ⊗ z) = z · (V + higher terms).

Either by the completion theorem, or simply by passage to inverse limits, we see
that

KA(CP (∞V )) = R(A)[z]∧χ(V⊗z).

Now observe that y = 1− z is an orientation; K-theory is unusual in that this has
finite degree in z. To verify it is indeed an orientation, we note that 1 − z makes
sense as an element of KA(CP (V )) for any V , and that 1− z visibly generates the
kernel of

KA(CP (ε⊕ α)) = R(A)[z]/(1− z)(1− αz) −→ R(A)[z]/(1− z) = KA(CP (ε)).

The element z, regarded as an element of KA(CP (V )), is the canonical line
bundle over CP (V ), so it is easy to identify the A∗ action: lαz = αz. Since the
action is through ring homomorphisms, y(α) = lα(1− z) = 1− αz.

Next, we specialize to case A is finite and V is the regular representation, and
let Π = χ(CA⊗ z) =

∏

α(1− zα). There is a straightforward and standard way to
adapt the discussion to an arbitrary abelian compact Lie group A. The inclusion
i : A∗ × CP (Uε) −→ CP (U) induces a map

i∗ : R(A)[z]∧Π −→
∏

α

R(A)[z]∧(1−αz).

The αth component is induced by completing the identity map of R(A)[z] with
respect to Π in the domain and (1−αz) in the codomain, as is legitimate since (1−
αz) divides Π. Note in particular that i∗ is injective, since the same primes contain
the product and the intersection of the ideals (1 − αz). It is also not hard to see
that if we invert all the Euler classes χ(α) = 1−α then the ideals become coprime.
Thus if we invert the Euler classes before completion, we obtain an isomorphism by
the Chinese Remainder Theorem.

Remark 10.1. The discussion in this section applies to more general complex
oriented equivariant cohomology theories E∗

A(·) defined for all abelian compact Lie
groups. The main requirement is that the theory should be split in the sense that
(i) E∗

A×T(X) = E∗
A(X/T) when X is T-free, and (ii) the coefficient rings are related

by ring maps E∗
A −→ E∗

A×T compatibly with the isomorphism.
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The representation ring R(A) = KA = K0
A must be replaced by E∗

A, and the
Euler classes adapted accordingly. The most significant difference is that E∗

A×T 6=
E∗

A ⊗E∗ E∗
T in general, and Euler classes χ(V ⊗ z) need not be regular in E∗

A×T.

11. Completion and localization in topology.
We briefly discuss the topological counterparts of the Euler-local and Euler com-

plete equivariant formal group laws described in Section 6. Historically, these well
known topological versions of the localization and completion theorems suggested
their algebraic counterparts.

Throughout this section we assume that E is a split, complex oriented cohomol-
ogy theory, so that it has Euler classes.

11.A. Euler-local cohomology theories.
If we assume all Euler classes are invertible we have a reduction to fixed point

spaces.

Lemma 11.1. If all Euler classes are invertible in E∗
A then for any G-space X,

E∗
A(X) = E∗

A(XA).

Proof: Under the stated hypotheses, F (S∞ρ, E) = E, where

S∞ρ := lim
→ W G=0

SW .

Hence

[X,E]∗A = [X,F (S∞ρ, E)]∗A = [X ∧ S∞ρ, E]∗A.

The map

XA ∧ S∞ρ −→ X ∧ S∞ρ

is an A-equivalence: indeed, it is an equivalence in B-fixed points for all proper
subgroups B since there is a representation W with WA = 0 and WB 6= 0, and it
is obviously an equivalence in A-fixed points.

Now take X = CP (U) and note that

E∗
A(CP (U)) = E∗

A(CP (U)A) = E∗
A(CP (Uε)×A∗) = E∗

A(CP (Uε)))A∗ ,

showing immediately that the associated equivariant formal group law is of the
Euler-local form discussed in Subsection 6.A.

11.B. Euler-complete cohomology theories.
If we assume the cohomology theory is complete for the ideal IE generated by

Euler classes we have a reduction to non-equivariant topology.

