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PRESENTATION DEPTH AND THE LIPMAN-SATHAYE
JACOBIAN THEOREM

MELVIN HOCHSTER

(communicated by Clas Löfwall)

Abstract
We give a version of the theorem of Lipman and Sathaye

on Jacobian ideals but with substantially weaker hypotheses.
Both their version and the result here are very useful in pro-
viding explicit test elements in tight closure theory. There are
two separate ways in which the hypothesis in the theorem is
weakened here: one is that the larger ring is not required to
be a domain, although it will be reduced. Second, the regu-
larity condition on the smaller ring is weakened to the point
where one need not assume that it is Cohen-Macaulay. Instead,
a condition on the ring homomorphism is imposed that may
be viewed as a relative analogue of the Serre conditon S2: a
family of such conditions is introduced and studied here. The
definition is made in terms of a presentation of an algebra, but
is independent of the presentation.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

In this paper we shall give a version of the theorem of Lipman and Sathaye on
Jacobian ideals proved in [LS] (their Theorem 2). The result presented here has
substantially weaker hypotheses than in [LS]. Lipman and Sathaye used their the-
orem to prove the Briançon-Skoda theorem [BrS] (which was first proved using the
analytic criterion for membership in an ideal in [Sk]; see also [LT] for background).
Their result has also turned out to be very important in providing explicit test ele-
ments in tight closure theory (accounts of the latter are given in [HH1–8], [Ho2-3],
[Hu], and [Br]; [HH8], in particular, treats the use of the Lipman-Sathaye theorem
in constructing test elements).

In the main theorem, Theorem (2.1) of §2 (the reader may want to consult its
statement at this point), there are two separate ways in which the hypothesis in
[LS] on the map R → S is weakened: first, while the ring S is still required to be
torsion-free and generically étale over R, S is not required to be a domain. Second,
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the regularity condition on R is relaxed even to the point where we do not need
to assume that R is Cohen-Macaulay: a condition on the map R → S is needed,
but it is significantly weaker than assuming that R be Cohen-Macaulay. In this
connection, we introduce in (1.2) what might be thought of as a relative analogue
of the Serre condition Si that is defined in terms of a presentation S over R, but
later shown to be independent of the presentation: cf. Theorem (1.8). It turns out
that we can replace the Cohen-Macaulay condition on R in the Lipman-Sathaye
theorem by the condition that S be relatively S2 presentable over R in the sense
defined in §1. A key point is that when R → S has this property, it is preserved
when we adjoin an element of the normalization of S: see Theorem (1.9). However,
we still do need to assume that R is regular when localized at a prime lying under
a height one prime of the normalization of S.

The proof of Theorem (2.1) here is modeled on the “down-to-earth” proof of
Lipman-Sathaye, and we shall make frequent references to [LS]. One difference is
that we need many sources of elements in “very general position,” particularly
indeterminate linear combinations of generators of ideals. We are able to do this by
replacing R at the outset by a localization R(t) of a polynomial ring in infinitely
many variables over R.

As mentioned above, the next section is devoted to developing the required theory
of “presentation Si conditions.” The main result is stated in Theorem (2.1) of §2.
The proof is outlined in §2, and then the details of the various steps are supplied in
§§3–5.

2. DEPTH PROPERTIES IN PRESENTATIONS

Definition-Discussion 2.1. In this section fix an integer i > 1, let R be a Noetherian
domain that satisfies the Serre condition Si (if i = 1, the fact that R is a domain
guarantees this), and let S be a reduced algebraic R-torsion-free extension of R
essentially of finite type over R. Thus, if K is the fraction field of R, then K ⊗R S
is a finite product of finite algebraic field extensions of K. In later sections we
shall assume as well that S is generically étale over R, by which we mean that
K ⊗R S is a finite product of finite separable algebraic extensions of K. We have
that as R-algebras, S ∼= T/I, where T is a localized polynomial ring in finitely many
variables over R, and we shall refer to the corresponding surjection T � S as an
L-presentation of S over R, where the “L-” is an indication that we are permitting T
to be a localization of a polynomial ring. Informally we may also say that S ∼= T/I
is an L-presentation of S. An L-presentation is a presentation if T is a polynomial
ring in finitely many variables over R.

Remark 2.2. Notice that the minimal primes of I all have the same height in this
situation: since the elements of R are nonzerodivisors in S, the situation is unaffected
by localizing at the multiplicative system R − {0}, and thus we may assume that
R is a field and S is a finite product of finite field extensions. Suppose that T is
a localization of the polynomial ring T0 ⊆ T . Then the minimal primes of I must
correspond to maximal ideals of T0 (or else S would transcendental over R) and so
all have the same height.
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Definition 2.3. Let R → S be as in (1.0). We shall say that an L-presentation
η : T � S with Ker η = I is relatively Si if, with h = ht I, for every prime ideal
P of T containing I, depth of TP > min {ht P, h + i}. (Note that this implies
depthT I = ht I.)

It will be convenient to have a name for the sort of ideal described above.

Definition 2.4. Let T be a Noetherian ring. An ideal I of T all of whose minimal
primes have height h will be said to be of CM+i type if for every prime ideal P
containing I, depthTP > min {ht P, h+i}. (Again, note that this implies depthT I =
ht I.)

With the terminology of (1.3) and R → S as in (1.0), an L-presentation S ∼= T/I
over R is relatively Si if and only if I is of CM+i type in T . Since R is a domain,
T has no embedded primes, and (1.1) shows that the ideal I associated with the
presentation has the property that all of its minimal primes have the same height.
We shall say that an ideal all of whose minimal primes have height h has pure height
h. Evidently, a Noetherian ring T is Cohen-Macaulay if and only if every ideal of
pure height is of CM+i type for all i.

Although we have given Definition (1.3) without restriction on T , in the sequel
we shall almost alway be assuming that T satisfies the Serre condition Si when we
discuss ideals of CM+i type. Likewise, in the sequel, when discussing the relatively
Si condition in (1.2), we shall almost always be assuming, as indicated in (1.0), that
R satisfies the Serre condition Si.

Discussion 2.5 (behavior of depth and dimension under flat base change). For use
in the proof of the very important Lemma (1.5) that follows, we note two well
known facts: if (T, P ) → (W,Q) is a flat local homomorphism of local rings, and
B = W/PB is the closed fiber, then dim W = dim T+dim B ([Mat], (13.B) Theorem
19 (2), p. 79), and depth W = depthT +depthB ([Mat], (21.C) Corollary 1, p. 154).
This implies at once, for example, that if T satisfies Si and W is flat over T with
Cohen-Macaulay fibers (or Si fibers), then W satisfies Si.

We shall make extensive use of the following alternative characterization of when
an ideal I is of CM+i type.

