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HOMOTOPY LIE ALGEBRAS AND POINCARÉ SERIES OF
ALGEBRAS WITH MONOMIAL RELATIONS

LUCHEZAR L. AVRAMOV

(communicated by Clas Löfwall)

Abstract
To every homogeneous ideal of a polynomial ring S over a

field K, Macaulay assigned an ideal generated by monomials in
the indeterminates and with the same Hilbert function. Thus,
from the point of view of Hilbert series residue rings modulo
monomial ideals display the most general behavior. The homo-
logical perspective reveals a very different picture. Two aspects
are particularly relevant to this paper:

If I is generated by monomials, then the Poincaré series of
the residue field k of S/I is rational by Backelin [7], and the
homotopy Lie algebra of S/I is finitely generated by Backe-
lin and Roos [8]. Constructions of Anick [1] and Roos [15],
respectively, show that these properties may fail for general
homogeneous ideals.

Recenly, Gasharov, Peeva, and Welker [12] showed that
some homological properties of S/I, such as being Golod, de-
pend only on combinatorial data gathered from a minimal set
of monomial generators.

Here we prove that these data determine the Poincaré series
of k over S/I, along with most of its homotopy Lie algebra.
As a consequence, we obtain the surprising result that if the
number of generators of the ideal I is fixed, then the number
of such Poincaré series is finite, even when K ranges over all
fields.

To Jan–Erik Roos on his sixty–fifth birthday

1. Results

Let K be a commutative ring and x a finite set of indeterminates over K. A
monomial ideal in the polynomial ring S = K[x] is an ideal I generated by some
subset M in x. It is well known, and easy to see, that such an I has a uniquely
defined minimal (with respect to inclusion) set of monomial generators MI .
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For every P ⊆ MI set mP = lcm{p|p ∈ P}; thus, m∅ = 1, and m{p} = p for
p ∈ MI . The LCM lattice, cf. [12], is the set LI = {mP ∈ S |P ⊆ MI} ordered by
divisibility: mP 6 mQ if and only if mP |mQ. The GCD graph GI has the elements
of LI as vertices, and the pairs {mP ,mQ} with gcd{mP ,mQ} = 1 as edges.

Set R = S/I and k = R/(x). The K-module Ext•R(k, k), graded by cohomological
degree and equipped with Yoneda products, becomes a graded associative algebra.
When K is a field it is the universal enveloping algebra of a graded Lie algebra
π•(R), called the homotopy Lie algebra of R, cf. [5, §10] for details.

Theorem 1. Let K be a field, let x and x′ be finite sets of indeterminates, let
I ⊆ K[x] and I ′ ⊆ K[x′] be ideals generated by monomials of degree at least 2, and
let R = K[x]/I and R = K[x′]/I ′ be the corresponding residue rings.

If λ : LI → LI′ is an isomorphism of lattices inducing an isomorphism of graphs
GI → GI′ , then there is an isomorphism of graded Lie algebras over K,

π>2(R) ∼= π>2(R′) .

Let n be a natural number. If x ranges over all finite sets of indeterminates and
I ranges over all ideals in K[x] generated by n monomials in x, then there exists
only a finite number of isomorphism classes of graded Lie algebras π>2(K[x]/I).

A proof is presented Section 2. Here we record some corollaries.
Every finite R-module N has a Poincaré series , defined to be the power series

PR
N (t) =

∑

j∈N
rankK Extj

R(N, k)tj ∈ Z[[t]] .

The Lie algebra π•(R) always determines the Poincaré series of k over R, namely

PR
k (t) =

∞
∏

i=0

(1 + t2i+1)ε2i+1(R)

(1− t2i+2)ε2i+2(R) (1)

where εj(R) = rankK πj(R) is the jth deviation of R. As ε1(R) = |x|, we have

Corollary 2. There is an equality of of formal power series

PR
k (t)

(1 + t)|x|
=

PR′
k′ (t)

(1 + t)|x′|
. �

There always is a coefficientwise inequality of formal power series

PR
k (t) 4

(1 + t)|x|

1 + t− t PS
R(t)

. (2)

The ring R is called Golod if equality holds. It is easy to see that PS
R(t) is

determined by LI , cf. Remark 9, so from Corollary 2 we recover [12, (3.5.2)], one
of the main results of that paper. It can also be obtained directly from Theorem 1,
since by [4] the ring R is Golod if and only if the Lie algebra π>2(R) is free.