Lemma 11.2. If E∗
A(·) is complete for the ideal IE generated by Euler classes then

any A-map X ′ −→ X which is a non-equivariant equivalence induces an E∗
A(·)

isomorphism, and hence we have the Borel theory

E∗
A(X) = E∗(EA×A X).



Homology, Homotopy and Applications, vol. 3(10), 2001 250

Proof : Since A is abelian we may construct EA as a product of spaces S(∞α)
with α 6= ε, and hence IE has the same radical as the augmentation ideal I =
ker(E∗

A −→ E∗) (see [12]). Hence the completeness hypothesis gives F (EA+, E) =
E and therefore

[X, E]∗A = [X,F (EA+, E)]∗A = [X ∧ EA+, E]∗A.

Now take X = CP (U) and note that the inclusion

j : CP (Uε) −→ CP (U)

is an A-map which is a non-equivariant isomorphism. Hence

E∗
A(CP (U)) = E∗

A(EA× CP (Uε)) = E∗(BA)[[z]],

showing immediately that the associated equivariant formal group law is of the
Euler-complete form discussed in Subsection 6.B, giving the topological side of the
connection with the work of Hopkins-Kuhn-Ravenel [22].

12. Equivariant connective K theory.
The results of this section give the topological counterpart of Section 7. It was

shown in 7.9 that the universal ring Lsm
A = Lm

A [v−1] for strictly multiplicative equiv-
ariant formal group laws is the coefficient ring K∗

A = R(A)[v, v−1] of Atiyah-Segal
equivariant periodic complex K-theory. One may do a little better. In fact there is
a complex oriented, equivariant version ku∗A(·) of connective K theory and, for sim-
ple enough groups A, its coefficient ring is Lm

A . Note immediately that this means
ku∗A is not connective (unless A is trivial), so that one must refer to “equivariant
connective K theory”, not to “connective equivariant K theory”: this is forced by
complex orientability and the relationship with periodic K theory.

This section summarizes results from [15], and in the topological context, the
results are available for all compact Lie groups G. The previous paragraph summa-
rized the results when G = A is abelian, and when G is non-abelian this section
can be viewed as motivation for Part 3, where equivariant formal group laws are
discussed for non-abelian groups.

Theorem 12.1. The G spectrum ku representing equivariant connective K theory
has the following properties.

1. It is a commutative ring spectrum up to homotopy, and a highly structured
commutative ring spectrum if G is finite.

2. If H is any subgroup of G then if we view the G-equivariant spectrum ku as
an H-spectrum we obtain the H-equivariant construction. In particular, ku is
non-equivariantly the connective cover of the periodic K-theory spectrum K.

3. ku is a split ring spectrum, and hence ku∗G is an algebra over ku∗ = Z[v].
4. There is a ring map ku −→ K of G-spectra which is localization to invert v.
5. ku∗G is a Noetherian ring.
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6. There is a ring map MU −→ ku of G-spectra, so that ku is complex orientable
(if G is abelian this agrees with the notion of orientability in Definition 9.5 by
[5]).

For the purposes of the present article, the main reason for interest in the theory
is its relation with multiplicative equivariant formal group laws.

Proposition 12.2. If G is a product of two topologically cyclic groups then ku∗G is
the representing ring for multiplicative equivariant formal group laws as in Section
7:

ku∗G = Lm
G .

Remark 12.3. Note that it follows from 7.9 that if G is topologically cyclic, ku∗G
is the Rees ring

ku∗G = Rees(R(G), J).

For other groups the connection is not so tight. In fact ku∗G is non-zero in odd
degrees for elementary abelian groups of rank 3 or more, and its even degree part
can have Z-torsion. In the rest of the secion we explain this in more detail. We also
discuss non-abelian groups G, thereby providing some useful preparation for the
general G-equivariant formal group laws of Part 3.

The connection with the non-equivariant theory is as good as possible in that the
completion theorem and the local cohomology theorem hold. Let I = ker(ku∗G −→
ku∗) be the augmentation ideal.

Proposition 12.4. For any finite group G

1. The completion theorem holds for ku in the sense that

ku∗(BG) = ku∗G(EG) = (ku∗G)∧I .

