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AN ANALOGUE OF HOLONOMIC D-MODULES ON SMOOTH
VARIETIES IN POSITIVE CHARACTERISTICS

RIKARD BÖGVAD
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Abstract
In this paper a definition of a category of modules over the

ring of differential operators on a smooth variety of finite type
in positive characteristics is given. It has some of the good
properties of holonomic D-modules in zero characteristic. We
prove that it is a Serre category and that it is closed under
the usual D-module functors, as defined by Haastert. The rela-
tion to the similar concept of F-finite modules, introduced by
Lyubeznik, is elucidated, and several examples, such as etale
algebras, are given.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

The theory of D-modules in positive characteristics has recently received atten-
tion, in several contexts. There is for example, in commutative algebra, the result by
Hunecke-Sharp [8], which says that local cohomology modules, HI(R), where I ⊂ R
is an ideal in a regular ring over a field of characteristic p, have finite Bass numbers.
The proof makes essential, though implicit, use of the fact that these modules are D-
modules. This result was later generalized by Lyubeznik [9, 10], to on the one hand,
a proof of the finiteness of Bass numbers for local cohomology modules in character-
istic zero, by ordinary characteristic zero D-module theory, and on the other hand
to the nice concept of F-finite modules, of which more below. Other examples are
the applications to the theory of tight closure due to K.Smith [12], and the proof
by K.Smith and van der Berg [13] of the fact that the ring of differential operators
of an invariant ring S(V )G is a simple ring, in positive characteristics(where G is a
linearly reductive group, with a finite dimensional representation V , and S(V ) the
symmetric algebra on V ). The corresponding result is still unknown in characteristic
zero. So D-modules are very useful objects, even in positive characteristics.

Let X be a smooth variety over a field k of positive characteristic p. and DX the
ring of (Grothendieck) differential operators on X. In this paper we will define and
study a certain nice category of DX -modules, called filtration holonomic modules.
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These were introduced (in a stronger version) in [3]. There they were used to prove
that local cohomology modules Hi

Z(OX), Z a subvariety of X, have finite decom-
position series as DX -modules, and to study the socle of these modules, inspired
by corresponding results in characteristic zero. By the adjective nice, is meant in
particular that they form a Serre subcategory of the category of all DX -modules. In
addition all modules in it have finite decomposition series, and it includes several
classes of important modules, like the local cohomology modules of the structure
sheaf.

To motivate the concept, consider what happens for an affine smooth variety
X = specR over a field k of characteristic zero. The ring of differential operators
on X may be filtered by the degree of a differential operator, and the associated
graded ring is a finitely generated commutative ring. Using the Hilbert polynomial,
this makes it possible and easy to develop a theory of ”growth” of D-modules. The
modules with minimal growth are called holonomic modules. The growth of them
turns out to be precisely equal to the growth of the D-module R. These modules
play an important part in D-module theory([2, 4]). In positive characteristic p the
ring of differential operators of a smooth variety is however non-Noetherian, and
hence the tools of Noetherian commutative rings are unavailable here. However it
is possible to use the idea of growth in a different way. We will sketch the idea.
Suppose for simplicity that R = k[x1, . . . , xn], where k is a field of characteristic p.
The idea is then to use the well known Morita type characterization of a module M
over the ring of differential operators DR. It says that such modules are precisely
those modules for which there is a series of k[xpr

]-modules M (r) and (compatible)
isomorphisms

θr : F ∗rM (r) := k[x]⊗k[xpr ] M (r) ∼= M, r > 0,

where F is the Frobenius map. Let Vr be the vectorspace of monomials of degree
strictly less than pr in each variable. Then k[x] ∼= Vr ⊗k k[xpr

], and F ∗rM (r) =
Vr ⊗k M (r). Then the archetype of a filtration holonomic module is a module that
may be generated by a sequence of finite dimensional subspaces Ar ⊂ M (r), i. e.
such that M = ∪>0θr(Vr ⊗Ar)), where the dimensions of Ar has a common upper
bound. For example, if M = k[x], then θr : F ∗rM = M is just the ordinary canonical
isomorphism k[x] ⊗k[xpr ] k[xpr

] ∼= k[x], and letting the 1-dimensional vectorspaces
Ar be defined as Ar = k ⊂ k[xpr

] = M (r) we have θr(Vr ⊗ k) = Vr ⊂ k[x], and
M = ∪r>0Vr. So k[x] is (unsurprisingly) a filtration holonomic module.

However the definition above, given in [3], should be modified. This is because
it seems impossible to so prove that extensions of filtration holonomic modules in
this sense also are filtration holonomic. Instead of demanding that the dimensions
of the vector spaces Ai in the definition above should have a common bound, the
modification consists of the weaker condition that a certain weighted dimension
t(Ai) associated to each vector subspace Ai of a DX -module should be finite (Defi-
nition 3.2). We redo and develope several results from [3] , using this more general
concept. (A motivating example for the modified definition is given at the end of
section 3.1.)

Our main result is the following, whose first part is immediate from the local
version Theorem 4.2, and whose proof is contained in sections 2-4.
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Theorem 1.1. If X is a smooth variety of finite type over a field k of characterisic
p, then the category of filtration holonomic modules is closed under DX-module
extensions, submodules and quotient modules. Every filtration holonomic module
has a finite decomposition series.

We also prove that the property is preserved under the usual functors:

Theorem 1.2. If X is a smooth variety of finite type over a field k of characterisic
p, then the category of filtration holonomic modules preserved by direct and inverse
images, and local cohomology.

A different finiteness condition for DX -modules –F -finite modules –has recently
been introduced by Lyubeznik [10], building on the work by Huneke and Sharp [8].
It has similar properties: e.g. F -finite modules also have finite decomposition series,
as DX -modules, and local cohomology modules of the structure sheaf are F -finite.
We analyze to some extent in this paper the relation between these two concepts
and show in particular that F -finite modules are filtration holonomic (for a smooth
variety of finite type over a perfect field), but that the converse does not hold, in
general. This difference is mainly due to the fact that built into the concept of a F -
finite module M , is that the module is a so-called F -module, i.e. that as R-modules
F ∗M ∼= M . As was described above this is equivalent (by iteration and Morita-
equivalence) to the fact that M is a DX -module, with the extra condition that M ∼=
M (r), r = 1, 2, . . .. This is rather restrictive, and has for example the consequence
that a DX -module extension of F -finite modules is not necessarily F -finite. It should
however be noted that F -finite modules may be used in a more general situation,
e.g. complete regular rings, while the concept of filtration holonomic modules is
bound to the condition that the variety is of finite type.

Finally we give several examples of filtration holonomic modules. First, each
étale algebra E over R = k[x1, . . . , xn], considered as a DR-module has this prop-
erty. The proof is rather involved, but constructive, meaning that it is possible to
get bounds on the length of a finite decomposition series of R. This example was
already described in [3], but the proof given there was deficient(as kindly pointed
out by M.Kaneda). Other examples are in the class of OX -coherent DX -modules.
It is trivial to prove that modules in this class have a finite decomposition series
but unlike the situation in characteristic zero, complicated to prove that they are
filtration holonomic, and in fact we only succeed for modules which correspond to
étale sheaves, though we conjecture it to be true in general. An example is given
which supports this conjecture.

I would like to thank Torsten Ekedahl and Gennady Lyubeznik for several discus-
sions on these topics; Masaharu Kaneda for carefully puncturing several attempts at
proofs, in particular the proof of the filtration holonomicity of the étale extensions.
Thanks are also due to the referee for very useful comments.
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2. Filtrations on vector subspaces of D-modules

2.1. The idea
Assume that X = An = speck[x1, . . . , xn]. Since X is affine there is no need to

work with sheaves. Let, as in 2.4, Vi be the k-vector subspace of k[x] generated by
all monomials xi1

1 . . . xin
n , where ij < pi, for all j = 1, . . . , n.

To start the analysis of the growth of a DX -module, note that Cartier’s lemma,
in the form of Proposition 2.4 gives the following way of characterizing a submodule
of a DX -module.

Proposition 2.1. Suppose that M is a DX-module and that the k[x]-module N ⊂
M is a union

N =
⋃

j>0

VjAj (1)

where Aj ⊂ N (j), and that furthermore an arbitrary element in N is contained in
all except a finite number of the vector spaces VjAj. Then N is a DX-submodule.

Conversely every DX-module with a countable number of generators, e. g. a sub-
module of a finitely generated DX-module M, may be described as a union (1), for
some sequence of finite-dimensional vectorspaces Aj , j > 0.

Proof. Recall that (2.4) D(j)
X = OX∆(j)

An . Since N is an OX -module, note that it
suffices to show that N is a ∆(j)

An−module, for all j > 0. Assume that δ ∈ ∆(j)
An .

Clearly (see 2.4), Vj0Aj0 is a ∆(j0)
An -submodule of N and, by hypothesis, there is to

each f ∈ N a j0 > j such that f ∈ Vj0Aj0 . Hence δ(f) ∈ Vj0Aj0 .
Conversely, every DX -module M with a countable number of generators, has

countable dimension as a vector space over k, and so contains finite-dimensional
vectorspaces Bj , j > 0 such that Bj ⊂ Bj+1 and ∪j>0Bj = M. Then, by Proposi-
tion 2.4, there are finite-dimensional vectorspaces Aj ⊂M(j) such that Bj ⊂ VjAj .
Since any element in M is contained in almost all Bj , this is also true of almost all
VjAj .

It should be emphasized that M(j) is always thought of as a submodule of the
module M, and that the inclusion is not OX -linear but really an inclusion M(j) ⊂
F∗M.

The idea of the finiteness condition introduced in [3], described in the introduc-
tion, and there called filtration holonomic modules, is then that minimal “growth”
of a module is obtained when the vector space dimension of the sequence Ai, for
a filtration of type (1) for the module, is bounded. This definition will be modi-
fied below, so as to make it easier to handle, but unfortunately necessitating more
technical details.

We will give an example to motivate the increase in technical difficulty. Recall
the description of the idea behind filtration holonomic modules, given in the intro-
duction. The problem with this definition arises when one tries to prove that there
is some finiteness condition on an extension of two filtration holonomic module. We
will describe a Dk[x]-module M which is a Dk[x]-module extension of k[x] with itself.
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Let M be a free k[x]−module on 2 generators s1, s2, and similarily let M(i), i > 0
be a free k[x(pi)]−module on 2 generators s(i)

1 , s(i)
2 . Define

Θi : M(i+1) →M(i)

by Θi(s
(i+1)
1 ) = s(i)

1 and Θi(s
(i+1)
2 ) = s(i)

2 + gis
(i)
1 where gi ∈ k[xpi

] is arbitrary.
This is an inclusion, and we may think of all M(i) as contained in M. In particular
s(i)
1 = s(0)

1 and

s(i)
2 = s(0)

2 + (
i

∑

m=0

gm)s(0)
1 .

This inverse system gives a Dk[x]-module structure on M. It contains k[x]s(0)
1 which

is isomorphic to k[x], and it projects to k[x]s(0)
2 , also isomorphic to k[x]. If all gi = 0

then M is the direct sum of these two Dk[x]-modules. To estimate the growth it

suffices to note that, in this case, the union of all Vi(ks(i)
1 +ks(i)

2 ) = Vi(ks(0)
1 +ks(0)

2 )
equals M. But suppose now that the degree of Gi :=

∑i
m=0 gm grows very quickly;

for example that degGi/pi goes to infinity. Then the union of Vi(ks(i)
1 + ks(i)

2 ) will
not equal M, and it is not difficult to prove that there are no sequence of finite-
dimensional vector spaces Ai ⊂ M(i) such that the union of all ViAi is M. This
means that M is not filtration holonomic according to the naive definition in the
introduction and [3]. However clearly

Vi(ks(0)
1 + ks(0)

2 ) ⊂ Bi := Vi+d(i)(ks(0)
1 ) + Vi(ks(0)

2 ),

where d(i) is chosen so that Gi ∈ Vi+d(i). In some sense then, the extension M still
has a “growth” as a Dk[x]-module that is the same as k[x], and is with respect to
this “generated ” by a sequence of two-dimensional vector spaces. This intuition
will be worked out in the rest of the section.