Lemma 2.6. Let T be a Noetherian ring that is Si. Let I ⊆ T be an ideal of
pure height h. Let f1, . . . , fr be generators of I. Let tµj be indeterminates over T ,
1 6 µ 6 h, 1 6 j 6 r, and let gµ =

∑r
j=1 tµjfj. Then the following are equivalent:

(1) I has CM+i type.
(2) In some faithfully flat extension W of T , IW has height equal to its depth h,
and contains a regular sequence of length h generating an ideal J such that W/J is
Si.
(3) In the polynomial ring W = T [tµj : µ, j], the elements g1, . . . , gh form a regular
sequence generating an ideal J such that W/J is Si.
(4) In the localization WU of the ring W from part (3) at some (resp., every)
multiplicative system U consisting of polynomials whose coefficients generate the
unit ideal, the elements g1, . . . , gh form a regular sequence generating an ideal J
such that W/J is Si.
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Proof. We shall prove (3) ⇒(2) ⇒(1) ⇒(3). Note that each WU as in (4) above is
faithfully flat over T , and so we also have (3) ⇒

(

(4) for all U
)

⇒
(

(4) for some
U

)

⇒(2) as well.
(3) ⇒(2) is obvious. To see that (2) ⇒(1), note that, after a faithfully flat ex-

tension T → W , the ideal IW has the same height as I and the same depth as
I. Thus, I has height and depth h. Now let P be a prime ideal of R containing I
of height greater than h. Then there is a minimal prime Q of PW lying over P ,
and TP → WQ will be faithfully flat with a zero-dimensional fiber. The depth and
dimension of WQ are the same as the depth and dimension of TP : cf. the discussion
preceding (1.5). When we kill J in WQ, the depth and dimension drop by h, and
we obtain an Si ring. This shows that WQ has the required depth, and, hence, so
does RP .

It remains to prove that (1) ⇒(3). The fact that the elements gi form a regular
sequence is proved in [Ho1]. Let Q be a prime containing J = (g1, . . . , gh) in W =
T [tµj : µ, j]. First suppose that Q contains I. We must show that the depth of WQ

is at least the smaller of ht Q, h + i, since this will give the correct depth once we
kill J . Then Q lies over a prime P of T that contains I. Then the depth of RP is at
least min {ht P, h+ i}, and by [Mat], (13.B) Theorem 19 (2), p. 79, we have ht Q =
ht P + dim B, where B is the fiber WQ/PWQ, and depthWQ = depthTP + depthB
by [Mat], (21.C) Corollary 1, p. 154.

But the fibers of T → W are Cohen-Macaulay (in fact, regular), and so

depthWQ > min {ht P, h + i} + depthB = min {ht P, h + i} +

dim B > min {ht P + dim B, h + i + dim B} = min {ht Q, h + i + dim B} >

min {ht Q, h + i}, as required.

It remains only to consider the case where Q fails to contains I. Then one of the
generators fj of I is a unit in TP , where P is the contraction of Q to T . Again,
we pass to TP , and renumber so that fr is a unit. Then the equations gµ that we
are killing simply solve for the indeterminates tµr in terms of the others, and the
quotient by J may be identified with TP [tµj : 1 6 µ 6 h, 1 6 j < r], a polynomial
ring over TP . Since this ring is Si so is the polynomial ring, and the result follows.

We shall later need the following fact whose proof is really a variant of the
argument that (1) ⇒(3) in Lemma (1.5) above.

Lemma 2.7. Let I be an ideal of pure height h in a Noetherian ring T such that
T is Si. Let u1, . . . , uh be a regular sequence in I such that T/(u1, . . . , uh)T is
Si. Let f1, . . . , fr be generators of I. Let k be an integer, 1 6 k 6 h. Let tµj be
indeterminates over T , 1 6 µ 6 k, 1 6 j 6 h and let t′µj also be indeterminates
over T , k < µ 6 h, 1 6 j 6 r. Let W be the ring obtained by adjoining all these
independent indeterminates to T . Then the k elements gµ =

∑h
j=1 ujtµj, 1 6 µ 6 k,

together with the h−k elements gµ =
∑r

j=1 fjt′µj, k < µ 6 h, give a regular sequence
in IW such that the quotient of W by the ideal they generate is Si.
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Proof. Consider a prime Q of W that contains the g ’s. The specified depth condition
on WQ/(g1, . . . , gh) is equivalent to the condition that the depth of WQ be at least
the lesser of ht Q, h + i.

If Q contains all the elements u1, . . . , uh this follows because, after we kill this
regular sequence, the quotient ring WQ/(u1, . . . , uh) is Si, since it is flat over
T/(u1, . . . , uh) with regular fibers. If Q fails to contain all the uh, we replace R
by its localization at the contraction P of Q to T . We may assume that in each of
the first k of the gµ, one of the ui is invertible, permitting us to use gµ = 0 to solve
for one of the tµj in terms of the others. But then P 6⊇ I as well, and so in each of
the last n− k of the gµ at least one of the fj is invertible, permitting us to solve for
one of the tµj in terms of the others. This means that the quotient by (g1, . . . , gh)
may be identified with a polynomial ring over TP , and the result follows from the
fact that T is Si.

Note that if R is Cohen-Macaulay then so is T , and it is then automatic that
every L-presentation is relatively Si for all i.

Our next results are aimed at showing that when S has a relatively Si presenta-
tion over R, then every presentation of S over R is relatively Si.

Lemma 2.8. Let R → S be a homomorphism as in (1.0). Let S ∼= T/I be an
L-presentation of S as an R-algebra that is relatively Si, and let T0 be a polynomial
ring in finitely many variables over R contained in T such that T is a localization
of T0.
(a) If U is a multiplicative system in T with image V in S then TU/IU is a relatively
Si L-presentation of SV over R.
(b) (Descent of localizations.) Assume that the Si locus is open in rings essentially
of finite type over R (which holds if R is either a homomorphic image of a Cohen-
Macaulay ring or if R is excellent). If T = (T0)U for a multiplicative system U in
T0, there is an element u ∈ U such that if T1 = T0[1/u], and I1 = I ∩ T1, then
S1 = T1/I1 is a relatively Si L-presentation.

Proof. Part (a) is clear, since the set of localizations at primes containing I can
only become smaller as we localize T . It is worth noting that the condition that
I have pure height is needed here: otherwise, the height of I might increase after
localization.

To prove part (b), note that localizing at finitely many elements is equiva-
lent to localizing at their product. We may make several choices of u, T1, each
time localizing at one more element to get additional conditions to hold. Choose
generators f1, . . . , fr for I and initially choose u so that these will be in T1.
Thus, we may assume that I = I1T . Let h = ht I. Introduce hr new indetermi-
nates tµj and define g1, . . . , gh as in part (3) of Lemma (1.5). Then we know that
U−1T1[tµj : µ, j]/(g1, . . . , gh) is Si, by Lemma (1.5). This means that U meets
the defining radical ideal of the non-Si locus in the ring T1[tµj : µ, j]/(g1, . . . , gh)
(our hypothesis guarantees that this locus is closed). Thus, we may choose u1 ∈ U
meeting that radical ideal. Replacing T1 by its localization at u1, we see that we
can localize at just one element and get T1[tµj : µ, j]/(g1, . . . , gh) to be Si (this is
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a new choice of T1), and so by part (3) of Lemma (1.5), T1 � T1/I1 is relatively Si
for this new choice of T1.

