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Abstract
Atiyah’s work [1] describes the relationship between multi-

plication in a central extension of the mapping class group of
a surface of genus n and the signatures of 4-dimensional man-
ifolds. This work studies a subgroup of the central extension,
which comes from the image of a representation of the pure
framed braid group on n-strands found in [5], and the signa-
tures of corresponding 4-manifolds via a split exact sequence.
We construct a splitting map to prove the sequence is split ex-
act, and we use the splitting to give a topological description
of homology classes in 4-dimensional manifolds with non-zero
intersection. We conclude with a description of multiplication
in the subgroup.

1. Introduction

In his paper [1], M. Atiyah uses 2-framings to place Witten’s 3-manifold invariant
in the context of algebraic topology. Witten’s invariant relies on 2-framings, which
are related to a central extension Γn of the mapping class group, Γn, of a compact
oriented surface of genus n. In [1] Atiyah proves the sequence

0 → Z→ Γn → Γ → 0

is an exact sequence. Γn consists of pairs (f, α) with f ∈ Γn, and α a 2-framing on
a 3-manifold.

Given an oriented compact 3-manifold Y with tangent bundle TY , Atiyah defined
a 2-framing as a homotopy class of trivializations of TY ⊕ TY viewed as a Spin(6)
bundle of the diagonal embedding SO(3) → SO(3) × SO(3) → SO(6). He then
showed the correspondence between a 2-framing α and an integer via

σ(α) = Sign(Z)− 1
6
p1(TY ⊕ TY ),

where Z is a 4-manifold with boundary Y , and p1 is the relative Pontrjagin class
p1 ∈ H4(Y × I, Y × ∂I). Atiyah proved σ does not depend on the choice of Z.
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In this paper we use a representation Φ, see section 2, from the pure framed braid
group Zn⊕Pn to the mapping class group Γn, and study the pullback of the image
subgroup in Γn, which we denote Zn ⊕ Pn.

0 −−−−→ Z −−−−→ Γn −−−−→ Γn −−−−→ 0x
x

x
xΦ

x
0 −−−−→ Z −−−−→ Zn ⊕ Pn −−−−→ Zn ⊕ Pn −−−−→ 0

The 4-manifolds in [1] are constructed using mapping tori Xf and Xg, where X
is a surface (see definition 3). To explain restricting to Zn ⊕ Pn, in [5] it was shown
that any compact orientable 3-manifold can be represented as Xf , where f ∈ im(Φ)
and X is compact oriented surface of genus n. Furthermore, the multiplication in
Zn ⊕ Pn is computed via linking matrices coming from the closures of pure framed
braids, see theorem 2 of section 5.

We use the above correspondence between 2-framings and integers to consider
elements of Zn ⊕ Pn to be pairs (h, c), consisting of mapping class elements h, and
integers c. The group multiplication is given by (f, a) · (g, b) = (fg, a + b + 3 ·
Sign(W 4

f,g)), where Sign(W 4
f,g) is the signature of the intersection form

H2(W 4
f,g, Z)×H2(W 4

f,g, Z) → Z.

H2(W 4
f,g) is computed using a Mayer Vietoris sequence, see equation 1 of section 3.

We construct a splitting map τ of section 4 to show the Mayer Vietoris sequence
is split exact. In section 4 we use τ to construct specific examples of classes in
H2(W 4

f,g) with non zero intersection. Note: we compute homology groups over the
integers.

2. The representation Φ : Zn ⊕ Pn → Γn

Let Bn, n > 1, be the group given by generators σ1, . . . , σn−1 and relations

1)σiσj = σjσi for |i− j| > 2
2)σiσi+1σi = σi+1σiσi+1

Bn is called the Braid Group on n-strands. Let Σn denote the symmetric group
acting on {1, 2, · · · , n}, and π : Bn → Σn denote the homomorphism sending σi to
the transposition (i, i + 1). Let Pn denote the kernel of π.

