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Abstract
We apply recent work of A. Lazarev which develops an ob-

struction theory for the existence of R-algebra structures on R-
modules, where R is a commutative S-algebra. We show that
certain MU -modules have such A∞ structures. Our results are
often simpler to state for the related BP -modules under the
currently unproved assumption that BP is a commutative S-
algebra. Part of our motivation is to clarify the algebra involved
in Lazarev’s work and to generalize it to other important cases.
We also make explicit the fact that BP admits an MU -algebra
structure as do E(n) and Ê(n), in the latter case rederiving and
strengthening older results of U. Würgler and the first author.

Introduction

Recent work of A. Lazarev [11] has developed an obstruction theory for the exis-
tence of R-algebra structures on R-modules, where R is a commutative S-algebra in
the sense of [8]. In [4], ‘brave new Hopf algebroids’ were discussed and related to the
Adams Spectral Sequence for R-modules, thus generalizing the classical homotopy
theoretic version described in [14]. In the present work we again consider some of
the main examples of that paper and apply Lazarev’s techniques to show that cer-
tain MU -modules have such A∞ structures. In fact, our results are often simpler to
state for the related BP -modules under the assumption that BP is a commutative
S-algebra. However this currently seems to remain unproved, a preprint by I. Kriz
showing this apparently has so far unfilled gaps. We often state BP analogues but
normally work over MU . Part of our motivation is to clarify the algebra involved
in [11] and to show how it generalizes to some other important cases. We also make
explicit the fact that BP admits an MU -algebra structure as do E(n) and Ê(n),
in the latter case rederiving and strengthening results of [2, 5].

As a matter of history we remark that most of the material described here orig-
inated during the summer of 2000; subsequent preprints by P. Goerss, M. Hopkins
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and A. Lazarev have contained stronger results on the realizability of BP and other
MU -algebras using more developed machinery. However, we feel that the present
approach provides a good illustration of the power of the obstruction theory implicit
in [11] applied to some examples of fundamental importance to homotopy theorists.

1. Brave new Hopf algebroids

Throughout, we will work in a good category of spectra S such as S [L] of [8].
Associated to this is the category of S-modules MS and its derived homotopy cate-
gory DS . If R is a commutative S-algebra in the sense of [8], there is an associated
category of R-modules MR and its derived category DR.

The following notions were introduced in [8]. Let A be an R-module with a unit
η : R −→ A and product ϕ : A∧

R
A −→ A. Then A, or more precisely, (A,ϕ, η), is an

R-algebra if the following diagrams commute in MR.
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A is commutative if the following diagram commutes in MR.
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(1.1b)

There are also weaker conditions for such a product. If the diagrams of (1.1a)
commute in DR then A is an R-ring spectrum, and if (1.1b) also commutes in DR
then A is a commutative R-ring spectrum. In that case the smash product A∧

R
A is

also a commutative R-ring spectrum and is also naturally an A-algebra spectrum
in two different ways induced from the left and right units

A
∼=−→ A∧

R
R −→ A∧

R
A ←− R∧

R
A

∼=←− A.

As discussed in [4], we have

Theorem 1.1. Let A be a commutative R-ring spectrum. If AR
∗ A is flat as a left,

or equivalently as a right, A∗-module, then

(i) (A∗, AR
∗ A) is a Hopf algebroid over R∗;

(ii) for any R-module M , AR
∗ M is a left AR

∗ A-comodule.

Such Hopf algebroids are commonly encountered and we will meet important
examples in the rest of this paper.
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2. Some examples

Recall that the Thom spectrum MU is a commutative S-algebra. At the time of
writing it seems not to be known whether the Brown-Peterson spectrum BP for a
prime p is a commutative S-algebra. We will state many of our results both in terms
of MU -algebras, and also in parallel in terms of BP -algebras on the assumption
that these will eventually prove to be of interest if BP is indeed shown to be a
commutative S-algebra.