Theorem 2.9 ((independence of presentation)). Let R → S be a homomor-
phism as in (1.0) and suppose that S has an L-presentation over R that is relatively
Si. Then every L-presentation of S over R is relatively Si.

Proof. Step 1. We first consider the case where S is finitely generated over R and we
are considering only presentations of S over R, i.e., T is required to be a polynomial
ring. Given two presentations T � S, T ′ � S, we can compare both with T ⊗R

T ′ � S. By induction on the number of variables in T ′, we reduce to considering
a presentation T � S and another T [X] � S, where X is a new indeterminate.
Let s be the image of X and let z ∈ T map to s. We may replace X by X − z,
and so assume that X maps to 0 in S. Thus, if I = Ker (T � S), the kernel of
the second presentation will be IT [X]+XT [X]. The primes of T [X] containing the
kernel are in bijective correspondence with the primes of T containing I, and the
depth condition is obviously satisfied for TP if and only if it is satisfied for T [X]Q,
where Q = PT [X] + XT [X] is the corresponding prime, since T [X]Q/(X) ∼= TP ,
and X is a nonzerodivisor.

Step 2. We next consider the case where S is finitely generated over R, but can be
written S = S0[1/s] where s ∈ S0. Let T0 � S0 be a presentation of S0 with kernel I0

and and v ∈ T0 an element that maps to s. Then we have a surjection T0[1/v] � S,
which is an L-presentation, and we also have a presentation T0[X] � S extending
T0 → S0, where X maps to 1/s. The kernel of the latter is I1 = I0T0[X]+ (Xv−1).
Again, there is a bijection between the primes of T0[1/v] containing I0 (or primes of
T0 containing I0 and not v) and the primes of T0[X] containing I1, and the depths in
the localizations at the latter primes are all one greater: we can see this, because we
can start by killing Xv−1, which gives the correspondence. Thus an L-presentation
of this type is relatively Si presentable if and only if the corresponding presentation
is relatively Si presentable.

Step 3. We now consider the general case. Let T0 be a polynomial ring in finitely
many variables over R and U a multiplicative system in T0 such that U−1T0 � S
is a relatively Si L-presentation of S over R. By Lemma (1.7) (b) we can choose a
localization T1 of T0 at one element and such that the restriction of T � S gives a
surjection T1 � S1 that is a relatively Si L-presentation, and S is a localization of
S1. By part (a), every localization S2 of S1 at one element has an L-presentation
T2 � S2 that is relatively Si and such that T2 is a localization of a polynomial ring
at one element. It follows that S is a localization of a finitely generated R-subalgebra
S1 with the following property: every presentation of S1, and every presentation of
any localization S1[1/u], is relatively Si.

Now consider some other L-presentation (U ′)−1T ′ � S. Then we can choose a
localization T ′1 of T ′ at one element of U ′ whose image S′1 in S contains S1, and we
can choose w ∈ S1 ⊆ S′1 such that S′1[1/w] = S1[1/w], where w is invertible in S.
Thus, S′1[1/w] has a presentation that is relatively Si.

Suppose that w = τ/y where τ ∈ T ′ and y ∈ U ′. Since w is invertible in S, we can
choose a ∈ T ′ and z ∈ U ′ such that aτ/yz = 1 in S, i.e., and then there exists v ∈ U ′

such that vaτ = vyz. Then S′1 localized at the image ζ of vyz contains 1/w, since
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that can be represented as a/z, and so S2 = S′1[1/ζ] has the property that every
presentation is relatively Si, since it is a localization of S1[1/w] at one element, and
hence a localization of S1 at one element. But T ′1[1/vyz] is a localization of T ′ at an
element of U ′ mapping onto S2. From Step 2 we know that this L-presentation is
also relatively Si (since the corresponding presentation will be), and then by (1.7)
(a), (U ′)−1T ′ � S is relatively Si.

The following fact will be critical in the proof of the Lipman-Sathaye Jacobian
theorem.

Theorem 2.10. Let R → S be as in (1.0). Suppose that S is relatively Si pre-
sentable over R. Let s be an element of the total quotient ring of S that is integral
over S. Then S[s] is relatively Si presentable over R. Hence, any subring of the inte-
gral closure of S module-finite over R is relatively Si presentable over R. Moreover,

if T � R is an L-presentation with kernel I of height h such that g1, . . . , gh is
a regular sequence in I with the property that T/(g1, . . . , gh) is Si, and we extend
T � S to T [X] � S[s] by sending X to s, then there is a polynomial F monic in
X in the kernel, and T [X]/(g1, . . . , gh, F ) is Si.

Proof. We first establish the last statement. Let B = T/(g1, . . . , gh) and

C = T [X]/(g1, . . . , gh, F ) ∼= B[X]/(f)

where f is the image of F in B[X] and is still monic in X. Clearly, B[X]/(f) is flat
(and even free) over B with zero-dimensional (hence, Cohen-Macaulay) fibers, and
so is Si.

The first part now follows. After tensoring with R, S, T R[tµj : µ, j] = R[t] we
get such a regular sequence in T [t] such that the quotient is Si, by Lemma (1.5) (3).
When we adjoin X the result of the paragraph above together with Lemma (1.5)
(2) shows that we have a relatively Si presentation of S[s].

The following fact is used in Discussion (1.11) to show that there are many case
where R → S as in (1.0) is such that S is relatively S2 presentable over R, but R is
not Cohen-Macaulay.

Proposition 2.11. Let R → S be as in (1.0) (in particular, R satisfies Si) and let
R1 be a domain flat over R with Si fibers. Suppose that S is relatively Si presentable
over R. Then R1 → R1⊗R S satisfies (1.0) and is relatively Si presentable over R1.

Proof. Let T � S be an L-presentation (with kernel I of pure height h)that is
relatively Si. After adjoining indeterminates tmj as in (1.5) we obtain a regular
sequence g1, . . . , gh in the expansion of I such that T [t]/(g1, . . . , gh) is Si. The
main point is that R1 ⊗R T [t]/(g1, . . . , gh) is Si. Cf. (1.4).

Discussion 2.12. We conclude this section with an example which shows that the
property that S be relatively S2 presentable over R is weaker than the assumption
that R be Cohen-Macaulay.

One way to see this is to let R0 be Cohen-Macaulay normal of finite type over
an algebraically closed field K, and let B denote a finite type K-algebra that is
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normal but not Cohen-Macaulay. Take any extension of S0 of R0 as in (1.0). This
will be relatively S2-presentable simply because R0 is Cohen-Macaulay. It is easy
to see that R = B ⊗K R0 → B ⊗K S0 = S is still relatively S2 presentable (apply
(1.10) with R = R0 and R1 = B ⊗K R0), but R is not Cohen-Macaulay.