Definition 1. The pure framed braid group on n-stands is the direct sum Zn⊕Pn,
where Zn denotes the group of n− tuples of integers under addition.
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a1 a2 a3 b1 b2 b3 a1 + b1 a2 + b2 a3 + b3

f g fg

Figure 1: Multiplication of pure framed braids.

We will use a geometric description of pure framed braids. The equivalence be-
tween the algebraic and geometric definitions is found in [2]. Consider a cylinder
D2 × [0, 1] with projection π1 : D2 × [0, 1] → D2 defined π1(x, t) = x. Choose n
non-intersecting (smooth) curves in D2× [0, 1], where each curve intersects D2×{t}
in exactly one point, for 0 6 t 6 1. If xi and yi denote the points the ith curve in-
tersects D2×{0} and D2×{1} respectively, then π1(xi) = π1(yi) for 1 6 i 6 n. We
require the xi to be evenly spaced along a fixed diameter in the interior of D2×{0}.
In Figure 1 we see the projection of pure framed braids on 2 strands into the plane.
We use breaks in the curves to indicate one strand passing over another. The framed
pure braid has an integer assigned to each curve called the framing number. Two
pure framed braids are equivalent if they are isotopic via an isotopy of D2 × [0, 1]
which fixes the end-points of the curves and preserves the framings. We illustrate
the multiplication in figure 1 with (a1, a2, a3)f and (b1, b2, b3)g ∈ Z3 ⊕ P3. Their
product (a1 + b1, a2 + b2, a3 + b3)fg is formed by stacking f on top of g and adding
the corresponding framings. Note: we omit a framing number if it is zero.

Notation 1. By Dn we mean a (unit) disc D2 with n open disjoint discs removed
from the interior. The removed discs were chosen so that their centers were evenly
spaced on a fixed diameter of D2.

Let pfb(Dn) be the group of isotopy classes of homeomorphisms from Dn to Dn

which fix the ∂Dn pointwise.

Theorem 1. (Prasolov, V. V. and Sossinsky, A. B.)
pfb(Dn) is isomorphic to Zn ⊕ Pn.

The proof appears in [6]. To give a description of the isomorphism, let [g] ∈
pfb(Dn), and g0 be a representative. To obtain a pure framed braid corresponding
to [g], we extend the map g0 to g : D2 → D2 by g(x) = x for x not in the interior
of Dn. This extension is possible because g0(x) = x for x ∈ ∂Dn. Now define an
isotopy I : D2 × [0, 1] → D2,

I(x, t) =





x, if t = 0;
x, if |x| > t;
tg(t−1x), otherwise.

Note I(x, 0) = x and I(x, 1) = g(x). In the complement of the interior of Dn in
D2 there are n closed discs. If ci is the center of the ith disc, then (I(ci, t), t) for
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0 6 t 6 1 is an arc in D2 × [0, 1]. The n arcs are the n strands of the pure braid.
Choose any point bi on the S1 boundary of the disc with center ci. The linking
number of (I(bi, t), t) with ci × [0, 1] is an integer, and this will be the framing
corresponding to the ith strand. For example, in figure 2 we have a Dehn twist
about the dashed curve, which is an element of pfb(D3). The pure framed braid is
formed by following the image of the interior points c1, c2, c3 under the isotopy I.

Definition 2. The mapping class group of a (compact oriented) genus n surface,
denoted here by Γn, is the group of isotopy classes of orientation preserving home-
omorphisms from the surface to itself.

An element of pfb(Dn) is an isotopy class of maps of Dn → Dn, or equivalently
Dn × {1} → Dn × {1}. Each representative of the isotopy class, fixes ∂(Dn × {1})
pointwise, and may be extended by the identity map to
∂(Dn × [0, 1]). This extension is a homomorphism pfb(Dn) → Γn. Composing this
map with the isomorphism Zn ⊕ Pn → pfb(Dn) yields Φ : Zn ⊕ Pn → Γn. Our
viewpoint for the construction of Φ was inspired by [3] in which the authors discussed
representations of platts.

1 1

Figure 2: A Dehn twist and corresponding pure framed braid.

3. The 4-manifold W 4
f,g

The construction of W 4
f,g from [1] requires the definition of a mapping torus.