2. The local cohomology theorem holds for ku in the sense that there is a spectral
sequence

H∗,∗
I (kuG

∗ ) ⇒ kuG
∗ (EG).

We have partial results about the coefficient ring. The most satisfactory of these
are in terms of the ring homomorphism

` : ku∗G −→ K∗
G = R(G)[v, v−1]

comparing connective and periodic K-theory, where R(G) is the complex represen-
tation ring of G. We have already used the Rees ring when G is abelian in Section 7.
One may think of the Rees ring as a ring in which elements of Jn become divisible
by vn. In topology, the Euler class e(V ) of an n-dimensional complex representation
V naturally lies in degree −2n, and vne(V ) = eR(V ). Here

eR(V ) = λ−1(V ) =
∑

i

(−1)iλi(V ) ∈ R(G)

is the representation theory Euler class. Thus we would expect the representation
theory Euler class eR(V ) of an n-dimensional representation to be divisible by vn
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in ku∗G, even if it is not in Jn. Similarly the ith representation theory Chern class
cR
i (V ) should be divisible by vi. Accordingly we define an algebraic model for ku∗G

with this property.

Definition 12.5. [2] The modified Rees ring ModRees(G) is the subring of
R(G)[v, v−1] generated by R(G), v and v−icR

i (V ) for all representations V .

Remark 12.6. (i) If G is abelian, then ModRees(G) = Rees(R(G), J), but in
general the inclusion

Rees(R(G), J) ⊆ ModRees(G)

is proper.
(ii) The Rees ring only depends on R(G) as an augmented ring. However, the
modified Rees ring also depends on the exterior powers, so we write it as a functor
of G rather than the ring R(G).

Example 12.7. The groups Q8 and D8 have isomorphic augmented representation
rings, and hence also isomorphic Rees rings. Their modified Rees rings are not only
different from the Rees ring, but also different from each other. Indeed, if V is the
2-dimensional simple representation of Q8 then c2(V ) = 2 − V , whilst if W is the
2-dimensional simple representation of D8 then c2(V ) = 1 − V + r where r is the
one dimensional representation with kernel the rotation subgroup.

We are now ready to state results about the coefficient rings. First we have a
general statement if we invert v or tensor with the rational numbers.

Proposition 12.8. 1. In positive degrees, connective and periodic K theory agree:

kuG
i = KG

i if i > 0.

2. Above degree −4, the coefficients are as follows

kuG
i =























0 if i is odd and > 0
R(G) if i is even and > 0
0 if i = −1
J if i = −2
0 if i = −3

3. Localized away from v, connective and periodic K theory agree:

ku∗G[1/v] ∼= K∗
G = R(G)[v, v−1].

4. If G is finite, the map ku∗G −→ K∗
G is a rational monomorphism and the im-

age is the rationalized modified Rees ring.

The lower coefficients behave in a more complicated way: it follows from cal-
culations for elementary abelian groups in [2] that kuG

−6 can contain torsion (and
is therefore not equal to the modified Rees ring in this degree) and kuG

−7 can be



Homology, Homotopy and Applications, vol. 3(10), 2001 253

non-zero. One may show that kuG
−5 = 0, and it is natural to conjecture that kuG

−4
agrees with the modified Rees ring in that degree.

One special case is worth special mention. The calculations of [2] give the coef-
ficient ring for a number of other groups.

Proposition 12.9. If G = U(n) then ku∗G is the modified Rees ring

ku∗U(n) = ModRees(U(n)).

We may therefore define ku-theory Chern classes for arbitrary representations by
naturality.

13. Complex cobordism and the universal equivariant formal
group law.

One of the purposes of introducing equivariant formal group laws was the hope
that they might provide an algebraic description of tom Dieck’s homotopical com-
plex cobordism ring MU∗

A. It is shown in [5] that complex orientable theories have
Thom classes for all complex bundles, and hence that the representing spectrum
MU is topologically universal for complex oriented theories, in the sense that an
orientation in cohomological degree 2 gives rise to a ring map MU −→ E.

We are concerned here with algebraic universality, and illustrate the results of
[16] in special cases. The construction of MU gives a canonical complex orientation,
and therefore an equivariant formal group law over MU∗

A. There is thus a canonical
map

ν : LA −→ MU∗
A

classifying its equivariant formal group law.
I conjecture that it is an isomorphism, but the best available result at present is

a little weaker.