3. STATEMENT OF THE THEOREM AND A SKETCH
OF THE PROOF

Throughout the rest of this paper R denotes a Noetherian domain with fraction
field K, and S denotes an algebra essentially of finite type over R (i.e., a localization
at some multiplicative system of a finitely generated R-algebra) such that S is
torsion-free and generically étale over R (by which we mean that L = K ⊗R S is a
finite product of finite separable algebraic field extensions of K). We shall denote
by S′ the integral closure of S in L. We shall see that S′ is module-finite over S if
R is regular or excellent (cf. (2.7)).

If A and B are subsets of L we denote by A : LB the set {u ∈ L : uB ⊆ A}. If
T is a subring of L and A is a T -module, then so is A : LB.

We shall write JS/R for the Jacobian ideal of S over R. If S is a finitely generated
R-algebra, so that we may think of S as R[X1, . . . , Xn]/(f1, . . . , fm), then JS/R is
the ideal of S generated by the images of the size n minors of the Jacobian matrix
(∂fj/∂xi) under the surjection R[X] → S. This turns out to be independent of the
presentation. Moreover, if s ∈ S, then JSs/R = JS/RSs. From this one sees that
if S is essentially of finite type over R and one defines JS/R by choosing a finitely
generated subalgebra S0 of S such that S = W−1S0 for some multiplicative system
W of S0, and takes JS/R to be JS0/RS, then JS/R is independent of the choices
made. The result we aim to prove is:

Theorem 3.1 (Generalized Lipman-Sathaye Jacobian theorem). Let R be
a Noetherian domain with fraction field K. Assume also that the S2 locus is open in
algebras essentially of finite type over R.1 Let S be an extension algebra essentially
of finite type over R such that S is torsion-free and generically étale over R. Suppose
that for every maximal ideal M of S with contraction P to R, RP is normal, and SM
has a relatively S2 presentation over RP .2 Let L = K⊗R S and let S′ be the integral
closure of S in L. Assume that S′ is module-finite over S. 3 Suppose that for every
height one prime ideal Q of S′, RQ∩R is regular. Then S′ : LJS′/R ⊆ S : LJS/R.

Overview of the Proof.
(2.2) Step 1: The local case suffices Note that it is enough to prove the result
when S is replaced by its various localizations at maximal ideals. Thus, we may
assume that S is local, although we shall only make this assumption at certain

1This holds automatically if R is excellent or if R is a homomorphic image of a Cohen-Macaulay
ring.
2This is automatic if R is normal and Cohen-Macaulay, or if R is normal and S has a relatively
S2 presentation over R.
3This is automatic if R is regular or excellent: cf. (2.7).
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points in the proof. When S is local we may also replace R by its localization
at the contraction of the maximal ideal of S, and so there is likewise no loss of
generality in assuming that R is local and that R → S is local homomorphism
(i.e., the maximal ideal of R maps into that of S). Because of this reduction to the
local case, throughout the rest of the argument we assume that R is a normal local
domain and, in particular, that R satisfies S2.

(2.3) Step 2: Adjoining indeterminates If T = {tλ : λ ∈ Λ} is a family of
indeterminates over a Noetherian ring R we denote by R(T ) or sometimes even
R(t) the localization of the polynomial ring R[tλ : λ ∈ Λ] at the multiplicative
system consisting of all polynomials whose coefficients generate the unit ideal. This
ring is Noetherian even when the family of indeterminates is infinite (cf. [HH7],
Remark 2.18, especially the final, parenthetical paragraph) and faithfully flat over
R with geometrically regular fibers, since it is a direct limit of smooth R-algebras
and flat maps and happens to be Noetherian. To prove Theorem (2.2) it suffices
to consider R(t) → R(t) ⊗R S instead of R → S. Note that the normalization of
R(t) ⊗R S is R(t) ⊗R S′: it is normal because it is a localization of a polynomial
ring over S′. Note that the map R(t) → R(t) ⊗R S is the direct limit of maps
R(T0) → R(T0)⊗R S as T0 runs through finite subsets of T .

Note that if R has the property that algebras essentially of finite type over R
have open Si locus, then so does R(t). It suffices to see this for algebras of finite type
over R(t) and each of these arise from a finite type algebra S0 over R(T0) (where T0
is finite) by a base change R(T0) → R(t) that is faithfully flat with regular fibers.
But then Q in R(t)⊗R(T0) S0 with contraction P to S0 is such that the localization
at Q is Si if and only if (S0)P has property Si, i.e., the locus that we want in
Spec (R(t) ⊗R(T0) S0) is the inverse image of an open set in Spec S0 (since S0 is
essentially of finite type over R).

Note also that if R → S has the property that every height one prime of S′ lies
over a prime P in R such that RP is regular, the same is true for R(t) → R(t)⊗R S.
Since the latter ring is flat over S, a height one prime there lies over either a height
one or height 0 prime of S: in either case, that in turn lies over a prime P0 in R
such that RP0 is regular (if the contraction to S is height 0, the prime lies over 0
in R). Thus, R(t)P will be a Noetherian localization of a polynomial ring over RP0 ,
and, hence, regular.

Thus, we may replace R → S by R(t) → S(t) in proving the theorem, where
the set of indeterminates is infinite. This will prove useful in constructing regular
sequences in sufficiently general position.

(2.4) Step 3: Presenting S over R Let T denote a localization of R[X1, . . . , Xn]
that maps onto S, and let I denote the kernel. Let U denote the complement in T of
the set of minimal primes P1, . . . , Pr of of I in T . Since S is reduced, I =

⋂r
i=1 Pi.

Since S is a torsion-free R-module, the minimal primes of I do not meet R, and
correspond to the minimal primes of I(K ⊗ T ). Since killing any of these minimal
primes produces an algebraic extension of K, they must correspond to maximal
ideals of K[X1, . . . , Xn], and it follows that the Pi all have the same height, which
must be the same as the number of variables, n. Thus, U−1T is a semilocal regular
ring in which each of the maximal ideals Mi = PiU−1T is generated by n elements.
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(2.5) Step 4: Special sequences and the modules WS/R Call a sequence
g1, . . . , gn of n elements of I special if it generates each of the Mi, is a regular
sequence in T , and all of the associated primes of the ideal it generates are of height
n. We shall show that special sequences exist (this is really only using that S has
a relatively S1 presentation over R), and that there are sufficiently many of them
that the images of the elements det (∂gj/∂Xi) in S with g1, . . . , gn special generate
the Jacobian ideal. Moreover, when g1, . . . , gn is special the image of det(∂gj/∂Xi)
in S is not a zerodivisor in S, and so has an inverse in L. Given θ : T → S and a
special sequence g1, . . . , gn we define a map

Φ:
(g1, . . . , gn)T : T I

(g1, . . . , gn)T
→ L

by sending the class of u to u/γ, where u is the image of u in S and γ is the image
of det (∂gj/∂Xi) in S. We shall show that Φ is injective. A priori, its image depends
on the choice of T → S and on the choice of the special sequence g1, . . . , gn, but
the image turns out to be independent of these choices, and so we have constructed
a finitely generated canonically determined S-module WS/R ⊆ L.