2.2. Vector subspaces of the type ViA
The following lemma on how to handle elementary vector space operations of

vector subspaces of the type ViA where A ⊂M(i), is an immediate consequence of
the flatness of the Frobenius, see Proposition 2.4.

Lemma 2.2.1. Suppose that M is a DX-module and that the vector spaces A and
B are contained in M(i). Then the canonical map

Vi ⊗k A → ViA (2)

is an isomorphism. Also

ViA ∩ ViB = Vi(A ∩B) (3)

and

ViA + ViB = Vi(A + B). (4)

Furthermore if

ViA ⊂ ViB,
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then

A ⊂ B.

It follows also, in particular, from (2) and (3), that ViA = ViB implies that A = B.

The following obvious lemma is also included here for handy reference. If the
vector subspace A ⊂ k[x], denote by A[pr] the image of k⊗k A → k⊗k k[x] → k[x],
where the second map is rth iterate of the relative Frobenius Fx/speck. For example,

V [pr ]
1 is the vector subspace of k[x] generated by all monomials xi, where ij = prkj ,

and 0 6 kj < p, for j = 1, . . . , n. A calculation of degrees then gives

Lemma 2.2.2. Vk+1 = Vk(V1)[p
k], if k > 0, or more generally

Vj = Vi(Vj−i)[p
i],

if j > i.

2.3. A canonical filtration
In this subsection we will study certain filtrations which are defined for arbitrary

vector subspaces of D-modules, and which will be used to express the finiteness
condition for D-modules given below, in definition 4.0.1.

Suppose that A is an arbitrary vector sub space of M. An immediate conse-
quence of (4) of Lemma 3.2.1 is that there is, for each i, an unique maximal vector
subspace τ i(A) ⊂ A, containing all vector spaces of the form ViB, where B ⊂M(i).
Furthermore, by the same lemma, τ i(A) = ViΦi(A), where Φi(A) ⊂M(i) is uniquely

determined. By Lemma 3.2.2, τ i+1(A) = Vi+1Φi+1(A) = ViV
[pi]
1 Φi+1(A) ⊂ τ i(A),

since V [pi]
1 Φi+1(A) ⊂M(i). Hence there is a canonical filtration

A = τ0(A) ⊃ τ1(A) ⊃ . . . , (5)

which is finite if A is finite dimensional.
We now want to introduce a measure t(A) of how complicated this filtration

is. The desired result is given in Definition 3.2 below. Note that A ⊃ τ1(A) =
V1Φ1(A), and that, as above, τ i(A) = ViΦi(A) ⊃ τ i+1(A) = Vi+1Φi+1(A) =
Vi(V1)[p

i]Φi+1(A), by lemma 3.2.2. Hence by lemma 3.2.1, Φi(A) ⊃ (V1)[p
i]Φi+1(A).

Suppose now that τk+1(A) = 0 and define then

t(A) : = |A/τ1(A)|+ |Φ1(A)/(V1)[p]Φ2(A)|+ . . . (6)

+ |Φk−1(A)/(V1)[p
k−1]Φk(A)|+ |Φk(A)|, (7)

where |A| denotes the dimension of the vector space A. Since |Vi| = pin, we have

|τ i(A)| = |ViΦi(A)| = pin|Φi(A)|,

and hence

|Φi(A)| = p−in|τ i(A)|, and |(V1)[p
i]Φi+1(A)| = p−in|τ i+1(A)|

so that
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|Φi(A)/(V1)[p
i]Φi+1(A)| = p−in(|τ i(A)| − |τ i+1(A)|) = p−in|τ i(A)/τ i+1(A)|.

Thus t(A) may also be described as

t(A) =
∑

i>0

p−in|τ i(A)/τ i+1(A)| =

= |A| −
∑

i>0

p(i−1)n(1− p−n)|τ i(A)|,

since τk+1(A) = 0.
This type of measure actually makes some sense for any filtration F . of A, which

is contained in the τ -filtration.

Definition and Lemma 2.2. Let A = F 0 ⊃ F 1 ⊃ . . . ⊃ F k+1 = 0 be a filtration
of the finite-dimensional vector space A, such that F i ⊂ τ i(A). Define

tF (A) :=
∑

i>0

p−ni|F i/F i+1|.

Then also

tF (A) = |F 0| −
∑

i>1

p−n(i−1)(1− p−n)|F i|. (8)

If F . ⊂ G., are two such filtrations, then tF (A) > tG(A), with equality if and only if
the two filtrations coincide. Furthermore, if F . has the property that F i = ViΦi(F ),
for some vectorspace Φi(F ) ∈ M (i), then

tF (A) = |A/F 1(A)|+ |Φ(1)/(V1)pΦ(2)|+ . . . + |Φ(k−1)/(V1)pk−1
Φ(k)|+ |Φ(k)|.

Proof. The equality of the three expressions for tF (A) is clear by the argument
preceding the lemma, while the inequality is immediate from the alternate expres-
sion (7) of tF (A), noting that |F0| = |G0| = |A| and |Fi| 6 |Gi|, since Fi ⊂ Gi by
assumption.

Hence t(A) may also be characterized as the minimal value of tF (A), for all
filtrations F . ⊂ τ .(A).
M(i) is a DX(pi) -module where X(pi) = speck[xpi

]. Since k[xpi
] ∼= k[x], we may

do the preceding for A ⊂ M(i), and obtain a canonical filtration etc, denoted by
τ j
i (A) = (Vj)[p

i]Φj
i (A), where Φj

i (A) ⊂M(i+j), and corresponding to this a measure
ti(A). Note then the following property of t(A), which follows from Lemma 3.2.2.

Lemma 2.3.1. If A ⊂M(i), then Viτ
j
i (A) = τ i+j(ViA), if j > 0, and τk(ViA) = 0,

if k < i, hence t(ViA) = ti(A).

There is also another characterization of t(A), which gives the reason why we
are interested in it . It says that t(A) is a measure on the minimal dimension of a
vector space needed to “generate” in the special sense described in i) below.
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Proposition 2.3. For a finite-dimensional vector subspace A of M and an integer
K the following statements are equivalent:

i) There are vector subspaces Bi ⊂M(i), i > 0 such that

A =
∑

i>0

ViBi and
∑

i>0

|Bi| 6 K.

ii) t(A) 6 K.

Proof. Assume condition (i), and define a filtration

F i := Σj>iVjBj , i > 0.

Then clearly

F i = Vi(Σj>i(Vj−i)[p
j ]Bj) ⊂ τ i(A),

and so by the preceding lemma tF (A) > t(A). But, letting Φi(F ) := Σj>i(Vj−i)[p
j ]Bj

so that F i = ViΦi(F ), we have

F i/F i+1 = (ViΦi(F ))/(Vi(V1)[p
i]Φi+1(F )) ∼= Vi ⊗ (

∑

j>i

V [pi]
j−i Bj/

∑

j>i+1

V [pi]
j−i Bj)

∼= Vi ⊗ (Bi/(Bi ∩ (
∑

j>i+1

V [pi]
j−i Bj)))

and hence |Φi(F )/(V1)[p
i]Φi+1(F )| 6 |Bi|, and so t(A) 6 tF (A) 6 Σi|Bi| 6 K.

Conversely, assume that τk+1(A) = 0 and choose by descending recursion, for
each i such that 0 6 i 6 k, starting with Bk := Φk(A), a vector subspace Bi of Φi(A)
which is mapped isomorphically by the quotient map onto Φi(A)/(V1)[p

i]Φi+1(A),
Then, by induction on the length k of the filtration, A =

∑

i>0 ViBi and by definition
K > t(A) =

∑

i>0 |Bi|.

2.4. The behaviour of the canonical filtration with respect to submod-
ules and quotient modules

The measure t(A) defined above does not behave well with respect to vector
subspaces. For example t(V1) = 1, but t(B) = |B| for any proper vector subspace
B ⊂ V1. However, the situation is better when intersecting with a DX -submodule.

Proposition 2.4. Suppose that A ⊂M is a finite-dimensional vector subspace of
the DX-module M, and that N ⊂ M is a DX-submodule. Then the filtration τ of
the preceding section satisfies

N ∩ τ i(A) = τ i
N (A ∩N ),

and

tN (A ∩N ) 6 t(A)

(By τN is meant the canonical filtration with respect to vector subspaces of N .)
Equality holds in the last inequality if and only if A ∩N = A.
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Proof. Since the subspace τ i
N (A∩N ) = ViΦi

N (A∩N ), where Φi
N (A∩N ) ⊂ N (i) ⊂

M(i), it is by definition contained in τ i(A). To prove the opposite inclusion, note
that N = ViN (i) and hence by Lemma 3.2.1.,

N ∩ τ i(A) = ViN (i) ∩ ViΦi(A) = Vi(N (i) ∩ Φi(A)) ⊂ τ i
N (A ∩N ).

This proves the first part of the lemma. (Note that it follows from the proof that
Φi
N (A ∩N ) = N ∩ Φi(A) = N (i) ∩ Φi(A).)
Denote the graded module associated to the τ -filtration by grτ . Then the pre-

ceding result implies that grτ (A ∩N) ⊂ grτ (A), and hence

p−ni|(τ i
N (A ∩N)/τ i+1

N (A ∩N)| 6 p−ni|τ i(A)/τ i+1(A)|,

and then summing over i > 0 gives that t(A ∩ N ) 6 t(A). Equality clearly implies
that grτ (A∩N) = grτ (A) and this, by a general result on graded modules associated
to finite filtrations, implies that A ∩N = A.

Quotient modules are slightly worse.

Proposition 2.5. Suppose that A ⊂ M is a finite-dimensional vector subspace
of the DX-module M, and that N ⊂ M is a DX-submodule. Then the filtration τ
above satisfies

τ i(A) +N ⊂ τ i
M/N (A +N ), (9)

and

tM/N (A +N ) 6 t(A) (10)

with equality implying (but not being implied by) A ∩N = 0.

There is not equality in (8) in general. An example: k has characteristic 2, A =
ke ⊕ k(xe + f) is a vector subspace of the module M := k[x]e ⊕ k[x]f , which is
generated by the two horizontal sections e, f , and N := k[x]f . Then V1 = k ⊕ kx
and τ1(A) = 0, so that τ1(A) +N = N but τ1

M/N (A +N ) = A +N .

Proof. The inclusion (1) is clear, since

τ i(A) +N = ViΦi(A) +N = Vi(Φi(A) +N ),

and

Φi(A) +N ⊂ (M/N )(i).

(By the Morita-eqiuvalence (M/N )(i) = M(i)/N (i) Then using Lemma 3.3.1 on
the filtration F i := τ i(A)+N of M/N gives that tF (A+N ) > tM/N (A+N ). But
the obvious map θ : grτ (A) →→ grF (A +N ) is surjective and hence

t(A) =
∑

i>0

p−ni|gri
τ (A)| >

∑

i>0

p−ni|gri
F (A +N )| = tF (A +N ).

(By definition 3.3.1.) This gives the inequality. The argument also shows that equal-
ity holds in (9), if and only if both the condition that θ is an isomorphism and the
condition that tF (A + N ) = tM/N (A + N ) are fulfilled. However, the first of this
conditions holds if and only if A ∩N = 0.
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There is an exact sequence of graded modules

0 → gr(A ∩N ) → gr(A) → grF (A +N ) → 0

associated to the filtration τ .
N = τ .(A)∩N of A∩N , the filtration τ .(A) of A and the

filtration F . = τ .(A)+N of A+N . Note that, by Proposition 3.4, τ .
N = τ .(A)∩N .