Definition 3. For a homeomorphism f of a surface X to itself, define the mapping
torus Xf as X×[0,1]

(p,0)∼(f(p),1)

We are interested in the case where X = ∂(Dn × [0, 1]), a surface of genus n,
and f a representative of [f ] in the image of Φ : Zn ⊕ Pn → Γn. We can view
Xf as a fiber bundle over S1, with fiber ∂(Dn × [0, 1]), and Xf × [0, 1] as a fiber
bundle over an annulus. The 4-manifold W 4

f,g is defined as the quotient space of
(Xf × [0, 1]) ∪ (Xg × [0, 1]) where, for t ∈ [0.5, 0.75], we identify
(∂(Dn× [0, 1])×{t})×{1} of Xf× [0, 1] with (∂(Dn× [0, 1])×{t})×{1} of Xg× [0, 1]
by the identity map ∂(Dn×[0, 1]) → ∂(Dn×[0, 1]). Viewing Xf×[0, 1] and Xg×[0, 1]
as fiber bundles over annuli, we have identified arcs on the outer boundary circles
of the annuli base spaces and their corresponding fiber. We obtain homeomorphic
4-manifolds if different representatives of [f ] and [g] are used. The result is a fiber
bundle with base D2. Restricting W 4

f,g to the interior boundary circles of D2 we
have Xf and Xg. Restricting to the exterior boundary circle of D2 we have Xfg.
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It is shown in [1] that 4-manifolds Z with ∂Z = Xf + Xg − Xfg have the same
signature.

3   1   -2

3

1

-2

Figure 3: A framed braid and its closure to a framed link.

In order to obtain the signature of W 4
f,g, we compute the homology via a Mayer

Vietoris sequence. This sequence is defined with spaces X0 and X1, whose union is
W 4

f,g. The space X1 is a fiber bundle over D2 with fiber Dn. It is constructed in
the same way as W 4

f,g, except that we replace the surface fiber ∂(Dn × [0, 1]) with
Dn × {1}. The fiber in X1 over the two interior boundary circles of the base space
D2 is homeomorphic to complements of tubular neighborhoods of f̂ and of ĝ in solid
tori, where f̂ and ĝ denote the closures of the pure braids corresponding to f and g.
The closure of a framed braid is formed by connecting the two ends of each strand
using a simple closed arc. The result is a link with each path component given the
framing coming from the corresponding strand, see figure 3. The space X0 is the
product space D2 × (Dn × {0}). Gluing two copies of Dn along their boundary is
homeomorphic to a genus n surface. If at each point in D2 we glue the Dn×{1} fiber
of X1 to the Dn×{0} fiber of X0, the result is W 4

f,g. Using collar neighborhoods of
the Dn fiber so that X0 and X1 are open, we obtain the Mayer Vietoris sequence.

· · · −−−−→ H2(X0)⊕H2(X1)
σ−−−−→ H2(W 4

fg)
δ−−−−→ H1(X0 ∩X1)

j−−−−→ H1(X0)⊕H1(X1) −−−−→ · · ·
(1)

The map j : H1(X0 ∩X1) → H1(X0)⊕H1(X1) takes a → (a, a) and σ(b, c) = b− c.
By the exactness of the sequence, im(σ) = ker(δ) and ker(j) = im(δ). In Lemma 2
of section 5 we show that the above sequence is split exact. It will then follow that
a basis for H2(W 4

fg) is isomorphic to a direct sum of a basis for im(σ) with a basis
for ker(j).

4. Constructing intersecting classes.

For [f ] and [g] in the image of Φ : Zn ⊕ Pn → Γn we will define a splitting
τ : ker(j) → H2(W 4

f,g). In lemma 3 we show that only elements in the image of
τ can have non-zero intersection. To describe ker(j) we label curves in X0 ∩ X1,
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which is a fiber bundle with base D2 and fiber ∂Dn; recall Dn is a disc D2 with
interior open discs int(e1), · · · , int(en) removed. Label the boundary circles of Dn

by s0, s1, · · · , sn, with s0 = ∂D2. Let D2 be the disc D2 with the interior of two
discs, int(d1) and int(d2), removed.