Theorem 13.1. If A is a finite group, the ring MU∗
A represents A-equivariant

formal group laws over Noetherian rings. More precisely, the map ν is surjective
and its kernel is Euler torsion and Euler divisible.

The reason for the unsatisfactory statement in the theorem is that the proof
relies on a Hasse square which is only known to be a pullback for Noetherian rings
or rings with bounded Euler torsion. It is known to be a pullback for MU∗

A since
the boundedness of torsion is proved by topological means. However it is not known
to be a pullback for LA. Another approach via tori gives hope of a proof that ν is
actually an isomorphism. Strickland has a more precise approach, and when A is of
order 2 he has already given a presentation of MU∗

A and shown that it is a retract
of LA [32].
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13.A. Outline of the proof.
We may illustrate the argument given in general in [16] by describing the case

when A is of prime order p. The geometrical pullback square

MU∗
A −→ E−1MU∗

A
↓ ↓

MU∗(BA) −→ E−1MU∗(BA)

was first used by tom Dieck [8], but has recently been analyzed in more detail by
Kriz [23], and Strickland has used it to give an exact presentation of MU∗

A in terms
of formal group data, at least when A is of order 2 [32]. In view of the completion
theorem [24, 6, 19],

MU∗(BA) = HI
0 (MU∗

A) = (MU∗
A)∧I ,

where HI
0 denotes local homology in the sense of [18], and hence the corresponding

algebraic square is

LA −→ E−1LA

↓ ↓
HI

0 (LA) −→ E−1HI
0 (LA).

Unfortunately this is not known to be a pullback unless HI
1 (LA) can be shown to be

zero, but LA does map onto the pullback. Evidently there is a comparison map from
the algebraic to the topological square. The pullbacks will be isomorphic provided
the maps

E−1ν : E−1LA −→ E−1MU∗
A

and

H0(ν) : HI
0 (LA) −→ HI

0 (MU∗
A)

are shown to be isomorphic.
The topological pullback square for more general groups is of interest even with-

out the comparison with the algebraic square.

13.B. The Euler-local isomorphism.
Given an equivariant manifold M , its fixed point set MA will be a manifold

equipped with an equivariant bundle, which can be split up into α-isotypical pieces
for the non-trivial simple representations α. In tom Dieck’s stabilized bordism cer-
tain Euler classes are inverted: this is the geometric content of tom Dieck’s calcula-
tion [8]

E−1MU∗
A = (ΦAMU)∗ = MU∗(BU [z, z−1]∧(A∗\{ε})).

Combining this with our algebraic calculation of E−1LA in 6.4 we obtain a local
version of the equivariant Quillen theorem.

Proposition 13.2. The universal map

ν : LA −→ MU∗
A
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induces an isomorphism

E−1LA
∼=−→ E−1MU∗

A.

13.C. The Euler-complete isomorphism.
Combining the calculation 6.6 of (LA)∧I with the fact that MU is non-equivariantly

complex cobordism, we obtain a complete version of the equivariant Quillen theo-
rem.

Proposition 13.3. The universal map

ν : LA −→ MU∗
A

induces an isomorphism

(LA)∧I
∼=−→ (MU∗

A)∧I = MU∗(BA).

Part 3. Towards equivariant formal groups for the
non-abelian case.
In the final part we replace the abelian compact Lie group A by a non-abelian
group G and discuss features of a possible definition of a G-equivariant formal
group law. As in the abelian case our motivation is to understand complex oriented
cohomology theories. We will give the definition in outline; a full presentation and
proper development is planned by N.P.Strickland and the author [21]. The theory
is not fully tested from the topological point of view because at present we have
only shown that K theory provides an example, but the structure is certainly all
relevant.