The sequence is exact in each degree, so that

|τ i
N /τ i+1

N |+ |F i/F i+1| = |τ i/τ i+1|

Multiply this by p−in, and add for all i > 0. Then by the definition of t, (Definition
3.3.1) it is clear that

t(A) = tN (A ∩N ) + tF (A +N ).

This together with the inequality tF (A+N ) > tM/N (A+N ) (Lemma 3.3.1), proves
the following corollary.

Corollary 2.5.1.

t(A) > tN (A ∩N ) + tM/N (A +N ).

3. Filtration holonomic modules in the affine case

3.1. Definition
Definition 3.0.1. Let X = An = speck[x]. A DX-module M is called filtration
holonomic if there is a sequence Ai, i = 0, 1 . . . of finite-dimensional vector subspaces
of M such that each element in M is contained in all but a finite number of Ai,
and there is an integer K such that t(Ai) 6 K for all i > 0.

Note that in particular ∪i>0Ai = M.
The following proposition gives some equivalent characterizations of this con-

cept.They are rather similar. In particular, it is technically convenient not to de-
mand in the definition that Ai ⊂ Ai+1. However, it is shown in the proposition
that it is always possible for a filtration holonomic module to find a sequence which
satisfies this stricter condition.

Proposition 3.1. Let X = An = speck[x]. For a DX-module M the following
conditions are equivalent.

i)M is filtration holonomic.
ii)There exist vector subspaces Ai = ViBi, i > 0, where Bi ⊂ M(i), such that

Ai ⊂ Ai+1 and ∪i>0Ai = M. Furthermore, for this sequence, there is an integer
K, such that t(Ai) 6 K.

iii)There exist vector subspaces Bij ⊂ M(j), i 6 j, j = 1, 2..., and an integer
K, such that for all i > 0, Σj |Bij | 6 K, and such that Ai =

∑

j VjBij ⊂ Ai+1 =
∑

j VjAi+1j and ∪iAi = ∪i,jVjBij = M.

Sequences Ai, i > 0 of the types used in the definition or the proposition will be
called generating sequences, and the minimal value possible of the integer K will be
called the multiplicity e(M) of the module. (Theorem 4.3 motivates the use of this
last term.)
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Proof. The equivalence between ii) and iii) is immediate. Assume iii) and define

Bi :=
∑

j V [pi]
j−i Bij ⊂ M(i). Then t(ViBi) = ti(Bi) 6 Σj |Bij | by Lemma 3.3.1 and

Proposition 3.3. Thus the sequence Bi satisfies all the conditions in ii). The converse
implication follows from applying Proposition 3.3. in the converse direction.

To continue, clearly ii) trivially implies i). It thus remains to prove that i) implies
ii). Assume then the existence of Ai and K as in the definition of a filtration
holonomic module. We claim that, for a fixed j, the sequence τ j(Ak), k > 0, also
constitutes a generating sequence. Given an element m ∈ M there is a finite-
dimensional vector space Φ ⊂ M(j), such that m ∈ VjΦ (by Proposition 2.4),
and since each element of a fixed basis of VjΦ is contained in almost all the Ai,
VjΦ ⊂ Ak for all k large enough, and hence also, for these k, m ∈ τ j(Ak). This
shows that each element in M is contained in almost all τ j(Ak), k > 0. Also, for
a finite-dimensional vector space A, τk(τ j(A)) = τmax{j,k}(A) and hence t(A) =
∑

k>0 p−kn|τk(A)/τk+1(A)| >
∑

k>j p−kn|τk(A)/τk+1(A)| = t(τ i(A) (Definition
3.2) and in particular, for all k > 0, we have t(τ j(Ak)) 6 K. Thus the claim is
proved. Note that since any element inM is contained in almost all the vector spaces
of a generating sequence, it is clear that any finite-dimensional vector subspace of
M is also contained in almost all elements of the generating sequence. This applies
then in particular to the sequence τ j(Ak), k > 0, for any fixed j > 0. Now consider
the double sequence τ j(Ak), k, j > 0. Each of these vector spaces has t 6 K.
Choose recursively a diagonal subsequence Ci = ViBi, i > 0, where Bi ⊂ M(i) in
the following way. First set C0 := A0. If Ci = ViBi, where Bi ⊂ M(i) has been
chosen for i 6 i0, then consider the sequence τ i0+1(Ak), k > 0, and choose as Ci0+1

any one of these spaces which contains both Ci0 and Ai0+1 (This is possible by
the preceding argument). Each vector space in the sequence τ i0+1(Ak), k > 0 is
of the form Vi0+1B, for some vector space B ⊂ M(i0+1), by Lemma 3.2.1. Hence
Ci = ViBi, i > 0, where Bi ⊂M(i). From the fact Ai ⊂ Ci for all i > 0, we see that
the union of Ci is M. Also we just saw that t(Ci) 6 K,for all i > 0, and Ci ⊂ Ci+1,
by construction and hence Bi, satisfies all the properties of ii).

Examples are given in section 5.

3.2. Fundamental properties in the case X = An

Theorem 3.2. Submodules,quotient and extensions of filtration holonomic modules
are filtration holonomic, and every filtration holonomic module has a finite decom-
position series. The number of simple quotients in a decomposition series is bounded
by e(M).

Proof. Let M be a filtration holonomic DX -module, with Ai, i > 0 as a generating
sequence with t(Ai) 6 K, for all i > 0 as in the definition. Suppose first that N
is a submodule of M. Then an immediate consequence of tN (Ai ∩ N ) 6 t(Ai)
(Proposition 3.4) is that Ai ∩ N , i > 0 is a generating sequence of N ; the other
requirement, that every element in N is contained in all except a finite number
of these subspaces is obvious since this was true in M. Hence N is a filtration
holonomic module. A similar argument using Proposition 3.5 gives the assertion on
quotient modules.
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We next prove that M has a finite decomposition series. Assume that there are
K + 1 DX -submodules

NK+1 ⊂ . . . ⊂ Ni+1 ⊂ Ni ⊂ . . . ⊂ N1 = M.

Let t(Aj ∩ Ni) denote the measure of Aj ∩ Ni as a subspace of Ni. Then for each
fixed j, by Proposition 3.4, K > t(Aj ∩N1) > t(Aj ∩N2) > . . ., and hence, for each
j, there are (at least) two consecutive indices ij , ij + 1 ∈ {1, . . . , K + 1} such that
t(Aj ∩Nij ) = t(Aj ∩Nij+1). Hence by the same proposition Aj ∩Nij = Aj ∩Nij+1.
Now vary j. Since there are only a finite number of possible pairs, some pair of
indices i, i + 1 will occur for an infinite number of different j. So the equality
Aj ∩ Ni0 = Aj ∩ Ni0+1 is true for an infinite set J of indices j. But ∪j∈JAj = M
and hence

Ni0 = ∪j∈JAj ∩Ni0 = ∪j∈JAj ∩Ni0+1 = Ni0+1.

Thus, any chain of DX -submodules of M contains at most e(M) different modules.
Next consider an extension

N ↪→M→→ K
of filtration holonomic DX -modules. Let Ai = ViΦi, i = 0, 1, 2... where Φi ⊂ N (i),
be a generating sequence of N with t(Ai) 6 e(N ), as in Proposition 4.1 ii). Let
also the sequence Bi =

∑

j VjΨij , i = 0, 1, 2..., where Ψij ⊂ M(j), i 6 j, j =
1, 2..., be a generating sequence of the type in Proposition 4.1 iii), such that for
all i > 0, t(Bi) 6 Σj |Ψij | 6 e(K). Note that, as before, each finite-dimensional
vector space in N is contained in all except a finite number of Ai, and similarily for
the other generating sequence. There is induced a canonical short exact sequence
N (i) →M(i) → K(i) (Proposition 2.3) and this makes it possible to lift each Ψij to
a vector subspace Ψ̃ij ⊂ M(j), such that |Ψ̃ij | = |Ψij |. Define B̃i =

∑

j VjΨ̃ij . By
construction, t(B̃i) 6 t(Bi) 6 e(K). We have by assumption that Bi ⊂ Bi+1. Hence
B̃i ⊂ B̃i+1 +N and there is some ji+1 such that B̃i ⊂ B̃i+1 +Aji+1 . Since ji+1 may
be taken to be any large enough integer,we might clearly inductively assume that
also Aji ⊂ Aji+1 and ji < ji+1, so that finally

Ci := B̃i + Aji ⊂ Ci+1 := B̃i+1 + Aji+1 .

Hence ∪i>0Ci is a vector space that contains N = ∪i>0Aji and projects onto
K = ∪i>0Bi, and it has hence to be M. Furthermore t(Cik) 6 e(N ) + e(K), by
the Lemma below and hence we have constructed a generating sequence for the
extension M. Note that this implies that e(M) 6 e(N ) + e(K).

Lemma 3.2.1. Let A and B be finite-dimensional vector subspaces of M. Then

t(A + B) 6 t(A) + t(B).

Proof. Consider the filtration of A + B defined by F i := τ i(A) + τ i(B). Clearly,
F i ⊂ τ i(A + B), and hence, by Lemma 3.2,

tF (A + B) > t(A + B) (11)

However, there is, for arbitrary finite-dimensional vector spaces

A ⊃ A1, B ⊃ B1,
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contained in a common vector space, an inequality

|(A + B)/(A1 + B1)| 6 |A/A1|+ |B/B1|,

(Divide all vector spaces by A1∩B1; this reduces to the case that |A1+B1| = |A1|+
|B1|, and the inequality is trivial.) Hence, |F i/F i+1| = |(τ i(A)+ τ i(B))/(τ i+1(A)+
τ i+1(B))| 6 |τ i(A)/τ i+1(A)| + |τ i(B)/τ i+1(B)|, and so, by considering the defini-
tion, tF (A + B) 6 t(A) + t(B). By (1) the proof of the lemma is finished.

Theorem 3.3. If N ↪→ M →→ K = M/N is a short exact sequence of filtration
holonomic DX-modules, then e(M) = e(N ) + e(K).

Proof. The inequality e(M) 6 e(N ) + e(K) was proven as part of the proof of
Theorem 4.2. It thus remains to check the reverse inequality e(M) > e(N ) + e(K).
However, if Ai, i > 0, is a generating sequence for M with t(Ai) 6 e(M), i > 0,
it was proved in the proof of the first part of Theorem 4.2, that Ai ∩N , i > 0 and
Ai + N , i > 0, are generating sequences for N and K, respectively. We now need
the following simple observation. Suppose that Ai, i > 0, is a generating sequence
for a filtration holonomic module M. Then K = lim infi→∞ t(Ai) exists, and, by
considering the subsequence Aik , k > 0, containing all Ai such that t(Ai) = K,
which clearly is another generating sequence of M, we find that

lim inf
i→∞

t(Ai) > e(M).

Returning to the proof, it is clear that Corollary 3.5.1. implies that

e(M) = lim inf
i→∞

t(Ai) > lim inf
i→∞

tN (Ai ∩N ) + lim inf
i→∞

tM/N (Ai +N ).

However the observation just made, shows that

lim inf
i→∞

tN (Ai ∩N ) + lim inf
i→∞

tM/N (Ai +N ) > e(N ) + e(K),

and hence the proof of the theorem is finished.

It follows from the fact that a filtration holonomic module has a finite decom-
position series that such a module is finitely generated. Indeed, it is in fact, cyclic.
This is clear by Staffords theorem [2, Theorem 8.18] which says that if A is a simple
ring, which has infinite length as a left module over itself, then an A-module with
finite decomposition series is cyclic. That DX is simple is proved in e.g.[6], and the
statement of infinite length is an excercise.(It follows also immediately from [loc.cit.
1.3.5.].) Another result that is proven precisely as in characteristic zero is that a
simple module has, considered as a module over the structure ring k[x], just one
associated prime. (A proof is given in [2, 3.15-17]; if M is a D-module and q ∈ k[x]
is a prime ideal, just consider the subspace consisting of elements which are annihi-
lated by some power of q. It is a D-module, and from this the proof is immediate).
We have thus the following proposition.