Notation 2. Let yi be a point of si , and x ∈ D2. Set pi = ∂d1 × {yi} , qi =
∂d2 × {yi} and mi = si × {x}.

Using the Mayer Vietoris sequence in equation (1), along with the Künneth
formula for computing the homology of a product space, one obtains homology bases
for H1(X0∩X1) and H1(X0)⊕H1(X1). Write j : H1(X0∩X1) → H1(X0)⊕H1(X1)
as j = j0⊕ j1, so j1 : H1(X0 ∩X1) → H1(X1) and j0 : H1(X0 ∩X1) → H1(X0). An
ordered basis for H1(X0 ∩X1) is
{[p0], · · · , [pn], [q0], · · · [qn], [m0], · · · , [mn]}. An ordered basis for
H1(X0)⊕H1(X1) is {j0([p0]), j0([s0]), · · · j0([sn]), j1([q0]), j1([s0]), · · · j1([sn])}. The
following lemma is proved with a standard analysis of the matrix of j.

Lemma 1. Let [f ], [g] be in the image of Φ : Zn ⊕ Pn → Γn. Let F = [Fij ]
and −G = −[Gij ] be the n × n linking matrices of f̂ and −1 times the linking
matrix of ĝ, respectively. Set B equal to the submodule of H1(X0∩X1) with ordered
basis {[p1] − [p0], · · · , [pn] − [p0], [q1] − [q0], · · · , [qn] − [q0]}. Define (F − G) :
B → H1(X0)⊕H1(X1) to be multiplication by the matrix formed by juxtaposing the
linking matrices of F and −G.

Then, ker(j) is isomorphic to ker
(
F −G

)⊕ < [η] >,

where [η] = [m0]− (
∑n

i=1[mi]).

Example:
Consider the example of representatives (0, 0, 0)f and (−1, 0, 0)g in the image of

Φ : Z3 ⊕ P3 → Γ3 corresponding to the pure framed braids in figure 1, where the
framings a1 = a2 = a3 = b2 = b3 = 0 and b1 = −1. From (0, 0, 0)f and (−1, 0, 0)g
we obtain the matrix

(
F −G

)
=




0 1 0 1 0 0
1 0 0 0 0 −1
0 0 0 0 −1 0


 .

Using the symbol T to stand for transpose, two elements in the kernel are

α =
(
1 0 0 0 0 1

)T and β =
(
0 1 0 −1 0 0

)T
.

To construct the classes τ(α) and τ(β) we decompose W 4
(0,0,0)f,(−1,0,0)g into X1

and X0. In this case both are fiber bundles with base space D2, and fiber D3. For
i = 1, 2, 3, j1([pi]) is a longitude on a tubular neighborhood of the ith strand of the
closed braid f̂ in the fiber over ∂d1. Similarly, j1([qi]) corresponds to the ith strand
of ĝ in the fiber over ∂d2. The classes j0([pi]) and j0([qi]) are longitudes on tubular
neighborhoods of the ith strands of the closed identity braids in the fiber over ∂d1

and ∂d2, respectively, in X0. With y0 a point on the exterior boundary circle of D3,
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the classes j1([p0]) and j1([q0]) represent S1 × {y0} in the S1 × D3 fiber over ∂d1

and ∂d2 in X1, respectively.

1

2

1

2

1-

1

2

1

2

1-

Figure 4: τ(α) in X1 Figure 5: τ(β) in X1

Since α = ([p1]−[p0])+([q3]−[q0]), attach two annular regions. One annular region
has boundary j1([p1]) − j1([p0]), and the second has boundary j1([q3]) − j1([q0]).
The first annular region is in the fiber over ∂d1 in X1, see the left side of figure
4, corresponding to f̂ . To allow the tubular neighborhood with longitude j1([p2])
to pass through, we remove a disc and attach an S1 × [0, 1] along the S1 × {0}
boundary. The annular region with boundary j1([q3]) − j1([q0]) is in the fiber over
∂d2, corresponding to ĝ. We remove a disc and attach a tube so that a tubular
neighborhood with longitude j1([q2]) may pass through, see the right side of figure
4. The tubes about j1([p2]) and j1([q2]) are then joined by passing through fibers
over D2.