Corollary 3. The ring R is Golod if and only if the ring R′ is Golod.
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The field K is fixed in the results above. They imply that finitely many series

bM,K(t) =
(1 + t)|x|

PK[x]/(M)
k (t)

∈ Z[[t]] (3)

are obtained by letting x vary over all finite sets of indeterminates and M over
all subsets of n monomials. Next we consider what happens when K varies.

Deviations being invariant under field extensions of K, Formula (1) shows that
the finiteness property still holds when K is allowed to range over all fields of equal
characteristic. However, even when the sets x and M are fixed, the polynomial
bM,K(t) may change with the characteristic of K, see Remark 13. To analyze the
dependence on the characteristic of K we use an important result of Backelin [7],
who proves that bM,K(t) is actually a polynomial in Z[t]. In Section 3 we prove

Theorem 4. Let n be a natural number. If K ranges over all fields, x ranges over
all finite sets of indeterminates, and M ranges over all subsets of n monomials in
K[x], then there exist only finitely many polynomials bM,K(t).

In Section 4 we show that the hypotheses of results above cannot be weakened
significantly, nor can their conclusions be strengthened substantially.

2. Graded Lie algebras
The arguments depend on DG (= differential graded) homological algebra. Here

DG algebras are non-negatively graded and graded-commutative. Taylor DG algebra
resolutions of monomial ideals play a central role. We recall their definition, using
notation introduced above and referring for details to [10, §5].

Fixing a linear order � on MI , for every two subsets P , Q of MI we set

inv(P, Q) =
∣

∣{(p, q) ∈ P ×Q | p � q}
∣

∣ .

For each n ∈ Z, let Tn be the free S-module with basis {eP |P ⊆ MI , |P | = n} and
let ∂n : Tn → Tn−1 be the S-linear homomorphism given on eP by

∂(eP ) =
∑

p∈P

(−1)inv({p},Pr{p}) mP

mPr{p}
ePr{p} . (4)

The pair (T, ∂) is a free resolution of S/I over S. The product of T is defined by

eP · eQ =

{

(−1)inv(P,Q) gcd(mP ,mQ) eP∪Q if P ∩Q = ∅ ;
0 otherwise ,

(5)

on pairs of basis elements, and extended to all of T by bilinearity. Different choices
of the linear order � among the generators of I lead to isomorphic DG algebras.

A DG Γ -algebra is a DG algebra with a system of divided powers operations
y 7→ y(r), defined for every y of even positive degree and all r ∈ N, and compatible
with the differential. A complete list of the identities they satisfy can be found in
[13, (1.7.1), (1.8.1)]. Morphisms of DG Γ-algebras commute with all their structures.
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Remark 5. If U and V are DG Γ-algebras over S, then U ⊗S V has a structure
of DG Γ-algebra, functorial in U and V and defined uniquely by the condition that
the canonical maps U → U ⊗S V ← V are morphisms, cf. e.g. [13, (1.8.3)]. Every
DG algebra over Q is a Γ-algebra, with y(r) = yr/(r!), cf. [13, (1.7.2)].

Lemma 6. Every Taylor DG algebra resolution T has a unique structure of DG
Γ-algebra, given for each n ∈ 2Nr {0} and all r ∈ N by the formula

(

∑

P⊆MI ; |P |=n

aP eP

)(r)

=
∑

Ph⊆MI ; |Ph|=n

aP1 · · · aPr eP1 · · · ePr . (6)

Proof. Let γr
( ∑

P aP eP
)

denote the right hand side of the desired formula. For
each element eP the multiplication table (5) gives eq

P = 0 for all q > 2. All elements
eP under consideration have even degree, so they commute with each other, hence
(

∑

P

aP eP

)r

=
∑

q1+···+qr=r

r!
(q1!) · · · (qr!)