14. Ingredients.

When G = A is abelian, all simple representations are one dimensional, so it is
reasonable to expect some sort of splitting principle by which behaviour for arbitrary
complex vector bundles can be reduced to that of line bundles. That is why it is
reasonable to encode all the behaviour in terms of R = E∗

A(BU(1)), and all relevant
structure comes from the map ⊗ : BU(1) × BU(1) −→ BU(1) classifying tensor
product of line bundles. The different equivariant types of a line bundle are described
by vector bundles over a point hence by A∗ −→ BU(1). It is convenient to have the
particular model CP (U) for the classifying space BU(1).

In the general case we need to discuss the G-equivariant classifying spaces BU(n)
for all n > 0, and it is again convenient to have the Grassmannian model Grn(U)
for BU(n). This time, the relevant structure includes direct sum

⊕m,n : BU(m)×BU(n) −→ BU(m + n),

tensor product

⊗m,n : BU(m)×BU(n) −→ BU(mn),
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and exterior power maps

λi
m : BU(m) −→ BU(

(

m
i

)

).

We also need a point in BU(1) which is the unit of ⊗, which then gives a map

BU(m) −→ BU(m + 1)

adding a trivial representation. The formal properties of these maps are known. This
is perhaps best encoded in terms of the category N of natural numbers equipped
with the two monoidal structures direct sum (m⊕ n := m + n) and tensor product
(m⊗ n := mn), together with exterior power operations and a map 0 −→ 1 giving
the unit of ⊗. We say that a functor

F : (N,⊕,⊗, λi) −→ C

to a symmetric monoidal category C is an N-algebraic object of C if it is a lax
symmetric monoidal functor with tensor product distributing over sum, and exterior
powers behaving in the usual way. Similarly an N-coalgebraic object of C is an N-
algebra in Cop.

Remark 14.1. Strickland considers the same structure in [30] where he refers
to N-algebras as Λ-semirings, and the reader will find it useful to refer to his more
precise and thorough treatment. We have chosen different terminology to emphasize
the view that an N-algebra is an N-indexed collection of objects connected with
addition, multiplication and additional structure.

We shall be guided by a simple example.

Example 14.2. The unitary group U(·) functor defines an N-algebraic group, and
R(U(·)) defines an N-coalgebraic ring.

Slightly more generally, for any compact Lie group G, the functor G×U(·) defines
an N-algebraic group, and R(G× U(·)) defines an N-coalgebraic ring.

We record the motivating example in these terms.

Example 14.3. The G-equivariant classifying space functor BU(·) is an N-algebraic
G-space up to homotopy, and if E∗

G(·) is a multiplicative theory with a Künneth
theorem for the spaces BU(n), E∗

G(BU(·)) is an N-coalgebraic E∗
G-algebra.

The final example we need is the simplest.

Example 14.4. For any compact Lie group G, the functor RepG(·) with RepG(n)
the set of isomorphism classes of n-dimensional complex representations of G is an
N-algebraic set with the usual operations

⊕m,n : RepG(m)× RepG(n) −→ RepG(m + n),

⊗m,n : RepG(m)× RepG(n) −→ RepG(mn),

and

λi
m : RepG(m) −→ RepG(

(

m
i

)

).
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Taking rings of k-valued functions kRepG(·) gives an N-coalgebraic k-algebra.

Notice that choosing a point in each component of the G-fixed point set gives a
comparison G-map

RepG(n) −→ BU(n).

Since operations on bundles reduce to the corresponding operation on each fibre,
this is compatible up to homotopy with all structure maps.

15. The definition of G-equivariant formal group laws.

Combining Examples 14.3 and 14.4 we obtain the basis of the definition of a
G-equivariant formal group. Take

k = E∗
G and Rn = E∗

G(BU(n)),

and note that E∗
G(RepG(n)) = kRepG(n). Thus we have two N-coalgebraic k-algebras

and a homomorphism

θ : R −→ kRepG

of N-coalgebraic k-algebras.
We now give an outline definition, referring to [21] for details. We will comment

on the imprecision below.

Outline Definition 15.1. If G is a finite group, a G-equivariant formal group law
over a commutative ring k is

(Gfgl1) an N-coalgebra

R = (Rn) : (N,⊕,⊗, λi) −→ k-alg

in complete topological k-algebras.