(2.6) Step 5: The main idea of the argument It will turn out that, quite
generally, WS/R ⊆ S : LJS/R. The result then follows from two further observations.
The first is that when S is normal, this is an equality. (The idea is to show that
WS/R is then S2, which forces Φ with its image restricted to S : LJS/R to be an
isomorphism — this can be verified after localizing at height one primes of S. This
is the only place in the proof where we use the hypothesis that S has a relatively
S2 presentation over R.) The second is that when one enlarges S to S1 = S[s1] by
adjoining one integral fraction s1 ∈ L (so that S ⊆ S1 ⊆ S′), then WS1/R ⊆ WS/R.
Repeated application of this fact yields that WS′/R ⊆ WS/R and then we have

S′ : LJS′/R = WS′/R ⊆ WS/R ⊆ S : LJS/R,

and we are done. In the sequel we shall systematically fill in the details of this
outline.

We conclude this section with a result, essentially in [LS] but not stated in this
generality, which shows that the normalization S′ of S is module-finite over S under
very mild hypotheses on R.

Fact 3.2 (finiteness of the normalization). Let S be torsion-free, generically étale,
and essentially of finite type over a normal Noetherian domain R. Suppose that the
completion of every local ring of R is reduced (which holds if R is either regular or
excellent). Then the normalization S′ of S over R is module-finite over S.4

4Sketch of proof. Let S0 ∈ S be finite type over R with S = (S0)W . Since localization commutes
with normalization, we may replace S by S0 and assume S is finite type over R. The integral closure
of S is the product of the integral closures of the domains obtained by killing a minimal prime of
S. Hence, we may assume S is a domain. Each of finitely many generators for S over R satisfies
an algebraic equation over R with leading coefficient rν , say, and so with r =

Q

ν rν ∈ R − {0},
S[1/r] is integral over R[1/r]. The integral closure of the normal domain R[1/r] in the fraction
field L of S[1/r] is the same as the normalization of S[1/r], and is module-finite over S[1/r] by
Prop. (31.B) of Chapter 12 of [Mat]. We may enlarge S by adjoining finitely many elements of its
normalization and so obtain a domain S such that S[1/r] is normal for some r 6= 0. By Lemma 4
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4. BEGINNING THE PROOF: EXISTENCE OF SPECIAL
SEQUENCES

Throughout the rest of this paper R denotes a normal Noetherian domain with
fraction field K, and S denotes an algebra essentially of finite type over R (i.e., a
localization at some multiplicative system of a finitely generated R-algebra) such
that S is torsion-free and generically étale over R (by which we mean that L =
K ⊗R S is a finite product of finite separable algebraic field extensions of K). We
shall denote by S′ the integral closure of S in L, and we shall assume that it is a
finite module over S. We also assume that S is relatively S1 presentable over R.
(We shall not need that it is relatively S2 presentable until §4.) Let T � S be an L-
presentation with kernel I of pure height n. Recall that a regular sequence g1, . . . , gn
of length n in I is special if g1, . . . , gn generate ITP for every minimal prime P of I,
and all minimal primes of (g1, . . . , gn)T have height n. We construct many special
sequences after replacing R, S, T by their tensor products over R with R(T ), where
T is consists of infinitely many new indeterminates as in (2.3). We denote the results
of tensoring R, S, T with R(T ) = R1 by R1, S1, and T1, respectively. We write I1

for the expansion of I to T1, so that S1 ∼= T1/I1. In later sections we shall change
notation and write R, S, T for the rings denoted R1, S1, T1 here.

Lemma 4.1. With hypothesis as in the paragraph above, there are sufficiently many
special sequences g1, . . . , gn in I1 that the Jacobian ideal JS1/R1 is generated by the
images of elements det (∂gj/∂Xk) for g1, . . . , gn special (where the Xk are the inde-
terminates generating the polynomial ring of which T is the localization). Moreover,
if T1 is local, given any two special sequences there is a finite sequence (which we
shall refer to as a chain) of special sequences with one of them as first term and
the other as last term with the following property: given any two consecutive terms,
one is obtained from the other by letting an invertible matrix over R1 act, or else
the two consecutive sequences differ in only one term.

Proof. Pick generators f1, . . . , fr for I. Let [tµj ] be an r×r matrix of indeterminates
from the infinite set T . The elements gµ =

∑r
j=1 fjtµj give a new set of generators

for I1, because the determinant of [tµj ] is invertible in R1. By Lemma (1.5) applied
with i = 1, any n of these generators form a regular sequence W = T [tµj : µj] such
that the ideal they generate has no embedded primes (the last follows from the fact
that the quotient is S1). Because the map W → T1 is flat with Cohen-Macaulay
fibers, the sequence retains these properties. Next, we want check that any n of
these generate after localizing at a minimal prime P of I1. Since they generate I1,

of Ch. 12 of [Mat], S has finite normalization if SQ does for every maximal ideal Q of S. Choose
s ∈ S with L = K[s]. Let R1 = R[s] and P = Q ∩R1. Then SQ is a localization of (R1)P [S], and
S is generated over (R1)P by elements of its fraction field. By a result of [Rees], if the completion
of a local domain B is reduced, then the normalization of any algebra C finitely generated over
B by fractions is module-finite over C. Thus, it suffices to show that the completion of (R1)P is
reduced. We may replace R by its localization at the contraction of P , and so we may assume that
(R, m) is local with reduced completion. The completion of (R1)P is one of the local rings of the
completion of R1 with respect to m. Thus, it suffices if this completion of R1 is reduced. But this
is R1 ⊗R bR ⊆ L ⊗R bR ∼= L ⊗K (K ⊗R bR), and the result follows because K ⊗R bR is reduced and
L/K is separable.
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it is certainly true that we can choose n of them to generate I1(T1)P . Given the
symmetric roles played by the indeterminates, it must be true that any n generate.
Since we may use all n elements subsets of this set of generators of I1, we obtain
enough elements to generate the Jacobian ideal.

Now suppose that we have two special sequences in I1. They only involve finitely
many of the indeterminates in T . After replacing R by R(T0) for a suitable finite
subset T0 of T , and making corresponding changes in S, T , we may assume without
loss of generality that the two special sequences are in T .

We choose n2 + nr new indeterminates from T to construct two n× n matrices
α, β of indeterminates from T as well as an n× r matrix γ. We replace one special
sequence by letting α act on it: call it a1, . . . , an. We replace the other by letting β
act on it: call the result b1, . . . , bn. Also let γ act on the f1, . . . , fr to form n linear
combinations, say g1, . . . , gn, of the f1, . . . , fr with indeterminate coefficients. If we
replace the terms in a1, . . . , an one at a time by the f ’s, we make a chain from
a1, . . . , an to f1, . . . , fn. We can then reverse the process to make a chain from
f1, . . . , fn to b1, . . . , bn, changing only one term at a time. The fact that each of
the sequences formed is a regular sequence generating an ideal with no embedded
primes is a consequence of Lemma (1.6). The proof that these sequence all generate
I1(T1)P = P (T1)P for each minimal prime P of I1 reduces to studying the vector
space V = P (T1)P /P 2(T1)P . One needs to know that given two sets of generators
for this vector space, one can take general linear combinations of the first set (i.e.,
with indeterminate coefficients), say v1, . . . , vk of them, together with general linear
combinations of the second, and if the number of these is dim V , they will be a basis.
The point is that the elements v1, . . . , vk form part of a basis. To decide whether
the remaining elements complete the basis one may pass to V/Span {v1, . . . , vk}.
Since we are working with elements that span this space, this is clear.