We will assume that a choice of polynomial generators xr ∈ MU2r (r > 1) for
MU∗ has been made. We also assume that a rational prime p = x0 > 0 has been
chosen.

For any subset S ⊆ {xr : r > 0}, the sequence of elements of S conven-
tionally ordered by increasing degree is regular. By successively killing the ho-
motopy elements by forming mapping cones in the category of MU -modules we
can form a MU -module spectrum MU/S. More precisely, this is a CW-cell MU -
module whose cells are indexed by the monomial basis of the exterior algebra
ΛMU∗(τr : xr ∈ S) in which τr has bidegree (1, 2r). The cell corresponding to
τr has dimension 2r + 1 and an attaching map S2r

MU −→ (MU/S)(2r) in the homo-
topy class of xr ∈ π2r(MU/S)(2r). We make this exterior algebra into an MU∗-dga
with differential d for which d τr = xr. Of course, ΛMU∗(τr : xr ∈ S)∗ is a Koszul
complex providing a free resolution of the MU∗-module π∗MU/S = MU∗/(S),

ΛMU∗(τr : xr ∈ S)∗ −→ MU∗/(S) → 0.

Recall from [8], the Künneth Spectral Sequence

Er,s
2 = TorMU∗

r,s (MU∗/(S),MU∗/(S)) =⇒ MU/SMU
r+s MU/Sop. (2.1)

We will need to consider situation where MU/S is an MU -ring spectrum as
well as the opposite MU -ring spectrum MU/Sop. By [4, lemma 1.3], (2.1) is then
multiplicative. The following result is proved in [12, lemma 2.6].

Theorem 2.1. Suppose that MU/S is an MU -ring spectrum. Then the Künneth
Spectral Sequence (2.1) for MU/SMU

∗ MU/Sop collapses at E2 to give

MU/SMU
∗ MU/Sop = ΛMU∗/S(τr : xr ∈ S),

where the exterior generators satisfy τr ∈ MU/S MU
2r+1MU/Sop.

If MU/S is commutative then of course MU/Sop = MU/S as MU -ring spectra;
Theorem 2.1 then follows directly from [4, lemma 1.3]. See Strickland [16] for details
on when this commutativity condition on MU/S is satisfied. In particular, when
x0 = p is an odd prime, all the standard MU -module spectra of this form such as
MU 〈n〉, MU 〈n〉, BP and BP 〈n〉 are commutative MU -ring spectra, while when
x0 = 2, care needs to be taken so that MU 〈n〉 and BP 〈n〉 need to be replaced by
spectra constructed using non-standard polynomial generators for MU∗.

As a particular case, let us assume that we have chosen S to contain a complete
set of generators of MU∗ except for xpk−1 (0 6 k 6 n). We then have an MU -
module MU 〈n〉. Here we allow the possibility of x0 = p > 0 corresponding to the
case MU 〈−1〉.
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Proposition 2.2.

MU 〈n〉MU
∗ MU 〈n〉op = ΛMU〈n〉∗(τr : r 6= pk − 1, 0 6 k 6 n).

Let p > 0 be a prime. If BP is a commutative S-algebra then we can form the
p-localization of MU 〈n〉 as a BP -module, denoted BP 〈n〉, for which the following
holds.

Proposition 2.3.

BP 〈n〉BP
∗ BP 〈n〉op = ΛBP 〈n〉∗(τpk−1 : k > n + 1).

Notice that for the special (commutative) case BP 〈0〉 = HZ(p),

HZ(p)
BP
∗ HZ(p) = ΛZ(p)(τpk−1 : k > 1).

Similarly, in the case BP 〈−1〉 = HFp we have

HFp
BP
∗ HFp = ΛFp(τpk−1 : k > 0)

and the natural map

HFp
S
∗HFp −→ HFp

BP
∗ HFp

corresponds to the quotient of the dual Steenrod algebra by the Hopf ideal generated
by the Milnor elements ζi (i > 1); this quotient is well known to be a primitively
generated exterior algebra.