(Gfgl2) a homomorphism θ : R −→ kRepG of N-coalgebras in complete topological
k-algebras in terms of which the topology on R is defined

(Gfgl3) an element yn(nε) ∈ Rn for each n so that there is an exact sequence

0 −→ Rn
yn(nε)−→ Rn −→ Rn−1 −→ 0,

where the map Rn −→ Rn−1 is the restriction structure map.

Remark 15.2. (i) We can use the structure to define Chern classes. Indeed, we
may think of yn(nε) as the nth Chern class cn of the natural representation of
U(n), and from the exact sequence of (Gfgl3), we may lift yn−1((n− 1)ε), . . . , y1(ε)
to give a regular sequence cn, cn−1, . . . , c1 in Rn. The choice of lifts is not part of
the structure.

It then follows that

(cn, cn−1, . . . , c1) = ker(θnε : Rn −→ k),

showing that the kernel of θnε is a regular ideal, exactly as in the abelian case.
(ii) The imprecision in the outline is that we have not described how the topology
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on R is defined using θ. In particular, the topology on R1 is finer than that defined
by the kernel of R1 −→ kRepG(1), because we need to take account of representations
of higher dimension. The idea for a finite group of order n is to use the kernel In(ρ)
of

Rn
θρ−→ k,

where ρ is the regular representation. Extending the ideal In(ρ) along the map
Rn −→ R1 induced by ⊕n : 1 −→ n we define an ideal in R1 which gives the
topology.

Example 15.3. If G = A is abelian then Definition 2.1 is consistent with the new
definition. First note that any n-dimensional representation is the sums of n one
dimensional representations, so that RepG(n) = RepG(1)n/Σn and therefore

kRepG(n) = ([kRepG(1)]⊗̂n)Σn .

Thus if R1 is an equivariant formal group law in the sense of Definition 2.1 we may
define an equivariant formal group law in the sense of the Definition 15.1 as follows.
First, we take

Rn = (R⊗̂n
1 )Σn ,

and similarly for θ. Now take

yn(nε) = y(ε)⊗n.

The map Rn −→ Rn−1 is given by setting 1⊗ · · ·⊗ 1⊗ y(ε) to be zero, and it is not
hard to check that yn(nε) is regular and generates the kernel of this map. In this
case the topology on Rn is defined by the kernel of θn : Rn −→ kRepG(n).

Note also that in this case we may give canonical lifts of the elements yn(nε)
using the symmetric functions in y(ε).

Remark 15.4. In general, direct sum gives a map

Rn −→ (R⊗̂n
1 )Σn ,

and we call an equivariant formal group law R symmetric if this is an isomorphism.
For these equivariant formal groups, the comments in Remark 15.2 completely de-
scribe the topology so 15.1 is complete.

For these symmetric laws, the connection with the geometry of divisors as in
Strickland’s work is close and illuminating [28, 29]. However it is not clear that all
topological examples of equivariant formal groups are symmetric.

16. Complex oriented cohomology theories.

The intention is that complex oriented cohomology theories are those that behave
in the best possible way for complex vector bundles. At present we do not have a
proper codification of this best possible behaviour, but whatever it means it should
cover tom Dieck’s homotopical complex cobordism MU , so it is natural to make
the following definition.
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Definition 16.1. We say that a G-equivariant cohomology theory E is complex
oriented if it is a ring theory equipped with a ring map y : MU −→ E of G-spectra.

Results of [5] show that this is consistent with Definition 9.5.

Construction 16.2. If E is a complex oriented theory in this sense, we hope to
define a G-equivariant law by taking

k = E∗
G and Rn = E∗

G(BU(n)).

The structure maps are immediate from those of the unitary groups provided E∗
G

has a Künneth theorem for products of BU(n). We may define the classes yn(nε)
by pullback from MU provided they may be defined in that case.

Remark 16.3. If A is abelian, this is consistent with the construction of Corollary
9.7. Indeed, results of [5] show that in the topological case

Rn = E∗
A(BU(n)) = (E∗

A(BU(1))⊗̂n)Σn = (R⊗̂n
1 )Σn .

We may therefore define yn(nε) as the nth symmetric function in y(ε). As in Ex-
ample 15.3, the regularity assertion (Gfgl3) follows.