5. THE MAP Φ AND THE MODULES W S=R

Our next main goal is to construct the maps Φ mentioned briefly in (2.5).
Throughout this section we assume that R is a normal Noetherian domain, with
fraction field K, that S is a torsion-free generically étale R-algebra with total quo-
tient ring L (by hypothesis, a finite product of separable field extensions of K), that
T is a localization of the polynomial ring R[X1, . . . , Xn] that maps onto S, with
kernel I, and that the minimal primes of I in T are P1, . . . , Pr. We also assume
that S is relatively S1 presentable over R. However, in parts (c), (d) and (f) of The-
orem (4.4), we shall need the stronger hypothesis that S is relatively S2 presentable
over R. Furthermore, we assume that R → S has arisen from R0 → S0 satisfying
the same conditions by tensoring with R = R0(T ) for some infinite family T of
indeterminates, so that the results of Lemma (3.1) are applicable.

Lemma 5.1. Let g1, . . . , gn ∈ I. Let X denote X1, . . . , Xn. Then the images of the
gj in R[X]Pν generate PνR[X]Pν if and only if det (∂gj/∂Xi) /∈ Pν . (The same holds
if we only assume that g1, . . . , gn ∈ Pν .) Hence, if g1, . . . , gn is a special sequence
in I, then the image γ of det (∂gj/∂Xi) is not a zerodivisor in S, and so represents
an invertible element of the total quotient ring L of S.
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Proof. The last statement clearly follows from the first, and we prove the first
under the assumption that g1, . . . , gn ∈ P = Pν . Let M be the maximal ideal
corresponding to P in K[X]. Then PR[X]P ∼= K[X]M, and so this is really a
statement about when elements of M generate M in K[X]. For the rest of this
proof we shall write L (instead of, say, Lν) for the residue field R[X]P , which is
the same as the residue field of K[X]M. It is critical in what follows that L is
separable over K. Consider the universal K-derivation d : K[X] → ΩK[X]/K, the
module of Kähler differentials, which is the free module K[X]-module generated by
the elements dX1, . . . , dXn. Of course, if f ∈ K[X] then df =

∑n
j=1(∂f/∂xj) dxj .

The restriction of d to M gives a K-linear map M→ ΩK[X]/K, and by the defining
property of a derivation it sends M2 →MΩK[X]/K. Thus, there is an induced map
of K-vector spaces

δ : M/M2 → L⊗K[X] ΩK[X]/K.

Both modules are L-vector spaces and it follows from the defining property of
a derivation that δ is actually L-linear. Since K[X]M is regular of dimension n,
M/M2 is an n-dimensional vector space over L. The key point is that under the
hypothesis that L is separable over K, the map δ is an isomorphism of L-vector
spaces. This is well known, but we give a very short proof. The map δ sends the
elements represented by generators g1, . . . , gn for M to the elements represented
by the dgj , and so it has a matrix which is the image of the matrix (∂gj/∂xi) after
mapping the entries to L. Thus, δ is an isomorphism if and only if the Jacobian
determinant det (∂gj/∂xi) has nonzero image in L. But this determinant generates
JL/K, and so δ is an isomorphism if and only if the Jacobian ideal of L over K is
L. But we may use any presentation of L over K to calculate JL/K, and so we may
instead use L ∼= K[Z]/f(Z) where Z here represents just one variable and where
f is a single separable polynomial. The Jacobian determinant is then the value of
f ′(Z) in L, which is not zero by virtue of the separability.

Thus, δ is an L-isomorphism. Moreover, we have already seen that if g1, . . . , gn

are generators of M then the Jacobian determinant is not 0 in L. But the converse
is also clear, because if g1, . . . , gn are any elements of M, they generate M if and
only if their images in M/M2 span this vector space over L, by Nakayama’s lemma,
and this will be the case if and only if their further images in L⊗K[X] ΩK[X]/K span
that vector space over L, since δ is an isomorphism, i.e., if and only if the images of
the dgj span. But this is equivalent to the assertion that the images of the columns
of the matrix (∂gj/∂xi), after the entries are mapped to L, span an n-dimensional
space, i.e., to the nonvanishing of det (∂gj/∂xi) in L, which is, of course, equivalent
to its not being in P .

(4.2) The definition of θ and WS/R We continue the conventions in the first
paragraph of this section, but because we shall let both S and its presentation vary
we shall write θ for the map T → S and we shall denote by g a special sequence
g1, . . . , gn in I. We may then temporarily define

Φθ,g :
(g1, . . . , gn)T : T I

)

(g1, . . . , gn)T
→ L
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by sending the class of u to u/γ where u is the image of u in L, and γ is the image
of det (∂gj/∂xi) in L: the element γ is invertible in L by Lemma (4.1). We shall
often write Φ when θ and g are understood. We shall soon show that the image of
Φ is contained in S : LJS/R. Once this is established we shall change the definition
of Φ very slightly by restricting its range to be S : LJS/R ⊆ L.

We note that
(

(g1, . . . , gn)T : T I
)

/(g1, . . . , gn)T ∼= HomT (T/I, T/(g1, . . . , gn)T ).
We shall denote the image of Φθ,g in L by WS/R(θ, g). However, we shall see just

below that it is independent of the choices of θ and g, and once we know this we
shall simply write it as WS/R ⊆ L.

Lemma 5.2. The map Φθ,g is injective, and its image in L is independent of the
choice of g, and of the choice of θ. Its image is contained in S : LJS/R.

Proof. The domain of Φ may be thought of as the submodule of T/(g1, . . . , gn)T
consisting of elements killed by I. Since g1, . . . , gn is a special sequence, the asso-
ciated primes of g1, . . . , gn are all minimal, and it suffices to show that the map is
injective after localizing at each minimal prime of (g1, . . . , gn)T . If the prime does
not contain I the domain of Φ becomes 0 after localization and there is nothing to
prove. If the prime contains I it is one of the Pν , and after localization the map
becomes the composition of the isomorphism TPν /PνTPν

∼= LPν with the automor-
phism of LPν induced by multiplication by the image of γ, which is nonzero.