Proposition 3.4. A filtration holonomic module is cyclic. A simple D-module has,
considered as a module over the structure ring k[x], just one associated prime.
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4. Examples
4.1. Localisations k[x]f and local cohomology

First consider k[x] = k[x1, . . . , xn] itself, and take Ai := Vi. Then, clearly, ∪iAi =
k[x] and t(Ai) = 1. Hence k[x] is a filtration holonomic DX -module, and, since
e(k[x]) = 1 it follows that it is simple. (This, by the way, gives an alternate proof
of this simple fact.)

Next, form the localisation, k[x]1+x1 , and take Ai := Vi(k + kxpi

1 )(1/(1 + xpi

1 )).
Then Ai contains all rational functions
p(x)/(1 + xpi

1 ), where degxj p(x) < pi, if 2 6 j 6 n, and degx1p(x) < 2pi. However
any rational function p(x)/(1+x1)r is contained in Ai for pi > max{degx1(p(x)), r}
large enough, since p(x)/(1 + x1)r = p(x)(1 + x1)pi−r/(1 + x1)pi

, if pi > r, and

degx1(p(x)(1 + x1)pi−r) = degx1(p(x)) + pi − r < 2pi,

if pi > degx1(p(x)). Hence k[x]1+x1 is a filtration holonomic DX -module, and the
mutiplicity is less than 2, since t(Ai) = 2. It is not simple (it contains k[x]), so the
multiplicity has to be exactly two.

Then generalize this example to a localization k[x]f , by taking Ai = ViMi/fpi
,

where Mi =
∑

α kxpiα is the vector space generated by all monomials xpiα, with
the multi-index α satisfying αj 6 degxj f . The vector space dimension of Mi/fpi

is
precisely t(Ai) = Πjdegxj f , and a calculation of degrees similar to the one made
above, gives that, every rational function p/fr = pfpi−r/fpi

is contained in Ai,
for i large enough. Namely, Ai clearly contains all q/fpi

for which degxj (q) <
pi(degxj (f) + 1) and

degxj (pfpi−r) 6 degxj (p) + (pi − r)degxj (f) < pi(degxj (f) + 1),

if pi > max{r, degxj (p)}. Note that the estimate of the multiplicity, gives an esti-
mate of the number of simple modules in a decomposition series. It is also interesting
to note that the generating series Ai = ViΦi (as in Proposition 4.1 ii)) has the prop-

erty that Φi = Φ[pi]
1 . This is not always the case.

Note in addition that, since local cohomology modules are subquotients of lo-
calizations of the type k[x]f , it is a consequence of Theorem 4.2 that this type of
modules are further examples of filtration holonomic. This result was the motiva-
tion for the present work. Even though this result will be contained in the results
in later sections, we state it here for clearness, since these later results have much
messier proofs, which tend to obscure the simple idea. It was first proved in [3].

Proposition 4.1. A localization k[x]f is filtration holonomic as a DX-module,
with e(k[x]f ) 6 Πjdegxj f . All local cohomology modules Hj

I (k[x]), where I ∈ k[x]
is an ideal are filtration holonomic modules.

4.2. Étale algebras over a localisation k[x]f
Suppose that R is an étale ring extension of some localisation k[x]f := k[x1, . . . , xl]f .

Then by section 2.4 R is a DX -module, with X = speck[x]. We now want to show
that R is in fact an filtration holonomic DX -module. This is a generalization of the
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previous section, and the proof is similar, but rather more complicated. First we
show that R may be assumed to have a special form.

4.2.1. Reduction to a special case
Suppose that ∪i∈IUi is an arbitrary finite covering of specR. Then R is a submodule
of ⊕i∈IRUi , and to conclude that R is fh (we will use this as shorthand for “filtration
holonomic intermittently from now on), it suffices, by Theorem 4.2, to prove that
each RUi is fh. Now we may use the fact that locally each étale morphism is standard
(e.g.[11, Theorem I.3.14] to find a cover Ui, i ∈ I such that each RUi is a standard
étale algebra over some k[x]fi , fi ∈ k[x], and hence it is enough to prove that R of
the following form are fh:

(a) R := (k[x]f [Y ]/P )h, h ∈ k[x][Y ], is an extension of k[x]f , f ∈ k[x], and

P ∈ k[x]f [Y ] is monic and furthermore the derivative P ′ (with respect to Y ) is a
unit in R. (This is precisely the definition of standard étale extension of k[x].)

Denote the map k[x]f [Y ]toR by θ. We may use that the characteristic is positive
to assume, in addition(after possibly further localizing), that the following condition
is also satisfied:

(b) θ(k[x]f [Y ]) ⊂ R is a free k[x]f -module with a basis T1 = 1, . . . , Tm = Y m,

such that also for all i > 0 T pi

1 , . . . , T pi

m form a basis of θ(k[x]f [Y ]) ⊂ R.

This follows, for example, from the following argument. That P is monic in a)
implies the first part of b). Clearly θ(k[x]f [Y p]) ⊂ θ(k[x]f [Y ]) ⊂ R are both finitely
generated k[x]f -modules. They actually must have the same rank or k(x)[Y ]/(P ) =
k(x)[Y p]/((P )∩k(x)[Y p]), as follows from e. g. surjectivity of the relative Frobenius
for an étale extension([11, VI.Lemma 13.2] ). A direct argument for this is also
easy to give: Let k(x) be the algebraic closure of k(x). Then k(x)[Y ]/(P ) is also an
étale k(x)-algebra ([11, Proposition 3.3c]) and this is equivalent to the fact that
P = Πi=m

i=1 (Y − αi) has no multiple roots αi ∈ k(x) ([11, Prop.3.1, ex.3.4]). Hence
k(x)[Y ]/(P ) is isomorphic as an algebra to k(x)

m
and the operation of taking p-th

powers is surjective since it is surjective on k(x). Thus k(x)[Y ]/(P ) is generated as
a k(x)-algebra by Y p and it follows immediately that also k(x)[Y ]/(P ) is generated
as a k(x)-algebra by Y p. This means that θ(k[x]f [Y p]) ⊂ θ(k[x]f [Y ]) ⊂ R have the
same rank and there is then an element f1 ∈ k[x] such that the two finitely generated
modules coincide, after inverting f1. Since k[x] is a domain and R is flat over k[x], we
have that R ⊂ Rf1 (also as DX -modules ) and again by Theorem 4.2, it suffices to
prove that Rf1 is fh. Hence we may assume that θ(k[x]f [Y p]) = θ(k[x]f [Y ]) and this
implies that condition b) holds for i = 1. However it then also holds for all i > 0: If
Y = Q(Y p) ∈ R where Q is a polynomial with coefficients in k[x]f then, by raising
this to p-th powers, Y p = Q1(Y p2

) where Q1 has coefficients in k[x]f and hence
Y = Q(Q1(Y p2

)) ∈ θ(k[x]f [Y p2
]). This proves that θ(k[x]f [Y p2

]) = θ(k[x]f [Y p])
holds, implying the case i = 2 in b), and the argument may then be repeated to
show that we are reduced to assuming a) and b).
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4.2.2. Preliminaries
If a is a positive integer, let Ma be the vector space of all polynomials in k[x] which
have degree less than or equal to a in each variable x1, . . . , xl. Use DEG(f) to
denote the least integer a such that f ∈ Ma. The following lemma, which will be
used throughout the example, should be obvious upon inspection.

Lemma 4.2.1. If a and b are two positive integers then

MaMb = Ma+b

and also

Mpj−1(Ma)[p
j ] = M(a−1)pj−1 ⊃ Mpja.

Using that Mpj−1 is the vector space previously called Vj, this says in particular

Vs(Vk)[p
s] = Vs+k.

4.2.3. First estimates of degrees.
Denote by T the vector space generated by the basis T1, . . . , Tm. There are nonneg-
ative integers a and r such that

TT ⊂ Maf−rT, (12)

and hence by induction,

Tn ⊂ M(n−1)af−(n−1)rT

and finally

T [pj ] ⊂ T pj
⊂ M(pj−1)af−(pj−1)rT. (13)

I want to invert this formula, while keeping track of the degrees. Let

T p
i =

m
∑

k=1

gikf−(p−1)rTk, i = 1, . . . , m,

where then gik ⊂ M(p−1)a. Let the determinant of the matrix G = (gik) be g ∈
Mm(p−1)a. It is non-zero by assumption b), in fact it must be invertible in k[x]f .

Let G[pj ] denote the matrix which has elements gpj

ik , and if U, V are two bases of
k[x]f [Y ], denote the base change matrix by B(U, V ), so that B(T [p], T ) = f−(p−1)rG
(by abuse of notation letting T also mean the basis {Ti, i = 1, . . . , m} etc.). By
Cramers formula,

B(T, T (p)) = g−1f (p−1)rH,

for some matrix H = (hij) with hij ∈ M(m−1)(p−1)a. Now

B(T, T [pj ]) = B(T, T [p]) · . . . ·B(T [pj−1], T [pj ]),

and B(T [pj−1], T [pj ]) = B(T, T [p])[p
j−1], so that

B(T, T [pj ]) = g−(pj−1+...+1)fr(pj−1)H(j),
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where H(j) = HH [p] . . .H [pj−1] is a matrix with entries in M(m−1)(pj−1)a. Hence
the matrix fr(pj−1)H(j) has its elements in Mpja1 , where a1 is the least integer such
that a1 > rDEG(f)+(m−1)a so that pja1 > (pj−1)r(DEG(f))+(m−1)(pj−1)a.
The important thing to note here is that obviously a1 is independent of j.

In terms of bases this means that there is a positive integer a2 such that, for all
j > 1,

T ⊂ g−pj
Mpja2T

[pj ], (14)

since, if a2 = DEG(g) + a1,

T ⊂ g−(pj−1+...+1)Mpja1T
[pj ] ⊂ g−pj

gpj−(pj−1+...+1)Mpja1T
[pj ] (15)

⊂ g−pj
Mpja2T

[pj ]. (16)

4.2.4. More degree calculations
In a similar way we present h−n: There is a description of

h =
m

∑

k=1

qkf−tTk,

where qk ∈ Mb and b and t are positive integers. Hence

hn =
m

∑

k=1

qk(n)f−(nt+(n−1)r)Tk,

for some elements qk(n) ∈ M(n−1)a+nb (Using (11) in the previous subsection, in
which r and a are defined.) Assume now that n 6 pj . Then

h−n = h−pj
hpj−n = h−pj

(
m

∑

k=1

qk(pj − n)f−((pj−n)t+(pj−n−1)r)Tk)

= h−pj
f−pj(t+r)(

m
∑

k=1

qk(pj − n)fnt+(n+1)rTk),

and hence

h−n ∈ (f t+rh)−pj
Mpja3T, (17)

if a3 := a+b+t(DEG(f))+2r(DEG(f)) is chosen to ensure the following inequality

DEG(qk(pj − n)fnt+(n+1)r

6 (DEG(qk(pj − n))) + (pjt + (pj + 1)r)(DEG(f))

6 (pj − 1)a + pjb + (pjt + (pj + 1)r)(DEG(f))

6 pj(a + b + t(DEG(f)) + 2r(DEG(f))) = pja3.

In a similar way there is some positive integer a6, for example a6 := DEG(f)
such that if j > 1 and pj > k

f−k = f−pj
fpj−k ∈ f−pj

Mpja6 . (18)
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Finally I need to present TT in this way: By the assumption made in the first
calculations ((11) in the preceding subsection),

TT ⊂ f−rMaT ⊂ f−pj
fpj−rMaT ⊂ f−pj

Mpja4T, (19)

where pj is supposed to be so large that it is bigger than the fix integers r and a
and a4 = (DEG(f)) + 1 is such that pja4 > pj(DEG(f)) + a > (DEG(fpj−r)) + a.