aq1
P1
· · · aqr

Pr
eq1
P1
· · · eqr

Pr
= r!γr

(

∑

P

aP eP

)

To prove existence we vary K, so (temporarily) we set SK = K[x1, . . . , xe] and
let TK denote a Taylor DG algebra resolution of SK/MISK over SK . In TQ the
equality above yields γr(y) = yr/(r!) for all y ∈ Tn; by Remark 5 this transforms
TQ into a DG Γ-algebra. The canonical map TZ → TZ ⊗Z Q = TQ is injective and
commutes with the maps y 7→ γr(y); they form a system of divided powers on TQ,
hence on TZ as well. By Remark 5 the system of divided powers on TZ induces one
on TK through the isomorphism TK ∼= TZ ⊗Z K of DG algebras over K.

To prove uniqueness, for each P ⊆ MI we set dP = gcd{p|p ∈ P}. From the
formula for divided powers of a product of elements of even degrees, Equation (5),
and the formula for divided powers of a product of elements of odd degrees, we get

dr
P e(r)

P =
(

dP eP
)(r)

=
(

±
∏

p∈P

e`

)(r)

= 0

for all r > 2. As dP is not a zero-divisor on T , it follows that e(r)
P = 0, hence

(

∑

P

aP eP

)(r)

=
∑

q1+···+qr=r

aq1
P1
· · · aqr

Pr
e(q1)
P1

· · · e(qr)
Pr

= γr

(

∑

P

aP eP

)

due to the formulas for divided powers of sums and of products.

Homotopy Lie algebras for DG Γ-algebras are introduced in [3], cf. also [6].

Remark 7. Let D be a DG Γ-algebra such that the ring D0 is noetherian and the
D0-module Hn(D) is finite for every n ∈ Z. If k is a field and D → k is a surjective
morphism of DG algebras, then the Eilenberg-Moore extension functors define a
graded algebra Ext•D(k, k). It is the universal enveloping algebra of a graded Lie
algebra π•(D), and D 7→ π•(D) is a contravariant functor from the category of
DG Γ-algebras augmented to k, to the category of graded Lie algebras over k. If
δ : D → D′ is a morphism with H•(δ) bijective, then π•(δ) is an isomorphism.
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The morphism D → k can be factored as a composition D → U → k of mor-
phisms of DG Γ-algebra, such that the underlying graded module of U is free over
the underlying graded algebra of D, and H0(U) = k. Furthermore, the divided
powers of the DG Γ-algebra U ⊗D k of Remark 5 are inherited by the homology
algebra H•(U ⊗D k). Let Qγ H•(U ⊗D k) denote the residue of H•(U ⊗D k) modulo
its subspace spanned by the elements of degree 0, all products of elements of posi-
tive degree, and all divided powers of elements of even positive degree. The vector
space π•(D) is the graded k-dual of Qγ H•(U ⊗D k).

The next result is part of [2, (5.1)]. The proof there is difficult, because the
general properties of homotopy Lie algebras discussed above were not available at
the time. We provide a short argument, valid for general graded rings R.

Lemma 8. Let E be the Koszul complex on x, set D = R ⊗S E, and give D the
DG Γ -algebra structure described in Remark 5. If ι : R → D is the inclusion, then
π•(ι) yields an isomorphism π•(D) ∼= π>2(R) of graded Lie algebras.

Proof. The image of x minimally generates R over K, so by a well known theorem of
Gulliksen and Schoeller, cf. [13, (1.6.4)] or [5, (6.3.5)], a factorization D → U → k
as in Remark 7 can be chosen so that U61 = D61 and ∂(U) ⊆ (x)U . The DG
algebras U ⊗R k and U ⊗D k then have trivial differentials, so the morphism

H•(U ⊗ι k) : H•(U ⊗R k) −→ H•(U ⊗D k)

of DG Γ-algebras is equal to the surjection U ⊗ι k : U ⊗R k → U ⊗D k whose kernel
is generated by U1 ⊗R k. It induces an exact sequence of graded vector spaces

0 −→ U1 ⊗R k −→ Qγ (U ⊗R k)
Qγ (U⊗ιk)−−−−−−−→ Qγ (U ⊗D k) −→ 0

Since π•(ι) is the k-linear dual of Qγ (U ⊗ι k), we are done.