3. Extending MU-algebra structures

As a starting point we recall from [8] that for any commutative ring R, the natural
homomorphism MU0 = Z −→ R lifts to a morphism of S-algebras MU −→ HR,
where HR is an Eilenberg-MacLane MU -module. HR is known to be a commutative
MU -algebra. We set MU 〈0〉 = HZ since the latter realizes the spectrum discussed
above.

Theorem 3.1. Let n > 0 and suppose that MU 〈n〉 admits the structure of an MU -
algebra. Then MU 〈n + 1〉 admits an MU -algebra structure so there is a morphism
of MU -algebras

MU 〈n + 1〉 −→ MU 〈n〉

realizing the natural ring homomorphism MU 〈n + 1〉∗ −→ MU 〈n〉∗.
If BP is a commutative S-algebra and BP 〈n〉 admits the structure of a BP -

algebra, then BP 〈n + 1〉 admits a BP -algebra structure so that there is a morphism
of BP -algebras

BP 〈n + 1〉 −→ BP 〈n〉

realizing the natural ring homomorphism BP 〈n + 1〉∗ −→ BP 〈n〉∗.

Proof. Set MU 〈n + 1; 1〉 = MU 〈n〉. We will prove by induction that the following
holds for each m > 1:
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• If MU 〈n + 1; m〉 is an MU -algebra which as an MU∗-module satisfies

π∗MU 〈n + 1; m〉 = MU 〈n + 1〉∗ /((xpn+1−1)
m),

then there is an MU -algebra MU 〈n + 1; m + 1〉 for which

π∗MU 〈n + 1; m + 1〉 = MU 〈n + 1〉∗ /((xpn+1−1)
m+1)

and a morphism of MU -algebras

MU 〈n + 1; m + 1〉 −→ MU 〈n + 1; m〉

realizing the evident homomorphism

MU 〈n + 1; m + 1〉∗ −→ MU 〈n + 1; m〉∗ .

There is a short exact sequence of MU∗-modules

0 → Σ2(pn+1−1)mMU 〈n〉∗ −→ MU 〈n + 1〉∗ /((xpn+1−1)
m+1)

−→ MU 〈n + 1〉∗ /((xpn+1−1)
m) → 0,

so we need to show that this is realized by an extension of MU -algebras, for which
the fibre of the map MU 〈n + 1; m + 1〉 −→ MU 〈n + 1; m〉 is Σ2(pn+1−1)mMU 〈n〉.

Following [11], we need to determine the Hochschild cohomology

HH ∗ ∗
MU∗(MU 〈n + 1; m〉∗ ,MU 〈n〉∗).

We begin by calculating MU 〈n + 1; m〉MU
∗ MU 〈n + 1; m〉op. There is a Koszul res-

olution

ΛMU∗(τ [n + 1; m]r : 1 6 r 6= pk − 1, 1 6 k 6 n + 1)∗ −→ MU 〈n + 1; m〉∗ → 0

which is an MU∗-dga with

d τ [n + 1; m]r =

{

(xpn+1−1)m if r = pn+1 − 1,
xr otherwise.

Tensoring over MU∗ with MU 〈n + 1; m〉∗ and taking homology, we find that the
Künneth Spectral Sequence of (2.1) collapses to give

MU 〈n + 1; m〉MU
∗ MU 〈n + 1; m〉op =

ΛMU〈n+1;m〉(τ [n + 1; m]r : 1 6 r 6= pk − 1, 1 6 k 6 n + 1). (3.1)

Similarly, using a standard divided power complex we find that

HH ∗ ∗
MU∗(MU 〈n + 1; m〉∗ ,MU 〈n〉∗) =

MU 〈n〉∗ [y[n + 1; m]r : 1 6 r 6= pk − 1, 1 6 k 6 n + 1]. (3.2)

Finally we require the fact that

Ext ∗ ∗MU∗(MU 〈n + 1; m〉∗ ,MU 〈n〉∗) =

ΛMU〈n〉∗(Q[n + 1; m]r : 1 6 r 6= pk − 1, 1 6 k 6 n + 1), (3.3)
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which is obtained using the above Koszul resolution. Here