4.2.5. Combining the calculations to prove the result
Now consider the general element of R as an element of Mch−nf−kT (c, k and n
are positive integers).

Using (12)-(17), the following is obtained:

Mch−nf−kT ⊂ Mc(f−pj
Mpja6)((f

t+rh)−pj
Mpja3T )T

⊂ (hf t+r+1)−pj
Mpj(a3+a6+1)(f

−pj
Mpja4T )

⊂ (hf t+r+2)−pj
Mp(a3+a6+a4+1)g

−pj
Mpja2T

[pj ]

= (ghf−b1)−pj
Mpja5T

[pj ],

under the hypothesis that pj > max{n, k, a, r, c}, and where a5 = a2+a3+a4+a6+1
(the +1 comes from Mpj ⊃ Mc) and b1 = t+ r +2. Both a5 and b1 are independent
of j. Consider the sequence of vectorspaces (with bounded dimension)

Φj := (ghf−b1)−pj
(Ma5)

(pj)T [pj ].

Note that Φj = Φ[pj ]
1 I finally claim that Aj = VjΦj form a generating sequence for

R: R is the union of the vectorspaces Mch−nf−kT for all different positive integers
c, k and n. Now assume that pj > max{n, k, a, r, c}. Then by Lemma 5.2.1, in the
preliminaries of this example, Mpj−1(Ma5)

[pj ] ⊃ Mpja5 and so

Mpj−1Φj ⊃ (ghf−b1)−pj
Mpja5T

(pj) ⊃ Mch−nf−kT. (20)

Thus every element of R is contained in almost all of the vector spaces Aj :=
Mpj−1Φj . Hence it is clear that they form a generating sequence, and this ends the
proof. Note that it is possible to estimate t(Aj) = |Φ1|. We state this result, as a
proposition.

Proposition 4.2. Let X := speck[x]. An étale k[x]f -algebra R is filtration holo-
nomic as a DX-module. In fact, there is a generating sequence Ai = ViΦi, such that
Φi = Φ[pi]

1 , and |Φi| 6 K, for some positive integer K.

Note this proposition was stated in [3], but the proof given there, while using the
same ideas, is deficient, since it assumes that the extension may be restricted to a
too special case. However the theorem stated there is still true, by the above proof,
since a module with a generating sequence such that Φi = Φ[pi]

1 will be filtration
holonomic in the sense of [3].

We will need the following statement on the growth of a generating sequence
relative to the growth of the sequence W j , for a vector subspace W ∈ R.
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Lemma 4.2.2. Let R be an étale k[x]-algebra which thus, according to the preced-
ing proposition, is a filtration holonomic DX-module. There is then a generating
sequence Aj = VjΦj , j > 0, with the following property. To any finite-dimensional
vector space W , there is a positive integer r (depending on W ) such that, for all
integers j > 0, W j ⊂ Al(j)+r, where l(j) is the least integer larger than or equal to
logp(j).

Proof. Remember that Vr = Mpr−1. According to 5.2.1 there is f ∈ k[x] such that
R ⊂ Rf = (k[x]f [Y ]/(P ))h and Rf satisfies conditions a) and b) of that subsection,
so that according to (18) above there is a generating sequence Φ̃j , j > 0 of Rf with
Mcf−kh−nT ⊂ Mpj−1Φ̃j , if pj > max{c, k, n} and j > j0 is large enough. There
are clearly some c, k, n such that W ⊂ Mcf−kh−nT . Let pr be the least p-th power
such that pr > max{c, k, n}. Then W ⊂ Mcf−kh−nT ⊂ Mpr−1Φ̃r and

W j ⊂ Mjcf−jkh−jn ⊂ Mprpl(j)−1Φ̃r+l(j).

But note that Φj := Φ̃j ∩R(j) , is a generating sequence for the DX -submodule R,
according to the proof of Theorem 4.2. Hence intersecting with R = Vl(j)+rRl(j)+r

gives that W j ⊂ R ∩ Vl(j)+rÃl(j)+r = Vl(j)+rAl(j)+r, according to Lemma 3.2.1
(3).

4.2.6. Invariance under étale pullback
The following lemma, to be generalized shortly, says that the étale pullback of a
filtration holonomic module is filtration holonomic.

Lemma 4.2.3. Let X := specR → specS → An = speck[x] be étale maps of affine
varieties, and assume that M is filtration holonomic as a DS-module. Then R⊗SM
is filtration holonomic as a DR-module.

Proof. Since R ⊗k[x] M →→ R ⊗S M, we may, in view of Theorem 3.2.1, assume
that S = k[x]. Let Φij ⊂ M(j), j > i > 0, be a generating sequence for M of
the type in Proposition 4.1 iii) , so that ∪i,jVjΦij = M, and

∑

j |Φij | 6 L, for
some fix integer L, and all i > 0. By Proposition 5.2, there is also a generating
sequence Ψj for R = ∪jVjΨj , and an integer K such that |Ψj | 6 K, j > 0. Then

Θij := V [pj ]
1 Ψj ⊗ Φij ⊂ R(j) ⊗M (j) = (R ⊗k[x] M)(j), satisfies

∑

j |Θij | 6 KL|V1|
and furthermore

∪jVjΘij = ∪j(VjV
[pj ]
1 Ψj)⊗ Φij ⊃

∑

j

VjΨj ⊗ VjΦij .

(We have used that VjV
[pj ]
1 ⊃ VjVj , see Lemma 5.2.1.) If now m =

∑

l∈I rl ⊗ml ∈
R⊗k[x]M , and {rl, l ∈ I} ⊂ VjΨj for j > j0 and {ml, l ∈ Λ} ⊂

∑

j VjΦij for i > i0,
then clearly m ∈ VjΨj ⊗ VjΦij if i > max(i0, j0), since the fact that Aij = 0, if
j < i implies that all the VjBj occurring in the sum will contain {rl, l ∈ I}. Hence
every element in R ⊗k[x] M is contained in almost all the vector spaces

∑

j VjCij ,
and these vector spaces thus satisfy the conditions of Proposition 4.1 iii).
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5. Filtration holonomicity for smooth varieties
If X is a integral and smooth scheme of finite type over k there is a covering of

X by open affine sets Ui, i = 1, ..., r, with étale maps ui : Ui → An. Such a map is
called a system of local coordinates, and the whole system is called an atlas. It is
natural to globalize the definition of filtration holonomic modules in the following
way.

Definition 5.0.1. Let X be an integral and smooth scheme of finite type over
k. If there is a covering of X by open affine sets Ui, i = 1, ..., r, and étale maps
ui : Ui → An, such that ui∗N|Ui is a filtration holonomic Dn

A-module, then the
DX-module N| is called filtration holonomic, in the given atlas. If this is true in
one atlas, it is true in all.

We will now prove the stated independence of the atlas. The following lemma
contains the main ingredient.

Lemma 5.0.4. Assume that u, v : specR → An = speck[x1, . . . , xn] are étale maps
of rings. Suppose that N is a DR-module which, considered as a DAn-module u∗(N ),
using the map u, is filtration holonomic. Then v∗N is also filtration holonomic.

Proof. The ring homomorphisms, corresponding to the maps u, v in the lemma, will
also be denoted by u, v : k[x1, . . . , xn] → R. The homomorphism v will be identified
with an inclusion k[x] ⊂ R. Since this inclusion is étale, R is filtration holonomic as a
DAn -module by Proposition 5.2. Let As = VsΦs, s > 0 be a generating sequence for
R constructed so as to have the properties in lemma 5.2.3. We can take W := u(M1)
in this lemma and then obtain that there is a fixed r such that for all s > 0 we have

u(Vs) = u(Mps−1) ⊂ u(Mps−1
1 ) = u(M1)ps−1 ⊂ As+r = Vs+rΦs+r.

(Note that l(ps − 1) = s.) Let furthermore L = e(R) > |Φs|, s > 0. Since u∗N
is filtration holonomic there exist, according to Prop 4.1, vector subspaces Bij ⊂
N (j), 0 6 i 6 j,, and an integer K, such that for all i > 0,

∑

j>i |Bij | 6 K, and
∑

j>i u(Vj)Bij ⊂
∑

j>i u(Vj)Bi+1j and such that ∪i,j>0u(Vj)Bij = u∗N . Define
now

Cij := V [pj ]
r Φj+rBij .

Since, for all i > 0, N (j) is an R(j)-module, and V [pj ]
r Φj+r ⊂ R(j), it is clear that

Cij ⊂ N (j). Let

Ci :=
∑

j>i

V [pi]
j−i Cij .

Clearly, by definition, t(VjCij) = |Φj+r||Bij | 6 L|Bij | and hence

t(ViCi) 6
∑

j>i

t(VjCij) 6 KL

is uniformly bounded for all i. Now

VjCij = VjV [pj ]
r Φj+rBij ⊃ Vj+rΦj+rBij ⊃ u(Vj)Bij
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and this shows that ViCi = ∪j>iVjCij ⊃ ∪j>iu(Vj)Bij and so each element in u∗N
is contained in almost all of the vector spaces ViCi. (We have above repeatedly used
the formula Vs(Vb)[p

s] = Vb+s, of Lemma 3.2.2.) Hence ViCi is a generating sequence
and so the lemma is proved.

With the lemma it is easy to prove the independence of the atlas used in the
definition of filtration holonomic . Assume that N is filtration holonomic in the
atlas ui : Ui → An, i ∈ I, and that vj : Vj → An, j ∈ J is another étale atlas,
not necessarily affine nor covering . There is a finite covering of each Vj ∩ Ui by
open affine subsets, ∪kW k

ij = Vj ∩ Ui, and with induced étale affine maps ui, vj :
W k

ij → An, i ∈ I, j ∈ J . By Lemma 5.2.3 we know that ui∗(N | W k
ij) is filtration

holonomic as a Dn
A-module. Observe, by the way, that this shows in particular, that

taking the second atlas to consist of just the inclusion of an arbitrary open subset
v : V ⊂ X, we see that if N is a filtration holonomic DX -module then N | V is
filtration holonomic . Returning to the general case, and assuming that the second
atlas is affine and covering, the lemma above shows that then vj∗(N | W k

ij) is
filtration holonomic as a DAn -module, and since

vj∗(N | Vj) ⊂ ⊕k,ivj∗(N | W k
ij),

the submodule part of Theorem 4.2 gives that vj∗(N | Vj) is a filtration holonomic
DAn-module, and hence N is fh in both atlases, as was to be shown. In particular
the new definition coincides with the old one for X = An!

In a similar way the following proposition is proved. It contains of course the
earlier results in 5.1 and 5.2.6.

Proposition 5.1. Let u : X → Y be an étale map .
i) If N is a filtration holonomic DX-module then u∗(N ) is a filtration holonomic

DY -module.
ii) If M is a filtration holonomic DY -module then u∗(M) is a filtration holonomic

DX-module.

Proof. For i), note first that, by the observation in the preceding paragraph, if N
is a filtration holonomic DX -module and V ⊂ X is an arbitrary open subset then
N | V is filtration holonomic. Hence i) is local in Y , so we may assume that Y = An.
Let Vj ⊂ X, j ∈ J be a covering of X by affine open subsets. Clearly, by the lemma
above, u∗(N | Vj) is filtration holonomic , and hence u∗(N ) ⊂ ⊕ju∗(N | Vj) is
holonomic.

For ii), it suffices to note that the statement is local in both X and Y , and hence
is just a version of Lemma 5.2.6.