To prove for a fixed presentation that the map is independent of the choice
of special sequence suppose that we have two special sequences that yield maps
with different images. We can preserve the fact that the images are different while
localizing at a suitable prime or even maximal ideal of T : S is replaced by its
localization at a corresponding prime. Thus, there is no loss of generality in assuming
that T and S are local. The sequences in question remain special as we localize. But
we may now apply Lemma (3.1) to conclude the existence of a finite chain of special
sequences joining the two that we are comparing such that any two consecutive
sequences differ either in at most one spot, or by the action of an invertible matrix
over R. Thus, we need only make the comparison when the two sequences differ
in just one term, and since the sequences are permutable we may assume without
loss of generality that one of them is g1, . . . , gn and the other is h1, . . . , hn where
hj = gj for j > 2. We set up an isomorphism

σ :
(g1, . . . , gn)T : T I

(g1, . . . , gn)T
∼=

(h1, . . . , hn)T : T I
(h1, . . . , hn)T

as follows. If u is an element of (g1, . . . , gn)T : T I then since uI ⊆ (g1, . . . , gn)T
we may write uh1 = vg1 + w, where w ∈ (g2, . . . , gn)T = (h2, . . . , hn)T . We
map the class of u to the class of v. Note that any such v is automatically in
(h1, . . . , hn)T : T I. (If a ∈ I then avg1 + aw = auh1. Now, au = bg1 + w′ where
w′ ∈ (g2, . . . , gn)T and so avg1 + aw = bg1h1 + w′h1 and so g1(av − bh1) =
w′h1 − aw ∈ (g2, . . . , gn)T . Since g1 is not a zerodivisor on (g2, . . . , gn)T , we have
that av − bh1 ∈ (g2, . . . , gn)T , and so av ∈ (h1, g2, . . . , gn)T = (h1, . . . , hn)T ,
as required, for all a ∈ I.) Next note that the choice of v given u is unique
modulo (g2, . . . , gn)T . Thus, we have defined a map from (g1, . . . , gn)T : T I to
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(

(h1, . . . , hn)T : T I
)

/(h1, . . . , hn)T . It is easy to see that this map kills (g1, . . . , gn)T
and so we have a map as required. It is also clear that if we similarly define a map

(h1, . . . , hn)T : T I
(h1, . . . , hn)T

→ (g1, . . . , gn)T : T I
(g1, . . . , gn)T

it will be an inverse for the map already constructed.
To complete the proof of the independence of the image from the choice of special

sequence we note that the following diagram commutes:

(g1, . . . , gn)T : T I
(g1, . . . , gn)T

σ−−−−→ (h1, . . . , hn)T : T I
(h1, . . . , hn)T

Φθ,g





y





y
Φθ,h

L −−−−→
1L

L

To see this, one simply needs to see that if

(∗) uh1 − vg1 =
n

∑

j=2

tjgj

in T , then u/γ = v/η in cL, where γ, η are the respective images of det (∂gj/∂Xi)
and det (∂hj/∂Xi) in L, i.e., that udet (∂hj/∂Xi) ≡ v det (∂gj/∂Xi) modulo I. By
differentiating (∗) with respect to each Xj in turn and using the fact that all the gj

and hj are in I, we see that

u∇h1 − v∇g1 ≡
n

∑

j=2

tj∇gj modulo I

which implies (∗).
For a given special sequence g it is obvious from the definition of Φθ,g that γ

multiplies the image of Φθ,g into S ⊆ L. Since the image is independent of the
choice of special sequence, and since by Lemma (3.1) as the special sequence varies
the values of γ generate JS/R, it follows that the image is contained in S : LJS/R.

It remains only to prove that the image of ΦT,g is independent of the choice of
θ : T → S as well. We first consider the case of a finitely generated R-algebra S. The
choice of a presentation is equivalent to the choice of a finite set of generators for S
over R. We can compare the results from each of two different presentations with
the result from their union, and so it suffices to see what happens when we enlarge
a set of generators. By induction, it suffices to show that the image does not change
when we enlarge a set of generators by one element, and so we may assume that
we have θ : T = R[X1, . . . , Xn] � S and an extension of θ, θ′ : T [Xn+1] � S by
sending Xn+1 to s. Let T ′ = T [Xn+1]. We can choose an element F ∈ T such that
F maps to s in S, and it follows easily that the kernel I ′ of θ′ is I + (Xn+1 − F ).
It also follows easily that if g = g1, . . . , gn is special in I then g′ = g1, . . . , gn+1

with gn+1 = Xn+1 − F is a special sequence in I ′. The larger (size n + 1) Jacobian
matrix has the same determinant γ as the size n Jacobian matrix of g1, . . . , gn with
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respect to X1, . . . , Xn, and it is easy to check that there is an isomorphism

τ :
(g1, . . . , gn)T : T I

(g1, . . . , gn)T
∼=

(g1, . . . , gn+1)T ′ : T ′I ′

(g1, . . . , gn+1)T ′

which is induced by the inclusion (g1, . . . , gn)T : T I ⊆ (g1, . . . , gn+1)T ′ : T ′I ′. Since
the Jacobian determinants are the same we have a commutative diagram

(g1, . . . , gn)T : T I
(g1, . . . , gn)T

τ−−−−→ (g1, . . . , gn+1)T ′ : T ′I ′

(g1, . . . , gn+1)T ′

Φθ,g





y





y
Φθ′,g′

L −−−−→
1L

L

and this yields that the images are the same.
We have now justified the notation WS/R when S is finitely generated over R. We

leave it to the reader to verify that if s is a nonzerodivisor in S, then WS[s−1]/R =
(WS/R)s, and that WS/R(θ) is independent of θ when S is essentially of finite type
over R.

Proposition 5.3. Proposition (4.4) Let S be generically étale, torsion-free and
essentially of finite type over the Noetherian normal domain R. Assume that S is
relatively S1 presentable over R. Let W = WS/R.
(a) For any multiplicative system U in S, WU−1S/R = U−1W .
(b) W is torsion-free over S.

For the remaining parts, assume that S is relatively S2 presentable over R (au-
tomatic in part (e), since R is regular).
(c) For every prime ideal P of S, if u, v is part of a system of parameters for SP

then it is a regular sequence on WP . (Thus, W is S2.)
(d) If W ⊆ W ′ ⊆ L and WP = W ′

P for all height one primes of S and for all
minimal primes of S that are also maximal ideals, then W = W ′.
(e) If R → S is a local homomorphism of regular local rings then JS/R is principal
and W = S : LJS/R.
(f) If S is normal and RP is regular for every prime ideal P of R lying under a
height one prime ideal Q of S, then W = S : LJS/R.

Proof. Part (a) is essentially the last part of (4.3), while (b) is evident from the
fact that W ⊆ L, by definition.