In the fiber over ∂d1, the annular region in X1 is glued to the boundary of an
annulus in X0 between j0([p1]) and j0([p0]). In the fiber over ∂d2, the annular region
in X1 is glued to an annulus in X0 between j0([q3]) and j0([q0]). The surface τ(α)
is two tori joined by a tube, and with an orientation is a class of H2(W 4

f,g). The
projection of this class to the base space D2 is two circles, concentric to the interior
boundary circles joined together with a simple non-intersecting arc, see figure 6.
The arc being the projection of the tube joining the annular regions in X1.

Figure 6: The projection of τ(α) and τ(β) to D2 in general position.

We construct a second surface τ(β) in a similar fashion. In the fiber over ∂d1 in
X1, there is an annular region between j1([p2]) and j1([p0]), and a tube is created
about a tubular neighborhood with j1([p1]). In the fiber over ∂d2 there is an annular
region with boundary j1([q0]) and a circle linking j1([q1]) with linking number −1.
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This is due to the framing number −1. For the tubular neighborhood with j1([q1])
to pass through the annular region, a disc is removed and a tube is attached, see
figure 5. These tubes are joined together. After attaching the boundary to the
corresponding annuli in X0 we obtain a surface, denoted τ(β). The projection of
τ(β) to D2 is two circles joined by an arc. τ(α) and τ(β) have an intersection of 1.
Without the tubes, the projections to the base space D2, in general position, would
be two pairs of concentric circles. Such surfaces would not intersect.

5. The intersection form on H2(W
4
f,g)

Lemma 2. There is a splitting τ : ker(j) → H2(W 4
fg).

Proof
As in section 4, τ([pi]− [p0]) is an annular region in X1 over ∂d1 with boundary

j1([pi])−j1([p0]) glued to an annulus in X0 with boundary j0([pi])−j0([p0]). Define
τ([qi]− [q0]) to be an annular region in X1 over ∂d2 with boundary j1([qi])−j1([q0])
glued to an annulus in X0 with boundary j0([qi]) − j0([q0]). τ([η]) is defined to be
the surface fiber over a point in D2. To define τ on a general element of ker(j),
extend linearly. In the construction of
τ(a1([p1]−[p0])+· · ·+an([pn−p0])+b1([q1]−[q0])+· · ·+bn([qn]−[q0])), for each ak 6=
0, there are |ak| copies of annular regions between j1([pk]) and j1([p0]). The algebraic
intersection of j1([pi]) with these regions is akFik. Similarly, for bk 6= 0 there are |bk|
copies of annular regions between j1([qk]) and j1([q0]), and the algebraic intersection
with j1([qi]) is bkGik. If (a1, · · · , an, b1, · · · , bn) is in ker(F −G), then for 1 6 i 6
n,

∑n
k=1 akFik =

∑n
k=1 bkGik. Therefore, we can glue |∑n

k=1 akFik| tubes about
j1([pi]) to |∑n

k=1 bkGik| tubes about j1([qi]). By examining the definition of δ one
sees that τ is a splitting. Q.E.D.

Lemma 3. Let α, β ∈ H2(W 4
f,g) and α = a1κ1+a2κ2, where a1, a2 ∈ Z, κ1 ∈ im(τ)

and κ2 ∈ im(σ) of equation (1). If a1 = 0, then the intersection α · β = 0.

Proof
From equation (1) and lemma 2 we have H2(W 4

f,g) ≈ im(σ)⊕τ(ker(j)). A Mayer
Vietoris sequence shows that a class in image of σ can be divided into a class in the
fiber over ∂d1 of the base D2 and a class in the fiber over ∂d2. In general position,
the projection of two such classes to D2 is a finite set of circles concentric to ∂d1

and to ∂d2. Such classes do not intersect. A class in the image of τ projected to
the base space D2 is a finite set of circles concentric to ∂d1 and ∂d2, possibly with
some simple arcs between them. In general position, one can arrange the class in
the image of σ so its projection to D2 is a set of circles interior to the circles coming
from the class in the image of τ . Thus, there is no intersection. Q.E.D.