Finally, note that, once given the definition of filtration holonomic for arbitrary
X, Theorem 4.2., on finite decomposition series etc. of filtration holonomic modules,
still remains true, substituting X for An, by a trivial argument. This is Theorem 1
of the introduction.
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6. Functoriality

Haastert [5] has defined inverse and direct images of DX -modules in positive
characteristics, and we will prove in this section that these functors preserve filtra-
tion holonomicity. He has also proven the precise analogue of Kashiwara’s theorem
on D-modules with support on a closed, smooth subvariety, and we prove that this
correspondence also preserves filtration holonomicity. Though the theory in [5] is
stated for smooth varieties over an algebraically closed field, it is clear from the
definitions (given below), that they work for an arbitrary field.

6.1. Maps
Suppose then that f : X → Y is a map between two smooth varieties X and Y .

Then f may be factored into a closed immersion Γf : X → X × Y ([EGA I.5.2.4]),
using that the schemes are separated, followed by the projection X×Y → Y . For a
closed immersion of a smooth subvariety in a smooth variety, there is the following
very nice description ([SGA 1:II.4.9-10]).

Lemma 6.1.1. Let X be a smooth k-scheme, with a closed subscheme Y , and let x
be a point in X. If Y is smooth, then there is an open neighbourhood x ∈ X1 ⊂ X
and an étale morphism

g : X1 → X2 = speck[t1, . . . , tn],

such that the closed subset Y1 = Y ∩X1 ⊂ X1 is the inverse image by g of the closed
subscheme Y2 = speck[tr+1, . . . , tn], for some suitable r. In particular the restricted
map g : Y1 → Y2, is étale.

6.2. Inverse images
If f : X → Y is a map between two smooth varieties X and Y , the inverse image

of a DY -module M is, as an OX -module simply f∗M, i.e.the ordinary pullback as
a quasi-coherent OX -module([5, 2.1]). To explicit the differential structure, assume
that the inverse system belonging to M is M(r) ⊃M(r+1), where r > 0. The corre-
sponding inverse system for f∗M is given by f (r)∗M(r), where f (r) : X(r) → Y (r)

is the induced map. The injection f (r+1)∗M(r+1) ←↩ f (r)∗M(r), is the composition

OX(r+1) ⊗O
Y (r+1) M

(r+1) → OX(r) ⊗O
Y (r+1) M

(r) → OX(r) ⊗O
Y (r) M

(r)

where the first map is the tensor product over of the canonical injections OX(r+1) ⊂
OX(r) , and M(r+1) ⊂M(r), and the second map is the canonical surjection. Recall
also that if s : X → Y is an étale map then the direct image s∗(M) of the DX -
module M considered as a quasi-coherent module is a DY -module.

Proposition 6.1. Let f : X → Y be a morphism, and M a filtration holonomic
DY -module. Then the inverse image f∗M is filtration holonomic.

Proof. The statement is local in both X and Y , and it is thus enough to prove the
proposition when f is a morphism of affine schemes. According to 7.1, it may be
assumed to be either a closed immersion or a projection. Assume first that the map
f is a closed immersion X → Y and use the lemma in 6.1, to obtain a diagram
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X
f→ Y

↓ ↓
X1

f1→ Y1,

where the vertical arrows β : Y → Y1 = speck[t1, . . . , tn] and α : X → X1 =
speck[tr+1, . . . , tn] are étale maps, and I = (t1, . . . , tr) is the ideal which defines
X1 ⊂ Y1. We have, according to the definition, to show that α∗f∗(M) is a filtration
holonomic DX1 -module. But clearly

α∗f∗(M) ∼= f∗1 β∗(M) = β∗(M)/Iβ∗(M),

since both the vertical arrows are étale, and it is enough to prove that this last
module is filtration holonomic. But this is almost immediate: By assumption, β∗(M)
is filtration holonomic ; let Ai ⊂ Ai+1, i > 0 be a generating sequence, so that
β∗(M) = ∪i>0Ai. Then β∗(M)/Iβ∗(M) = ∪i>0Ai, where Ai := Ai + IM. Also
Ai ⊂ Ai+1. Thus, it suffices to check that, t(Ai) 6 t(Ai). But if Ai =

∑

j V Y1
j Φij ,

where V Y1
j is the monomials of degree less than pi−1 in the variables t1, . . . , tn, then

Ai =
∑

j V X1
j Φij , where V X1

j = V X1
i modI, is the monomials of degree less than

pi−1 in the variables tr+1, . . . , tn, and where Φij ⊂ (β∗(M)/Iβ∗(M))(i). If Φij have
been chosen so that

∑

j |Φij | = t(Ai), it follows from Proposition 4.1. that t(Ai) 6
∑

j |Φij | 6 t(Ai). We have thus proved that β∗(M)/Iβ∗(M) is filtration holonomic,
and this concludes the proof of the proposition in the case of an immersion.

The argument in the case of a projection is entirely similar; by suitable étale maps
it is possible to assume that f is the projection X = speck[x] ×speck speck[y] →
Y = speck[y]. Then f∗M = k[x]⊗k M (with the obvious action of the differential
operators). Let V y

j ( V x
j , Vj , ) be the monomials of degree less than pi − 1 in the

y( x, x and y)-variables, respectively. If Ai =
∑

j V y
j Φij , is a generating sequence

for M, for which Ai ⊂ Ai+1 then clearly

f∗M = k[x]⊗k M = k[x]⊗k (∪i>0Ai) = ∪i>0V x
i Ai.

Since

V x
i Ai =

∑

j

V x
i V y

j Φij ⊂ Ãi :=
∑

j

V x
j V y

j Φij =
∑

j

VjΦij

and obviously t(Ãi) 6
∑

j |Φij | = t(Ai) (by assumption), clearly Ãi, i > 0, is a
generating sequence for f∗M, which thus is filtration holonomic. This finishes the
proof. It may be noted that it follows clearly from the proof that the multiplicity
does not increase.

6.3. Direct images
We will now consider direct images. Given a morphism f : X → Y , there is a left

DX − f−1DY -bimodule DY←X and the direct image
∫

f M of a DX -module M is
defined as f∗(DY←X ⊗DX M). It is a left exact functor and the derived functors are
just Rif∗(DY←X ⊗DX M), i > 0. The definition of DY←X involves the canonical
bundle ω over X and Y , due to the fact that one has to make a detour over right
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DX -modules, and ω is the archetypical right DX -module. A right DX -module N
may be described as a direct system of OX(r)-modules N (r), r > 0, with OX(r+1)

-homomorphisms N (r) → N (r+1), such that the induced homomorphism

N (r) → HomO
X(r) (OX ,N (r+1)),

is an isomorphism. The left DX(r)-module structure of OX induces a right DX(r)-
module structure on HomO

X(r) (OX ,N (r+1)), and this transports by the isomor-
phism to a right DX(r) -module structure on N (r). Given a right DX -module N we
have N (r) = N ⊗D

X(r) OX , and conversely N may be reconstructed as

N = HomO
X(r) (OX ,N (r)).

All this follows by Morita equivalence.
That ωX is a right DX -module, may then be seen through the theory of local duality
for finite and smooth morphisms([7, II.6.4, 8.4]), which gives isomorphisms

HomO
X(r) (OX , ωX(r)) ∼= (F (r))!ωX(r) ∼= ωX .

This is a variant of the Cartier operator, and it may locally, for a global system
of local coordinates, X = speck[x1, . . . , xn], be described explicitly in the following
way. The volume form η = ∧dxi, gives an isomorphism k[x] ∼= ωX , a 7→ aη, and
k[xpr

] ∼= ωX(r) , a 7→ a(η)pr
. Define the k[xpr

]-linear map C : ωX(r) → ωX(s) s > r,
by

C(xα(η)pr
) = δps−r−1,α(η)ps

),

where Kronecker’s symbol δps−r−1,α = 1, if α = (ps−r − 1, ps−r − 1, . . . , ps−r − 1),
and vanishes otherwise. This map induces as above a right DX

(r)-structure on ωX .
It is actually determined by

(aη)g = (−1)j(ga)η ifg = D(j)
xi

, (21)

and by (aη)g = (ga)η if g ∈ OX , as in characteristic zero. (For all this see [5, 4-5].)
Now return to the general situation of a morphism f : X → Y and define

DY←X = lim
r→∞

Homf−1(OY
(r))(f

−1(ωY ), ωX).

This is clearly a DY
(r)−f−1(DX

(r))- bimodule. Since, by Morita equivalence, M∼=
OX ⊗O

X(r) M(r) and ωX(r) = ωX ⊗DX
(r) OX , it is easy to check that

ωX(r) ⊗O
X(r) M

(r) = ωX ⊗DX
(r) M,

and hence
∫

f
M = f∗(DY←X ⊗f−1(DX) M) (22)

∼= lim
r→∞

f∗(Homf−1(O(r)
Y )(f

−1(ωY ), ωX(r) ⊗O
X(r) M

(r))). (23)

The maps

f∗(Homf−1(O(r)
Y )(f

−1(ωY ), ωX(r) ⊗O
X(r) M

(r)))

→ f∗(Homf−1(O(r+1)
Y )(f

−1(ωY ), ωX(r+1) ⊗O
X(r+1) M

(r+1)))
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between the modules in this direct limit, are induced by

ωX(r) ⊗O
X(r) M

(r) ∼= ωX(r) ⊗O
X(r) OX(r) ⊗O

X(r+1) M
(r+1)

∼= ωX(r) ⊗O
X(r+1) M

(r+1) C⊗Id−→ ωX(r+1) ⊗O
X(r+1) M

(r+1)

Here C is the Cartier operator, defined above.
DY←X is a flat right DX -module, so

∫

f is left exact and has hence higher direct
images

∫ i

f
M = Rif∗(DY←X ⊗f−1(DX) M).

It should also be noted that in the case of an étale affine morphism, it follows from
f∗(ωY ) = ωX , that the direct image

∫

f
M = f∗(DY←X ⊗DX M) = f∗M

is just the direct image of M as an OX -module.
We can now prove the following

Proposition 6.2. Let f : X → Y be a morphism, and M a fh DX-module. Then
the direct images

∫ i
f M, i > 0, are filtration holonomic.

Proof. The proposition is local in Y , and it may thus be assumed that Y is affine.
Since X may be covered by a finite number U1, . . . , Us of affine open subsets we
may use Čech cohomology to calculate Rif∗. In particular Rif∗(DY←X ⊗DX M) is
a subquotient of

∏i=s
i=1 f∗((DY←X |Ui)⊗DUi

M|Ui), and hence by Theorem 4.2. it is
enough to consider the case when X = Ui also is affine. Since f may be factored into
a closed immersion followed by a projection, it is enough to prove the proposition
for these two types of morphisms. Assume first that f is as is described by the
diagram in the proof of proposition 7.1. (This is clearly possible by shrinking each
Ui, in the Čech complex above, if necessary.) Then by definition

∫

f M is filtration
holonomic iff

∫

β

∫

f M =
∫

f

∫

αM is filtration holonomic. Since
∫

αM = α∗M is
filtration holonomic if M is, it clearly is enough to consider a special type of smooth
subvariety, of the form

f : X ∼= speck[x1, . . . , xn] → Y1 ∼= speck[x1, . . . , xn+m] = X × Z,

where Z2 = speck[xn+1, . . . , xn+m] i.e. f is the inclusion of the linear smooth sub-
variety, defined by the equations xi = 0, i = n + 1, . . . , m + n.