To prove (c) note that by (a) we may assume that S is local and that u, v is part
of a system of parameters. We may choose a presentation θ : T � S and think of W
as ∼=

(

(g1, . . . , gn)T : T I
)

/(g1, . . . , gn)T , where the sequence g1, . . . , gn is not only
special, but has the additional property that T/(g1, . . . , gn) is S2. Let u0, v0 ∈ T
be representatives of u, v. Then u0 + I cannot be contained in the union of the
associated primes of (g1, . . . , gn) (these are the same as the minimal primes), or
else it will be contained in one of them by [Kap], Theorem 124. Since this will
contain I, it will be a minimal prime of I, and contradicts the statement that u is
part of a system of parameters in S = T/I. Thus, we can replace u0 by an element
u1 representing u such that g1, . . . , gn, u1 is a regular sequence in T . Similarly, v0+I
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cannot be contained in the union of the associated primes of (g1, . . . , gn, u1)T , or
else it is contained in one of them, say Q. Thinking modulo I, we see that, since Q
contains u0, v0, it has height at least two more than I. But then Q has depth at
least n + 2, a contradiction, since it is supposedly an associated prime of an ideal
generated by a regular sequence of length n + 1. Thus, we may choose u1, v1 in T
representing u, v respectively and such that g1, . . . , gn, u1, v1 is a regular sequence.
Clearly, u1, v1 form a regular sequence on T/(g1, . . . , gn)T . We claim they also form
a regular sequence on the set of elements killed by I. It is clear that u1 remains
not a zerodivisor on this set. Suppose that v1z = u1y where z, y are killed by I.
Then z = u1x, y = −v1x where, a priori, x ∈ T/(g1, . . . , gn)T . But Iz = 0 and
so Iu1x = 0, and since u1 is not a zerodivisor on T/(g1, . . . , gn)T , it follows that
Ix = 0 as well.

Part (d) is a standard consequence of what we proved in part (c), but we give
a short argument. If W 6= W ′ we can localize at a minimal prime of the support
of W ′/W and preserve the counterexample. By hypothesis, this prime cannot have
height one (nor height 0, since if a height 0 prime is not maximal then we can localize
at it in two steps: first localize at a height one prime that contains it). Thus, we may
assume that S is local of height two or more, and that W ′/W is a nonzero module
of finite length. It follows that we can choose an element x ∈ W ′ − W and part
of a system of parameters u, v for S such that uz and vz are in W . The relations
v(uz) = u(vz) over W together with part (c) show that uz ∈ uW , and it follows
that z ∈ W after all, a contradiction.

To prove (e) note that when R is regular so is T , and so T → S will be a surjection
of local rings. The kernel of such a surjection must be generated by part of a minimal
set of generators for the maximal ideal of T . It follows that I is a prime and we
have I = (g1, . . . , gn)T is itself generated by a suitable special sequence. Then
JS/R is generated by γ = det (∂gj/∂Xi), and

(

(g1, . . . , gn)T : T I
)

/(g1, . . . , gn)T =
(I : T I)/I = T/I = S and Φ sends 1 to 1

γ , so that W = S 1
γ , and one sees that

S : LJS/R = S : LγS = W , as claimed.
To prove (f) it suffices by (d) to consider the problem after localizing at a height

one or zero prime Q of S, and, without affecting the issue, one may also localize R
at its contraction. If the prime of S has height 0, so does its contraction to R, and
both rings become regular after localization. If the prime of S has height one, then,
again, both rings become regular after localization, S because it is normal and R
by hypothesis. In either case the result follows from part (e).

6. A CRITICAL LEMMA AND THE FINAL STEP OF
THE PROOF

The following result of Lipman and Sathaye is critical in establishing that WS/R
decreases as S is increased by adjoining integral fractions.

Lemma 6.1 (Lipman-Sathaye). Let T be a commutative ring, Y an indeter-
minate, and J an ideal of T [Y ] such that J contains a monic polynomial h in Y
of degree d, and such that J also contains an element of the form αY − β where
α, β ∈ T are such that J : T [Y ]αT [Y ] = J , i.e., such that α is not a zerodivisor mod-
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ulo J . Let G ⊆ T be an ideal of T with G ⊆ J . Then for every element v ∈ T [Y ]
such that vJ ⊆ (h, G)T [Y ] there is a u ∈ T such that u(J ∩ T ) ⊆ G and such that

v ≡ u
∂h
∂Y

modulo J .

Proof. See Lemma (3.17) on p. 216 of [LS].

We now use this to prove:

Theorem 6.2. If S1 is obtained from S by adjoining finitely many integral fractions
of L, then WS1/R ⊆ WS/R.

Proof. By induction on the number of fractions adjoined, it is obviously sufficient
to prove this when S1 = S[λ], where λ is a single element of L. Choose a presen-
tation θ : T → S and a special sequence g1, . . . , gn in the kernel I. Let Y be a new
indeterminate and extend θ to a map T [Y ] � S[λ] by sending Y to λ. Since λ is
integral over S there is a monic polynomial h = h(Y ) ∈ T [Y ] of degree say, d, in
the kernel J of T [Y ] � S[λ]. If λ ∈ S there is nothing to prove so that we may
assume that d > 2. Since λ is in L we may also choose α and β in T with α not
a zerodivisor on I such that αY − β is in the kernel. Consider the image of h(Y )
in S[Y ]. There will be a certain subset of the minimal primes of S such that the
image of λ is a multiple root of the image of h modulo those primes. If that set
of primes is empty, we shall not alter h. If it is not empty choose an element of S
that is not in any of those minimal primes but that is in the others, and represent
it by an element t ∈ T . Then h(Y ) + t(αY − β) has the property that its image
modulo any minimal prime of S has the image of λ as a simple root, and so we may
assume, using this polynomial in place of the original choice of h, that h is a monic
polynomial of degree d > 2 such that image of λ modulo every minimal prime of L
is a simple root of the image of h.

Because h is monic in Y , the sequence g1, . . . , gn, h is a regular sequence,

and the Jacobian determinant with respect to X1, . . . , Xn, Y is γ
∂h
∂Y

, where γ is

det (∂gj/∂Xi). Our choice of h implies that
∂h
∂Y

has image that is not in any minimal

prime of L, and it follows, using Lemma (1.9), that g1, . . . , gn, h is a special sequence
in J and can be used to calculate WS[λ]/R. Let v ∈ (g1, . . . , gn, h)T [Y ] : T [Y ]J .
We may now apply Lemma (5.1) with this T, Y, J, v, α, β and h, while taking
G = (g1, . . . , gn)T . Note that J ∩ T = I. Now, v gives rise to a typical element, the

image of v/(γ
∂h
∂Y

) in L, in WS[λ]/R, and we want to show that this element is in

WS/R. Pick u as in Lemma (5.1). Then u ∈ (g1, . . . , gn)T : T I and since v ≡ u
∂h
∂y

modulo J , this image is the same as the image of (u
∂h
∂y

)/(γ
∂h
∂y

) = u/γ, and so is

in WS/R, as required.

The proof of the main theorem. Theorem (5.2) and Proposition (4.4f) justify the
argument given much earlier in (2.6), and the proof of Theorem (2.1) is now com-
plete.
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of Briançon-Skoda about integral closures of ideals, Michigan Math. J.
28(1981), 97–116.



Homology, Homotopy and Applications, vol. 4(2), 2002 314

[18] H. Matsumura, Commutative Algebra, W.A. Benjamin, New York, 1970.

[19] D. Rees, A note on analytically unramified local rings, J. London Math.
Soc. 36(1961), 24–28.

[20] H. Skoda, Applications des techniques L2 a la théorie des idéaux d’une
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Sup. 4éme série, t. 5(1972), 545–579.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2002/n2a13/v4n2a13.(dvi,ps,pdf)

Melvin Hochster hochster@math.lsa.umich.edu

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109–1109
USA