The following remark is taken from the proofs of [12, (3.1), (3.5.1)].

Remark 9. Let I ′ be a monomial ideal in the polynomial ring S′ = K[x′]. Assume
there exists an isomorphism λ : LI → LI′ of LCM lattices. Their atoms are the
monomials in MI and MI′ , so λ maps MI bijectively onto MI′ ; we extend λ to a
bijection ̂λ of the Boolean lattice of MI onto that of MI′ . Let T ′ be the Taylor
DG algebra resolution of S′/I ′ constructed using the linear order on MI′ induced
from MI via λ. Formula (4) shows that the map eP ⊗ 1 7→ e

bλ(P ) ⊗ 1 defines an

isomorphism of complexes of vector spaces over K; in particular, PS
R(t) = PS′

R′(t).
If, in addition, λ is also an isomorphism of GCD graphs, then Formula (5) shows

that λ is an isomorphism of DG algebras.

Proof of Theorem 1. Let E and T denote Taylor DG algebra resolutions of k =
S/(x) and R = S/I, with augmentations ε : E → k and τ : T → R, respectively. By
Lemma 6 and Remark 5, the following maps are morphisms of DG Γ-algebas:

R⊗S E τ⊗SE←−−−− T ⊗S E T⊗Sε−−−−→ T ⊗S k .
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It is well known that H•(τ ⊗S T ) and H•(T ⊗S ε) are isomorphisms. This explains
the second and third isomorphisms of graded Lie algebras in the sequence

π>2(R) ∼= π•(R⊗S E) ∼= π•(T ⊗S E) ∼= π•(T ⊗S k)

where the first isomorphism is provided by Lemma 8.
If T ′ is a Taylor DG algebra resolution of R′ = S′/I ′, and E′ the Koszul complex

on x′, then by symmetry we obtain isomorphisms of graded Lie algebras

π•(T ′ ⊗S′ k′) ∼= π•(E′ ⊗S′ T ′) ∼= π•(R′ ⊗S′ E′) ∼= π>2(R′) .

By Formula (6), the isomorphism of DG algebras λ : T ⊗S k → T ′ ⊗S′ k′ from
Remark 9 commutes with divided powers, so it induces an isomorphism

π•(T ⊗S k) ∼= π•(T ′ ⊗S′ k′) .

Assembling the sequences of isomorphisms of graded Lie algebras displayed above,
we get the desired isomorphism of graded Lie algebras:

π>2(R) ∼= π>2(R′) .

This completes the proof of the first assertion of Theorem 1. The second assertion
follows immediately from the first one and the elementary remark below.

Remark 10. Let I be a monomial ideal in K[x], minimally generated by n mono-
mials. By construction, the number of vertices in the GCD graph GI is equal to the
cardinality of the LCM lattice LI , and

∣

∣LI
∣

∣ 6 2n. Thus, letting K, x, and I vary,
while keeping n fixed, one obtains only a finite number of pairs (LI , GI).

3. Poincaré series

In this section it is convenient to refocus from ideals generated by monomial
ideals to the minimal sets of generators of such ideals.

We identify the polynomial ring S = K[x] and the semigroup K-algebra of the
free commutative monoid [x] generated by x; in particular, we refer to the elements
of [x] as monomials in x. An antichain in [x] is a finite set M of monomials in the
variables x with the property that no p ∈ M divides any q ∈ M r {p}. The map
I 7→ MI is a bijection between the monomial ideals in S and the antichains in [x].