Q[n + 1; m]r ∈ Ext1,∗
MU∗(MU 〈n + 1; m〉∗ ,MU 〈n〉∗)

is the element ‘dual’ to τ [n + 1; m]r with respect to the MU 〈n〉∗-basis for

ΛMU∗(τ [n + 1; m]r : 1 6 r 6= pk − 1, 1 6 k 6 n + 1)1,∗

consisting of the τr’s. Then

bideg Q[n + 1; m]r =

{

(1, 2(pn+1 − 1)m) if r = pn+1 − 1,
(1, 2r) otherwise.

Consider the element y[n + 1; m]pn+1−1. By similar arguments to those of [11],
this element gives rise to an element of

Der2(p
n+1−1)m+1

MU (MU 〈n + 1; m〉 ,MU 〈n〉)

and moreover it corresponds to Q[n + 1; m]p
n+1−1 under the map

Der2(p
n+1−1)m+1

MU (MU 〈n + 1; m〉 ,MU 〈n〉) −→

Ext1,2(pn+1−1)m
MU∗ (MU 〈n + 1; m〉∗ ,MU 〈n〉∗)

defined in that paper. Using the standard identification of elements of Ext1 with
extensions, it is easy to see that Q[n + 1; m]r specifies the explicit extension of
MU∗-modules

0 → Σ2(pn+1−1)mMU 〈n〉∗ −→ MU 〈n + 1; m + 1〉∗ −→ MU 〈n + 1; m〉∗ → 0

corresponding to the fibration sequence

Σ2(pn+1−1)mMU 〈n〉 −→ MU 〈n + 1; m + 1〉 −→ MU 〈n + 1; m〉

of MU -modules. By Lazarev’s algebra extension machinery, there is a morphism of
MU -algebras MU 〈n + 1; m + 1〉 −→ MU 〈n + 1; m〉 which realizes the natural map
in homotopy. We require the following lemma which is essentially a generalization
of a result to be found in [7], see [6, 10, 17]. To apply this we may need to replace
maps by homotopic maps which are fibrations.

Lemma 3.2. Let R be an S-algebra.

(a) If

M0 −→ M1 −→ · · · −→ Mn −→ · · ·

is a directed system of cofibrations in MR then hocolim
n

Mn is weakly equivalent
to colim

n
Mn.

(b) If

N0 ←− N1 ←− · · · ←− Nn ←− · · ·

is a directed system of fibrations in MR then holim
n

Mn is weakly equivalent to
lim
n

Mn.
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Let

MU 〈n + 1;∞〉 = lim
m

MU 〈n + 1; m〉 ,

which is equivalent in DR to holim
m

MU 〈n + 1; m〉. We obtain an MU -algebra struc-

ture on MU 〈n + 1;∞〉 and the Milnor exact sequence

0 → lim
m

1MU 〈n + 1; m〉∗ −→ MU 〈n + 1;∞〉∗ −→ lim
m

MU 〈n + 1; m〉∗ → 0,

gives

lim
m

MU 〈n + 1; m〉∗ = MU 〈n + 1〉∗ , lim
m

1MU 〈n + 1; m〉∗ = 0,

since each map MU 〈n + 1; m + 1〉∗ −→ MU 〈n + 1; m〉∗ is surjective. Hence

MU 〈n + 1;∞〉∗ = MU 〈n + 1〉∗ .

An obstruction theory argument based on the fact that MU 〈n + 1〉 is a cell MU -
module provides an MU -module map MU 〈n + 1〉 −→ MU 〈n + 1;∞〉 which is a
weak equivalence.

The BP version follows by a parallel argument.

Theorem 3.3. There is a tower of MU -algebras

HZ = MU 〈0〉 ←− MU 〈1〉 ←− · · · ←− MU 〈n + 1〉 ←− · · ·

whose limit MU 〈∞〉 is an MU -algebra with MU 〈∞〉∗ = MU∗/(xr : 1 6 r 6=
pk − 1).