Remark 1. In general position, the fiber over a point does not intersect a surface.
Thus, τ([η]) does not contribute to signature computations.

Next we relate the algebraic computation of intersections in W 4
f,g to our topo-
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logical description of section 4. In the computation of τ(α) · τ(β),
(

F 03×3

03×3 −G

)
· α =

(
0 1 0 0 −1 0

)T

indicates the tubes created about j1([p2]) and j1([q2]) in the fiber over ∂d1 and ∂d2,
respectively. The multiplication

βT ·
((

F 03×3

03×3 −G

)
· α

)
=

(
0 1 0 −1 0 0

) ·
((

0 1 0 0 −1 0
)T

)
= 1

reflects that the tube about j1([p2]) intersects the annular region in the fiber over
∂d1 with boundary components j1([p0]) and j1([p2]). More generally, we have the
next theorem. Recall the map δ : H2(W 4) → H1(X1 ∩X2) from equation (1).

Theorem 2. Let [f ], [g] be in the image of Φ : Zn ⊕ Pn → Γn, and α, β ∈
H2(W 4

f,g). Set F = [Fij ] to be the linking matrix of f̂ , and −G = −[Gij ] to be
−1 times the linking matrix for ĝ. Suppose the projection of δ(α)to ker(F − G)
has coordinates (a1, . . . , an, b1, . . . , bn), and the projection of δ(β) has coordinates
(c1, . . . , cn, d1, . . . , dn). Then, the intersection (α) · (β) =

(
c1 . . . cn d1 . . . dn

) (
F 0n×n

0n×n −G

) (
a1 . . . an b1 . . . bn

)T

Proof
By lemma 3 and remark 1, the only non-zero intersections are from classes in the

image of τ restricted to ker(F −G). Consider the sum ck(akF1k + . . . + akFnk).
When ck 6= 0 we have |ck| annular regions between with boundary components
j1([pk]) and j1([p0]). If ak 6= 0, there will be |akFik| number of tubes around a
tubular neighborhood of j1([pk]), formed by avoiding intersections with annular
regions between j1([pi]) and j1([p0]). Summing for i = 1 . . . n yields an algebraic
intersection of ck(akF1k + akF2k + akFnk). Accounting for all j1([pk]), 1 6 k 6 n,
we obtain (

c1, . . . , cn

) (
F

) (
a1 . . . an

)T
.

A similar analysis yields the intersection number coming from j1([qk]),
1 6 k 6 n, is

− (
d1, . . . , dn

) (
G

) (
b1 . . . bn

)T
. Q.E.D.

Using the map Φ : Zn ⊕ Pn → Γn we obtain the commutative diagram below.

0 −−−−→ Z −−−−→ Γn −−−−→ Γn −−−−→ 0
x

x
x

xΦ

x
0 −−−−→ Z −−−−→ Zn ⊕ Pn −−−−→ Zn ⊕ Pn −−−−→ 0

The group Γn is a central extension of the mapping class group Γn studied in [1], and
Zn ⊕ Pn is the pullback of Φ. An element of the subgroup Zn ⊕ Pn is a pair (h, a),
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where a is an integer and h is in the image of Φ. The multiplication in Zn ⊕ Pn is
computed using linking matrices.

In conclusion, we multiply ([(0, 0, 0)f ], a) · ([(−1, 0, 0)g], b) in Z3 ⊕ P3. The in-
tersection pairing on W 4

fg is given by the quadratic form xT Ax where

A =
(

F 03×3

03×3 −G

)
=




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0




The signature of the matrix A is 1, and therefore
([(0, 0, 0)f ], a) · ([(−1, 0, 0)g], b) = ([(−1, 0, 0)fg], a + b + 3Sign(W 4

fg))
= ([(−1, 0, 0)fg], a + b + 3).
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