Suppose first, slightly more generally, that f = f1 × f2 : X × X2 → X × Y2.
Then it is easy to deduce from the description above that

∫

f =
∫

f1
×

∫

f2
. In our

case
∫

f M = Id∗M⊗k
∫

f2
(k), where f2 is the inclusion of a point X2 = speck in

Y2. By definition
∫

f2

k = lim
r→∞

Homf−1
1 (O

Y (r)
2

)(f
−1
1 (ωY2),OX2).
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Since ωY2 = k[ypr
]Vrη (remember that V y

r are the monomials of degree less than pr−
1 in each variable), Homf−1

1 (O
Y (r)
2

)(f
−1
1 (ωY2),OX2) = (V y

r η)∗. Consider the element

φr ∈ (V y
r η)∗ : φr(yα) = δps−1,α (where α is a multi-index, and δ as in the discussion

of Cartier’s operator). Then if v ∈ V y
r , (D(j)

yi φr)(vη) = (−1)jφr(D
(j)
yi vη) = 0, so φr ∈

∫

f2
k is a horizontal section for DY (r)

2
. Clearly also (V y

r η)∗ = V y
r φr, and hence these

vector spaces are a generating sequence of (f1)∗(k). If Ai ∪j V x
j Φij , is a generating

sequence for M, as in Proposition 4.1. iii), then (f1)∗(k) ×M = ∪ijV
y
j φrV x

j Φij

shows that the direct image is filtration holonomic, with a generating sequence
Ãi = ∪jV

y
j φrV x

j Φij . Note also that the argument gives that e(
∫

f M) 6 e(M). This
proves the proposition in the case of a smooth subvariety.

Suppose next that

f : X × Y ∼= speck[x1, . . . , xn, y1, . . . , ym] → X ∼= speck[x1, . . . , xn]

corresponds to the natural projection x × y 7→ x.Then f may be decomposed f =
IdX × f1, where f1 is the projection to speck and

DX←X×Y = lim
r→∞

Hom(IdX×f1)−1(OX
(r))((IdX × f1)−1(ωX), ωX ⊗k ωY ) =

= lim
r→∞

(Homk(k, ωY )⊗k HomO(r)
X

(ωX , ωX) = lim
r→∞

ωY ⊗k D(r)
X = ωY ⊗k DX .

Then

f∗M = lim
r→∞

((ωY ⊗k D(r)
X )⊗D(r)

Y ⊗D(r)
X
M) = lim

r→∞
((ωY ⊗D(r)

Y
M).

But ωY ⊗D
Y (r) M = M/IrM, where Ir = ⊕kD(j)

yi , the sum taken for 1 =
1 . . . m, 1 6 j < pr) since, as is easily seen ωY = DY (r)/IrDY (r) (This follows
from the trivial identity OY = DY (r)/DY (r)Ir, in view of the description (1) of the
right DY (r) -module structure of ωY given above). Now the proposition is easy to
prove : Suppose that M = ∪V x

i V y
i Φi, is a generating sequence, showing that M

is filtration holonomic.(Here we have decomposed Vi = V x
i V y

i , into x-variables and
y-variables.)

Clearly V y
i /IrV y

i is one-dimensional over k, generated by the class of yp−1 (multi-
index), and hence V x

i V y
i Φi = V x

i yp−1Φi ⊂M/IrM. Since yp−1Φi ⊂ (M/I+M)(i),
this implies that the direct image is fh, and that e(

∫

f M) 6 e(M).

6.4. Kashiwara’s equivalence
Suppose that X → Y is the immersion of a smooth subvariety. Kashiwara’s

theorem gives an equivalence between the category of DX -modules and the category
of DY -modules with support on f(X). It is proved in characteristic p in [5] (it is
easily checked that the proof works without the hypothesis of algebraically closed
ground field, since the crucial point is smoothness in the form of Lemma 7.1.1). The
equivalence preserves the filtration holonomic property:

Proposition 6.3. Let f : X → Y be the immersion of a smooth subvariety. Define
the functor f+ :, which takes DY -modules to DX-modules, by

f+(M) := f−1(HomOY (f∗(OX),M)).
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Then f+ : and
∫

f M gives an equivalence between the category of DX-modules and
the category of DY -modules with support on f(X)([5]). The equivalence preserves
the property of being fh.

Proof. By the previous section it is enough to consider the functor f+. In terms of
the description of D-modules as inverse systems

f+(M)(r) := f (−1)(HomO
Y (r) (f∗(O

(r)
X ),M(r))).

The functor f+ and the statement of the proposition is local in Y , and so it may
be assumed that there is a pullback diagram of affine schemes as in Lemma 7.1.1.
Now

f+
1 (β∗M) = HomOY1

(f1∗OX1 , β∗M) = α∗HomOY (f∗OX ,M) = (α∗f+M),

since α and β are affine and the ideal of X in Y is generated by the ideal of X1

in Y . Hence we are reduced to the case of f1 and the filtration holonomic module
β∗M. Let I = (t1, . . . , tr) be the ideal which defines f1(X) as a closed subset of Y .
Then f+

1 β∗M = (I : β∗M). Denote the monomials of multi-degree less than pi − 1
in each variable t1, . . . , tr, by Vi(I), and denote the monomials of multi-degree less
than pi − 1 in each variable tr+1, . . . , tn, by Vi(X). Then Vi = Vi(X)Vi ∗ (I). Note
that (I : k[t]⊗k[tpi ] M

(i)) = a(i)Vi(X)(I : M(r)), where a(i) = Πr
j=1t

pi−1
j .

Suppose that A. is a generating sequence for N := β∗M, such that Ai ⊂ Ai+1,
∪Ai = N and tN (Ai) 6 e, for some fixed e. Then, by the lemma below, (I : Ai) ⊂
(I : Ai+1),∪(I : Ai) = (I : N ), and t(I:N ((I : A)) 6 e(N ). So (I : Ai) is a
generating sequence, and also e(I : N ) 6 e(N ).

It remains to provethe following lemma.

Lemma 6.4.1. Asssume that N is a DY -module, and that A is a finite-dimensional
vector subspace of N . Then t(I:N )(I : A) 6 tN (A).

Proof. First if B ⊂ A ⊂ N are two finite-dimensional vector spaces contained in a
DY -module, then (I : A)/(I : B) maps injectively to A/B, since (I : A)∩B = (I :
B). Hence |(I : A)/(I : B)| 6 |A/B|.

Let then F . be any filtration of A ⊂ N such that F i ⊂ τ i
N (A), as in Proposition

3.2. Then I claim that Gi := (I : F i) ⊂ τ i
(I:N )(I : A). This is clear since F i =

Vi(Y )Φ(i) implies that (I : F i) = Vi(X)a(i)(I [pi] : Φ(i)) , and a(i)(I [pi] : Φ(i)) ⊂
((I : N ))(i) = a(i)(I [pi] : N (i)).

Hence it follows from the definition of tF in 3.2, and the first paragraph of the
proof that tG(I : A) =

∑

p−ni|Gi/Gi+1| 6 tF (A) =
∑

p−ni|F i/F i+1|. Since tG((I :
A)) > t(I:N )(I : A) (by 3.2.), it follows, by choosing F . so that tF (A) = tN (A),
that tM(A) > tI:M(I : A).

7. F-modules.

Remember that k is a perfect field. Then the p-th power is an isomorphism of
fields and hence induces an isomorphism of Z-schemes X(1) ∼= X. This is not,in
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general, an isomorphism of k-schemes. Hence the following (wellknown) definition
is reasonable.

Definition 7.0.1. Let k be a perfect field. The DX-module M is called an F -module
if M∼= M(1).

This thus means precisely that the modules in the inverse system belonging to
the DX -module M are the same. From the description of the functors, in terms
of inverse systems, in the preceding section, most of the following proposition is
immediate.

Proposition 7.1. Fmodules are preserved by direct and inverse images, as well
as by Kashiwara’s functor (defined in 7.4).

Proof. Suppose that f : X → Y is a morphism. We only need to check the direct
image, so let M be an F-module and use ωY = HomO

Y (1) (OY , ωY (1)) and the
definition

∫

f
M : = lim

r→∞
Homf−1(O(r)

Y )(f
−1(HomO

Y (1) (OY , ωY (1))), ωX(r) ⊗O
X(r) M

(r))

∼= OX ⊗O
Y (1) lim

16r→∞
Homf−1(O(r)

Y )(f
−1(ωY (1)), ωX(r) ⊗O

X(r) M
(r)).

(The last isomorphism is an elementary calculation). Hence clearly the direct image
of an F-module is an F-module, and the proof of the proposition is finished.

7.1. A submodule of an F-module is an F-module
Lemma 7.1.1. Any simple subquotient N of a filtration holonomic F-module is a
filtration holonomic F-module, possibly for a higher power of the Frobenius, i.e there
is some i > 1 such that N = N (i).

Proof. Assume that θ : F ∗M∼= M and denote the composite isomorphism θ◦F ∗θ :
F ∗2M ∼= F ∗M ∼= M by θ2 and so on. The precise result will be that to each
simple subquotient L there is some θi which induces an isomorphism F ∗iL ∼= L.
Let socM be the D-module socle of M. It is a semi-simple module and the same
is true of θ(F ∗socM) ⊂ M, since by Cartiers lemma F ∗S is simple iff S is. Hence
θ(F ∗socM) ⊂ socM, and since these two modules have the same rank , it follows
that they coincide. (If N ∼= ⊕Lni

i where Li, i = 1, . . . , r are distinct simple modules,
the rank of N is n1 + . . . + nr). Thus socM and, as a consequence, M/socM are
F-modules as well as filtration holonomic modules. By induction on the rank it then
suffices to assume that M is semi-simple. Another application of Cartier’s lemma,
gives that F ∗ takes distinct simple modules to distinct simple modules and hence
permutes the isotypic components Lni

i of M. Since the number of these are finite
there is a j such that F ∗jLi ∼= Li.

7.2. Examples of modules that are coherent OX-modules and filtration
holonomic, but not F -modules.

In this section we will consider the DA1-modules Mα, which correspond to the
differential equation (xD)y − αy = 0 with the solution y = xα .
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These modules turn out to be defined for all α ∈ Zpthat are coherent as k[x]-
modules, but only in very special cases F-modules. They will be the They are
however always filtration holonomic.

Let α = (α0, α1, ...) be a sequence of elements in the prime field Z/pZ, and think
of them as defining the element α = α0 + α1p + α2p2 + ... in the p-adic comple-
tion of Z. Using this element, define the cyclic DA1 -module Mα by taking DA1 =
k[x,D, D(p), D(p2), . . .] and dividing by the relations: α0 = xD, α1 = xpD(p), .... Call
the generator v. This DA1 -module has rank 1 as a k[x]-module, since by localizing at
x, we have in it the relation Dv = α0x−1v,D(p)v = (α1)x−pv, etc. This also shows
that (Mα∗)x∗ = Mα∗ if α is not a natural number, since then there are αj∗ 6= 0,
for arbitrarily large j, and hence x−pj

v will be contained in Mα∗. Now consider the
”solution set” of Mα in k[x], HomDA1 (Mα, k[x]). Since Mα is a quotient of DA1 ,
clearly HomDA1 (Mα, k[x]) ⊂ HomDA1 (DA1 , k[x]) = k[x], and in fact the solution
set is a) at most 1-dimensional and b) represents functions f ∈ k[x] solving the set
of equations α1f = xDf etc. Let us construct such functions. There is a change of
variables involved, to y = x− 1. First of all if α is a real number then there is a for-

mal Taylor series expansion (1+y)α =
∑

i>0

(

α
i
)

yi. For α a p-adic integer the right

hand side still has meaning, considered as an element in the completion Zp[[y]], if the

binomial coefficients involved are defined by
(

α
i
)

= α(α− 1) . . . (αi + 1)/i!. These

binomial coefficients lie a priori in Qp∗, but it is not difficult to show that they will
actually be contained in Zp. By reduction to Z/pZ we get elements xα := (1 + y)α

in Z/pZ[[y]]. Now they will plausibly satisfy all properties that depends only on the

binomial coefficients, and in particular they satisfy D(i)xα = Di/i!(xα) =
(

α
i
)

xα−i

(Using that d/dx = d/dy). One has
(

α
p

i)

= αi ∈ k by a standard identity [6, 5.1

Identity]. Hence the element xα satisfies xDxα = α0∗, xpD(p) ∗xα = α1 , . . . ∗ Now
using k[x] ⊂ k[[y]] we get

HomDA1 (Mα, k[x]) ⊂ HomDA1 (Mα, k[[y]])

since we know that this last submodule is a 1-dimensional vector space (over
k), it must be = kxα. If there is a horisontal section of Mα then the module
HomD(Mα, k[x]) is also 1-dimensional. Hence there are horizontal sections of Mα

iff xα is in k[x] iff α ∈ N.