Let M be an antichain in [x]. Fix an order x1, . . . , xe on the indeterminates x,
and for each i = (i1, . . . , ie) ∈ Ne set xi = xi1

1 · · ·xie
e . Give S = K[x] the standard

Ne-grading defined by Deg(xi) = i. This multigrading is inherited by the residue
rings R = S/(M) and k = S/(x). For every Ne-graded R-module N and each j ∈ N
the finite K-vector space Extj

R(N, k) is multigraded. The series

PR
N (s, t) =

∑

i∈Ne ; j∈N
rankK Extj

R(N, k)i si tj ∈ Z[s±1][[t]]

is the multigraded Poincaré series of N . Setting 1 = (1, . . . , 1) ∈ Ne, one recovers
the Poincaré series in one variable by means of the formula

PR
N (t) = PR

N (1, t) .
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Backelin [7] proves that the multigraded Poincaré series satisfies the condition

bM,K(s, t) · PR
k (s, t) = (1 + s1t) · · · (1 + set) (7)

for some polynomial bM,K(s, t) ∈ Z[s, t] subject to the following restrictions:

degsh

(

bM,K(s, t)
)

6 max{degxh
(p) | p ∈ M} for h = 1, . . . , e ; (8)

degt

(

bM,K(s, t)
)

6 deg
(

lcm{p ∈ M}
)

. (9)

We now head for a proof of Theorem 4, dealing with Poincaré series PK[x]/(M)
k (t)

for antichains of monomials M in [x]. The following elementary fact will be needed.

Lemma 11. If M is a fixed antichain M and K ranges over all fields, then there
exist only finitely many Poincaré polynomials PK[x]

K[x]/(M)(s, t) ∈ Z[s, t].

Proof. Let T denote the Taylor resolution of Z[x]/(M) over Z[x]. Since T ⊗Z K is
the Taylor resolution of K[x]/(M) over K[x], the isomorphism

HomZ[x](T,Z)⊗Z K ∼= HomK[x]((T ⊗Z K), k)

of complexes of multigraded K-spaces yields for all j ∈ Z and i ∈ Ne isomorphisms

Extj
K[x](K[x]/(M), k)i ∼= H−j(HomZ[x](T,Z)⊗Z k)i .

Let P be the set of prime numbers that annihilate some non-zero homology class of
HomZ[x](T,Z). For char(K) /∈ P the Künneth formula yields isomorphisms

H−j(HomZ[x](T,Z)⊗Z k)i ∼= (H−j(HomZ[x](T,Z))⊗Z k)i

for all j and i. Thus, the polynomials PK[x]
K[x]/(M)(s, t) are equal for all K with

char(K) /∈ P. To finish the proof, it remains to remark that P is finite, because
HomZ[x](T,Z) is a finite complex of finitely generated free abelian groups.

Proof of Theorem 4. Let n be a natural number. By Remark 10 we may choose
a finite family Fn of antichains of n monomials with the following property: All
pairs (LI′ , GI′) that can be obtained from some ideal I ′ minimally generated by n
monomials in some polynomial ring over some field K have the form (LI , GI) for
some I = (M)K[x] with M ∈ Fn. Thus, we obtain

sup
K

sup
x

sup
|M |=n

deg
(

bM,K(t)
)

= sup
K

sup
M∈Fn

deg
(

bM,K(t)
)

6 sup
M∈Fn

deg(mM ) < ∞

where the equality comes from Formula (3) and Corollary 2, the first inequality
from Formula (9), and the second inequality from the finiteness of Fn. Choose a
natural number d such that deg

(

bM,K(t)
)

6 d for all M and all K.
Fix, for the moment, an antichain M and a field K. Since bM,K(0) = 1, there is a

unique decomposition bM,K(t) =
∏d

r=0(1− βrt) with βr ∈ C. Let βM,K denote the
maximal absolute value of these complex numbers, and let ρM,K denote the radius
of convergence of the rational function (1+t)|x|

/(

1+t−tPK[x]
K[x]/(M)(t)

)

. As Formula
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(3) shows that 1/βM,K is equal to the radius of convergence of the Poincaré series
PK[x]/(M)

k (t), we obtain 1/βM,K > ρM,K by Formula (2).
On the other hand, Formula (3) and Corollary 2 yield

inf
K

inf
x

inf
|M |=n

(ρM,K) = inf
K

inf
M∈Fn

(ρM,K) .

Since Fn is finite, Lemma 11 shows that the second infimum can be computed by
using only finitely many fields K, hence it is equal to a real number ρ > 0.

Summing up, we obtain inequalities βM,K 6 1/ρ < ∞ for every choice of M and
K. They imply that in every polynomial bM,K(t) the absolute value of the coefficient
of tr does not exceed

(d
r

)

/ρr. Since each bM,K(t) has integer coefficients, there is
only a finite number of distinct polynomials of this form.