We may then ask when Construction 16.2 actually does give a G-equivariant
formal group law.

Lemma 16.4. (i) If G is abelian, any complex oriented theory in the sense of
Definition 2.1 gives a G-equivariant formal group law in the sense of 15.1 by the
construction of 16.3.
(ii) Equivariant K theory gives a G-equivariant formal group laws for all compact
Lie groups G.
(iii) Any global equivariant cohomology theory with Künneth theorems for products
of BU(n)’s and a completion theorem will provide a structure satisfying (Gfgl1) and
(Gfgl2).
(iv) Any complex oriented equivariant cohomology theory is equipped with classes
yn(nε).

Proof: We have already outlined the proof of Part (i). For Part (iv) we need only
observe that there such a class for MU , but this is given by the canonical map

BU(n) −→ MU(n) −→ Σ2nMU.

We will prove Part (ii) in detail for equivariant K theory, and the proof of Part
(iii) will be clear.

Now we turn to K theory and show it does give a G-equivariant formal group
law. The proof really takes the N-coalgebraic k-algebra R(G × U(·)) representing
an N-algebraic group scheme over k and makes an appropriate completion.

First, the split condition allows us to make calculations using the completion
theorem, because

KG(BU(m)) = KG×U(m)(EU(m)),
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and the coefficients are given by

KG×U(m) = R(G)⊗R(U(m)) =

R(G)[λ1, . . . λm−1, λm, (λm)−1] = R(G)[c1, . . . cm−1, cm, (λm)−1].

The G × U(m)-space EU(m) is the universal space for the family [∩U(m) = 1] =
{H | H ∩ U(m) = 1}. Accordingly the completion theorem states that

KG×U(m)(EU(m)) = R(G× U(m))∧I[∩U(m)=1],

where

I[∩U(m) = 1] =
⋂

H∈[∩U(m)=1]

ker [R(G× U(m)) −→ R(H)] .

Lemma 16.5. If G is finite

I[∩U(m) = 1] = (χ(ρλ1), . . . χ(ρλm−1), χ(ρλm))

where ρ is the regular representation of G.

In view of the presence of χ(ρλm) in the ideal, we again see that we may omit
(λm)−1 from the list of generators.

Summary 16.6.

KG(BU(m)) = R(G)[c1, . . . , cm]∧(χ(ρλ1),...,χ(ρλm)).

For an m-dimensional representation V

θV : R(G)[c1, . . . , cm]∧(χ(ρλ1),...,χ(ρλm)) −→ R(G)

is reduction modulo (c1(V ), . . . , cm(V )). The special element yn(nε) = λ1.

It is now clear that KG(BU(·)) is a G-equivariant formal group law.

Remark 16.7. (i) Note that the example of K theory is symmetric in the sense
that Rn = (R⊗̂n

1 )Σn .
(ii) The example of the symmetric group Σ3 of degree 3 shows that the topology of
KG(BU(1)) is not defined by the map

θ1 : KG(BU(1)) −→ R(G)RepG(1),

so that the further discussion of the topology in Remark 15.2 (ii) is necessary.

The general question of when E∗(BG) is generated by Chern classes may be
viewed as a problem about Euler-complete G-equivariant formal group laws. It has
been much studied for ordinary cohomology [33, 11] and there are some calculations
in [2]. However Strickland’s study [30] is exactly in the present spirit and gives
extensive general information.

A number of obvious questions remain.
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Questions 16.8. 1. For which groups G does equivariant bordism provide a G-
equivariant formal group law? (Known for abelian groups [4, 5]. The general
case will be discussed further in [21]; the remaining obstacle is to show that
a suitable exact Künneth theorem holds.)

2. Does every complex oriented cohomology theory give an equivariant formal
group law? (Known for abelian groups [4, 5].)

3. For which groups G is there a universal ring for G-equivariant formal group
laws? (Known for abelian groups [4, 5].)

4. For which groups G is MU∗
G in even degrees? (Known for abelian groups

[24, 6].)

5. For which groups G is MU∗
G the universal ring for G-equivariant formal group

laws? (Known for the trivial group. Nearly known for abelian groups [16];
more nearly known for the group of order 2 [32].)
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