If BP is a commutative S-algebra, there is a tower of BP -algebras

HZ(p) = BP 〈0〉 ←− BP 〈1〉 ←− · · · ←− BP 〈n〉 ←− BP 〈n + 1〉 ←− · · ·

whose limit BP 〈∞〉 is a BP -algebra and is equivalent to BP as a BP -ring spec-
trum.

Proof. The starting point is the observation of [8] that the unit MU −→ HZ =
MU 〈0〉 is an MU -algebra morphism so that realizes the augmentation MU∗ −→
MU0 = Z. Theorem 3.1 and an induction on n shows that the tower exists as
claimed.

In the Milnor exact sequence

0 → lim
n

1MU 〈n〉∗ −→ MU 〈∞〉∗ −→ lim
n

MU 〈n〉∗ → 0,

we have

lim
n

MU 〈n〉∗ = MU∗/(xr : 1 6 r 6= pk − 1), lim
n

1MU 〈n〉∗ = 0

since each map MU 〈n + 1〉∗ −→ MU 〈n〉∗ is surjective. Hence

MU 〈∞〉∗ = MU∗/(xr : 1 6 r 6= pk − 1).

In the BP case, the unit map BP −→ BP 〈∞〉 is a weak equivalence and so is
an equivalence of BP -ring spectra.
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Let ε : MU −→ BP be the map inducing the algebraic projection (MU∗)(p) −→
BP ∗ due to Quillen and described in [1]. It is well known that the image of each
Hazewinkel generator vn ∈ BP 2(pn−1) in (MU∗)(p) actually lies in MU∗ and we
refer to this image as vn ∈ MU2(pn−1). Recall also that there is an MU -module
map η : MU −→ BP where BP can be given the structure of MU -ring spectrum
with unit η [8, 16].

Theorem 3.4. Choose the generators xr so that xr ∈ ker ε for r 6= pk − 1 and
xpk−1 = vk. Then there is a map of MU -ring spectra θ : BP −→ MU 〈∞〉(p) fac-
toring the unit MU −→ MU 〈∞〉(p) as

MU −→ BP θ−→ MU 〈∞〉(p) ,

where the first map is the unit for BP . θ is an equivalence of MU -ring spectra or
equivalently of MU (p)-ring spectra BP −→ MU 〈∞〉(p). Hence the ring spectrum
BP can be realized as an MU -algebra or equivalently as an MU (p)-algebra.

Proof. Since BP is a cell MU (p)-module with cells corresponding to the generators
in the Koszul resolution of (MU (p))∗/(xr : 1 6 r 6= pk − 1), the map θ can be
constructed by induction to satisfy the required properties up to homotopy.

Corollary 3.5. Each spectrum BP 〈n〉 (1 6 n) can be realized as an MU -algebra
or equivalently as an MU (p)-algebra and the natural map BP 〈n + 1〉 −→ BP 〈n〉
can be realized as a morphism of algebras.

Proof. Obstruction theory gives an MU -module map BP 〈n〉 −→ MU 〈n〉(p) which
is visibly a weak equivalence.

4. Some MU-algebras obtained by localization

From [8, 18] we know that on inverting an element u ∈ MU2d we obtain the
Bousfield localization at MU [u−1] as

M −→ LMU
MU [u−1] M = MU [u−1] ∧

MU
M

for any MU -module M . Furthermore, if A is an MU -algebra then

A −→ LMU
MU [u−1] A = MU [u−1] ∧

MU
A

is a morphism of MU -algebras. Similar considerations would apply if BP were a
commutative S-algebra. We will use the notation

MU(n) = LMU
MU [x−1

pn−1]
MU 〈n〉 , BP (n) = LBP

BP [v−1
n ] BP 〈n〉 ,

where

MU(n)∗ = MU 〈n〉∗ [x−1
pn−1], BP (n)∗ = BP 〈n〉 [v−1

n ].