4. Discussion

We start with a problem suggested by Theorem 4.

Remark 12. Theorem 4 may be restated as asserting the finiteness of the number

d(n) = sup
K

sup
x

sup
|M |=n

deg
(

bM,K(t)
)

.

In view of Formula (3), the ranks of the modules Fj for j = 0, . . . , d(n) in a
minimal free resolution F determine the entire Poincaré series of k over K[x]/(M).
Thus, knowledge of an effective bound on d(n) would be extremely useful for com-
putational purposes. Using the sets M = {x2 |x ∈ x} one gets d(n) > 2n. Equality
is easy to check for n 6 3. For all n, it would be consistent with observations of
Charalambous and Reeves [9, p. 2390] based on computer experiments.

It is known that the characteristic of K may affect the Poincaré series of k. To
document this fact we present a construction proposed by the referee.

Remark 13. The polynomial bM,K(t) may vary with the characteristic of K. In-
deed, let M ′ be an antichain of monomials, fix an indeterminate x ∈ x, and consider
the antichain M = xM ′. For every field K, the ring K[x]/(M) is Golod by a theo-
rem of Shamash [17], so the inequality in Formula (2) becomes an equality. In view
of Formula (7), it suffices to show that the Poincaré series PK[x]

K[x]/(M)(t) depends on

K. It is equal to PK[x]
K[x]/(M ′)(t), so examples may be obtained by choosing M ′ to be

the squarefree monomial ideal associated to a simplicial complex ∆, whose reduced
homology groups ˜Hi(∆,K) vary with the characteristic of K, cf.[14].

The preceding examples notwithstanding, some terms of bM,K(s, t) are indepen-
dent of K. This is shown by the remark that follows, which also shows that the
degree bounds in Formula (8) are in fact equalities.

Remark 14. Every antichain M in [x] is determined by any one of the polynomials
bM,K(s, t) for some K through the congruence
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bM,K(s, t) ≡ 1−
(

∑

p∈M

sDeg(p)
)

t2 mod
(

t3Z[s, t]
)

.

Indeed, standard equalities, cf. e.g. [5, (7.1.5) and (7.1.1)], yield a congruence

PR
k (s, t) ≡ 1 +

( e
∑

h=1

si

)

t +
(

∑

16g<h6e

sgsh +
∑

p∈M

sDeg(p)
)

t2 mod
(

t3Z[s][[t]]
)

.

Writing bM,K(s, t) in the form
∑

n pn(s)tn with pn(s) ∈ Z[s], we get the desired
congruence by comparing the coefficients of 1, t, and t2 in Equality (7).

The remark above produces infinitely many polynomials bM,K(s1, t) in two vari-
ables. Combining this information with Formulas (7) and (1), we obtain

Remark 15. When I varies over all ideals of S generated by a fixed number of
monomials there exist infinitely many power series in two variables of the form
PS/I

k (s1, t); as a consequence, the isomorphism of Lie algebras in Theorem 1 does
not preserve gradings—let alone multigradings—induced by those of S.

Finally, we emphasize that the finiteness conclusions of Theorems 1 and 4 heavily
depend on the hypothesis that the ideals involved are generated by monomials.

Remark 16. When J varies over all ideals of S generated by a fixed number of
forms of prescribed degrees, the number of power series PS/J

k (t) may be infinite, and
hence there may exist infinitely many non-isomorphic graded Lie algebras π>2(S/J).

Indeed, assume K has characteristic 0. Fröberg, Gulliksen, and Löfwall [11] con-
struct a family of ideals {Ja ⊂ K[x1, . . . , x15] | a ∈ K} generated by 67 quadratic
forms, such that the rings Ra = S/Ja have the same Hilbert series for all a, but
there are infinitely many different Poincaré series PRa

k (t). Also, Roos [16] exhibits
a family of ideals {Ja ⊂ K[x1, . . . , x6] | a ∈ N} generated by 11 quadratic forms,
with equal Hilbert series and different Poincaré series for all a > 2.
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