An isomorphism Mα
η∼=Mβ occurs precisely when α = β + n. Proof: localize

to (Mα)x ∗
η∼=(Mβ)x∗ considered as k[x]x-modules. Then η(v) = r(x)v, r ∈ k[x]x,

which, by considering the solution set,implies that r(x)xβ = xα, or r(x) = xn, n ∈ Z
and α = β + n. The converse is clear.

When is Mα an F r-module? Clearly F ∗Mα = Mprα, so if this is true then
prα = α + n, for some n ∈ Z. This implies that α = n/pr − 1 ∈ Q∩Zp. Conversely,
if α ∈ Q ∩ Zp, then α = n/pr − 1 for some r > 1, and Mα is an F r-module. This
means that Mα is rarely an F r-module.
Mα is however always filtration holonomic, as may be seen in the following way.
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There is an isomorphism k[[y]]⊗k[x] Mα ∼= k[[y]], 1⊗ v 7→ xα. A horizontal section
in k[[y]]⊗k[x]Mα is x−α⊗v. Let (−α)j = α̃0+ α̃1p+ . . .+ α̃j−1pj−1 ∈ Z, be the j-th

truncation of the p-adic expansion of −α. Then sj = x(−α)j⊗v =
∑

pj>i>0

(

α
i
)

yi⊗

v ⊂ Mα is a D(j)
A1-horizontal section. Assume that α is not a natural integer (the

other case is trivial). Then pj − (−α)j , j = 1, 2, . . . considered as a p-adic sequence
will converge to α, and hence as a sequence of natural numbers limj→∞ pj−(−α)j =
∞. Similarily, as a sequence of natural numbers, limj→∞(−α)j = ∞. Now consider
Aj = Vjsj/xpj

= Vjx−pj+(−α)j . Clearly xnv ∈ Aj∗ if (−α)j−1 > n > −pj +(−α)j ,
and since (Mα)x = Mα∗ ∼= k[x]x, this implies that Mα) = ∪jAj . Note that the
multiplicity is 1, and hence the module is simple, as a DX -module, though not
finitely generated as a k[x]-module. However it is, of course, finitely generated as a
k[x]x-module, so these examples give some evidence towards the conjecture that all
OX -coherent DX -module are filtration holonomic , especially in conjunction with
the proposition in the next subsection.

7.3. OX-coherent DX-modules M that are F -modules are filtration holo-
nomic

The following gives an alternative description of the F -module property for OX -
coherent DX -modules; it seems to be wellknown, and is not difficult to prove.

Proposition 7.2. An OX-coherent DX-module M is an F r-module iff there is an
étale covering f : Y → X such that, as DY -modules, f∗M ∼= ⊕OY , a finite direct
sum.

Proof. Suppose that the pullback to an étale covering is a finite direct sum of the
structure sheaf, f∗M ∼= ⊕OY . Then M ↪→ f∗f∗M ∼= ⊕f∗OY , and f∗OY is an
F-module, since, for example, trivially F ∗OY = OY (see 5.2.1), and direct images
preserve F-modules. Hence the proposition follows from Lemma 8.1.1. Conversely,
it is proved in [1, 2.17] that an OX -coherent DX -module M is locally generated
by its vector space of horizontal sections E, over a completion R̃x⊗R at any point
x ∈ X. Hence in particular M is locally free. Assume that X = specR and that
M = R ⊗k E is an F r-module, with an isomorphism, Θ : F r∗M → M and let
e1, . . . , en be a basis of E, and fi =

∑

j fijej be a basis of the horizontal sections
F of R̃x ⊗R M. Θei =

∑

j gijej It is clear that Θ(F ) ⊂ F , and since F and Θ(F )
have the same dimension as k-vector spaces, it is clear that each element in F is
a k-linear combination of the elements Θ(fi) =

∑

j fpr

ij Θ(ej) =
∑

jk fpr

ij gjkek. If

fj =
∑

i αjiΘ(fi), then fjk =
∑

il αjif
pr

il glk. Now consider the extension

S = R[Tij ]/(Tjk −
∑

il

αjiT
pr

il glk).

This is, after possibly further localization of R, an étale extension, by the Jacobian
criterion ([11][ex.3.4]). There is a map S → R̃x, defined by Tij 7→ fij , and the image
S is an unramified extension of R, and hence, after possibly further localization of
R, an étale extension of R. Hence S⊗RM⊂ R̃x⊗RM, and there are in S⊗RM the
horisontal sections fi =

∑

j Tijej . Hence S ⊗R M∼= ⊕S, as was to be shown. Thus
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we have constructed étale morphisms ix : Xx = specS → X such that i∗xM = ⊕OXx

By doing this at all x ∈ X, and using the quasi-compactness of X to get an étale
covering Y =

∐

Xx → X.

Corollary 7.2.1. An OX-coherent F r-module M is filtration holonomic.

Proof. This follows from Proposition 5.2, and Theorem 4.2.

8. Comparison with F-finite modules

In this section the class of filtration holonomic modules is related with the class
of F-finite modules, introduced recently by G.Lyubeznik [10]. We will prove that
an F-finite module is filtration holonomic .

First we will give the definition of F-finiteness. Suppose there is a finitely gener-
ated OX -module N and a homomorphism θ : N → F∗N . Here we have identified
OX with OX(1) This homomorphism induces a direct system:

N → F∗N
θ→F 2

∗N
F∗θ→F 3

∗N
F 2
∗ θ→ . . . .

The direct limit M of this system is an OX -module and F-finite modules are pre-
cisely OX -modules that can be constructed in this way, starting with N and θ.

Since the module automatically satisfies . . . F 2∗M ∼= F ∗M ∼= M it is automat-
ically a DX -module (recall that this is equivalent to the condition that there are
modules M(r) such that . . . F 2∗M(2) ∼= F ∗M(1) ∼= M, see section 1), in fact it is
an F -module (see section 8).

For ease of notation we assume that X = specR is affine. The definition of F-
finite modules works for any noetherian ring R, not necessarily of finite type, but
we here consider only this case.

Proposition 8.1. Every F-finite F-module is filtration holonomic .

Proof. There should be a direct proof of this; the following suffices anyhow, but
it uses most of the theory. Assume that the F-finite module M is simple – this is
allowable since these modules have a finite decomposition-series by [10, Theorem
3.2], and in view of theorem 4.2. A simple module has a unique associated prime
ideal P (loc.cit). There is f ∈ R such that (R/P )f is non-zero regular, and hence
smooth over k since k is perfect (SGA 1 II prop.5.4). By simplicity M⊂Mf , and
it suffices to prove that Mf is filtration holonomic (Theorem 4.2). But then we
may use Kashiwaras theorem, in two different forms, to pull back the module to an
F -module on (R/P )f . The pullback is filtration holonomic iff if Mf∗ is filtration
holonomic by proposition 7.2 and 7.3, and it is F-finite by [10, Proposition 3.1]. This
means that it suffices to study the case P = 0. However, there is then f1 ∈ R such
that M ⊂ Mf1 and Mf1 is finitely generated as an Rf1∗-module (by definition),
and also an F - module. These modules have however been proved to be filtration
holonomic in section 8.

We will now give a partial converse. We first give a definition. If the R-module
E is an F -module, there is an R(p)-linear map v : E → E which is given by v(m) =
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α(1 ⊗ m). We will formulate a condition on generating system which means that
they are invariant with respect to this Frobenius map. If the generating system
ViAi∗, with

ViAi∗ ⊂ Vi+1Ai+1, t(Ai) 6 K∗ (24)

(where K is an positive integer) and Ai ⊂ viE = E i ⊂ E , satisfies the property that

v(Ai) = Ai+1, i > 1, (25)

it will be called an F-invariant generating system. By substituting F q in the above
definition,instead of F , we get of course F q-invariant systems. Note that then we
assume that the generating system has the form ViqAiq, where Aiq ⊂ E iq. Modules
with such generating systems are F-finite:

Proposition 8.2. Let the R-module E be an F q-module α(F q)∗E ∼= E,which is
filtration holonomic with an F q-invariant generating system. Then E is F q-finite.

Proof. We will prove this for q = 1. Assume that E is a filtration holonomic F-
module with an isomorphism α : F ∗E ∼= E , satisfying the condition on the generating
system Vi∗Ai above. Denote the isomorphisms (F ∗)rE ∼= E by α(r). There are, by
(20) above, natural inclusions M := RA1 ⊂ RA2 ⊂ . . . E , and E is clearly the direct
limit of this direct system or more mundanely expressed E = ∪i>1RAi. Clearly M is
finitely generated; the number of generators is less tham K. We have to check that
this direct system is formed in the way used for F-finite modules. The isomorphism
α : F ∗E ∼= E induces an isomorphism t1 : F ∗M = F ∗RA1 ∼= Rv(A1) = RA2(by
(21)), and hence the inclusion i1 : ∗RA1 ⊂ RA2, induces a map θ1∗ : M → F ∗M .
It is easy to see that more generally α(r) : (F ∗)rEcongE induces tr : (F ∗)rM =
F r∗RA1 ∼= Rvr(A1) = RAr+1, and hence the inclusion ir : ∗RAr ⊂ RAr+1, gives
maps θr∗ : (F ∗)rM → (F ∗)r+1M . It remains only to note that θr = (F ∗)rθ, and
that hence E is the F-finite module belonging to M and θ.

8.1. Some examples of filtration holonomic modules that are not F -
modules.

We will close with some examples of DX -modules that illustrates further that the
concept of filtration holonomic modules is independent of the F-module property
F ∗M ∼= M. There were another in 8.2.(Though note that geometrical examples
like local cohomology modules and their subquotients are F r-modules, for some r).

The module will be constructed as a direct limit M of modules Ai, i > 0, each
isomorphic to k[x], and k[x]-module maps θi : Ai → Ai+1 – which are just multipli-
cation by θi(1) ∈ k[x]. The direct limit is thus an F-finite module if θi(1)p = θi+1(1)
but not necessarily otherwise. M becomes a Dk[x]-module, if one uses the usual
Dk[x]-module structure on Ai to define the action of D(i)

k[x] in the following way. Let

x ∈ M and f ∈ D(i)
k[x]; there is then some j > i such that x ∈ Aj and we define

fx using the D(i)
k[x]-module action on Aj . A condition making this definition well-

defined is that θi(1) ∈ k[xpi
]. There is no need of other conditions relating the θi(1).

Assume that M has been defined in this manner. Considered as a Dk[x]-module M
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will be isomorphic to a submodule of the field of rational functions k(x), namely the
module consisting of all rational functions p/q where q is a product of a finite num-
ber of θi(1), each ocurring with multiplicity at most 1. Thus it will not be possible
to localise by f ∈M to a finitely generated module if there are an infinite number
of different prime divisors of the θi(1). We take, for simplicity, θi(1) = (x − ai)pi

,
where ai, i = 0, 1, . . . are all different elements of the ground field k (assuming that
k is infinite). In this case M is not an F -module, since F ∗M, is isomorphic to the
submodule of k(x), consisting of all rational functions p/q where q is a product of a
finite number of θi(1), each ocurring with multiplicity at most p. Any isomorphism
ηF ∗M∼= M, will be multiplication by a rational function, and there can clearly be
no such isomorphism under the assumption on the θi(1).

However the module is always filtration holonomic, if say degree θi(1) = pi. This
is proved by the following argument. Let si be the generator of Ai. Then si =
θ−1

i−1(1)si−1, and a generating sequence may be taken to be Viksi. This vector space
contains Vi−1ksi−1, since pi − pi−1 > pi−1. Hence these spaces form a generating
sequence, and clearly, by definition, e(M) = 1, so M is a simple module, by the
way.
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