Proposition 4.1. For each prime p and n > 1, there is a localization morphism of
MU -algebras

MU 〈n〉 −→ LMU
MU [x−1

pn−1]
MU 〈n〉 = MU(n)
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and an equivalence of MU -ring spectra MU(n)(p) −→ E(n). Hence also E(n) ad-
mits the structure of an MU -algebra. Therefore E(n) also admits the structure of
an S-algebra which is a commutative S-ring spectrum.

If BP is a commutative S-algebra, then there is a localization morphism of BP -
algebras

BP 〈n〉 −→ LBP
BP [v−1

n ] BP 〈n〉 = BP (n)

and an equivalence of BP -ring spectra BP (n) −→ E(n). Hence E(n) admits the
structure of a BP -algebra.

Given E(n) as an MU or BP -algebra, we can form the quotient module E(n)/Ik
n

obtained by killing all the monomials vr0
0 vr1

1 · · · vrn−1
n−1 with

∑n−1
i=0 ri = k. In [2,

5], these spectra were constructed as Ê(n)-modules for an appropriate S-algebra
structure; here Ê(n) is the In-adic completion of the S-module E(n). Our present
approach shows that each of the natural maps E(n)/Ik+1

n −→ E(n)/Ik
n can be

realized as a map of E(n)-modules. We obtain K(n) as E(n)/In. By [2, 5], the
tower

E(n)/In ←− E(n)/I2
n ←− · · · ←− E(n)/Ik

n ←− E(n)/Ik+1
n ←− · · · (4.1)

has Ê(n) for its limit as an S-ring spectrum, however here we are working with
MU , BP or E(n)-modules. This gives a new proof of the existence of an S-algebra
structure on Ê(n). We also have Ê(n) ' LS

K(n) E(n), so this result can also be
proved by another application of the Bousfield localization theory of S-algebras.

Proposition 4.2. The natural map E(n) −→ Ê(n) is a morphism of MU -algebras.

Proof. We need to make use of [8, XIII.1.8]; actually, in the statement of this result
it is assumed that A is a commutative R-algebra but this is unnecessary and the
following correct formulation occurs as [13, XXIII.6.5].

Lemma 4.3. Let R be a commutative S-algebra, A be an R-algebra and E be an R-
module and M an A-module. Then the (A∧

R
E)A-localization map λ : M −→ LA

A∧
R

EM

is an ER-localization map for M . Hence there is a weak equivalence of R-modules
LR

EM −→ LA
A∧

R
EM .

Now take R = S, A = MU , E = K(n) and M = E(n). Then we are done since
there is an equivalence of MU -modules

Ê(n) ' LMU
MU∧

S
K(n) E(n).

For reference we determine the Bousfield class of the MU -module MU∧
S
K(n). Mak-

ing use of ideas similar to those in the Appendix of [3] (see especially Corollary A.2)
we find that π∗MU∧

S
K(n) = MU∗K(n) is a free MU∗/In[v−1

n ]-module. By a stan-

dard argument, there is a weak equivalence of MU -modules
∨

α

Σ2dαMU/In[v−1
n ] ' MU∧

S
K(n),
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hence MU∧
S
K(n) is Bousfield equivalent to MU/In[v−1

n ].

Actually, Theorem 6.4 of [4] also tells us that there is an equivalence of MU -
modules

LMU
MU/In[v−1

n ] E(n) ' Ê(n);

indeed the tower of (4.1) is constructed in [4] as a tower of MU -modules and its
homotopy limit is shown to be LMU

MU/In[v−1
n ] E(n).

Having obtained Ê(n) as an MU -algebra, ideas of [12, 15] can be used to show
that there is an MU -algebra Ê(n)W(Fpn) obtained by adjoining a primitive (pn−1)-
st root of unity to Ê(n)∗. The 2-periodic version of this spectrum is known to be a
commutative S-algebra by work of Hopkins, Miller and Goerss [9].
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