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(CO)HOMOLOGY OF CROSSED MODULES
WITH COEFFICIENTS IN A π1-MODULE
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Abstract
We define a cotriple (co)homology of crossed modules with

coefficients in a π1-module. We prove its general properties,
including the connection with the existing cotriple theories
on crossed modules. We establish the relationship with the
(co)homology of the classifying space of a crossed module and
with the cohomology of groups with operators. An example
and an application are given.

Introduction

In this paper we present some developments in the (co)homology of crossed mod-
ules. In the work of Carrasco, Cegarra and Grandjean [4] the authors proved that
the category of crossed modules is tripleable over the category of sets, hence it is an
algebraic category; then they used the resulting cotriple to construct a (co)homology
theory of crossed modules in the spirit of the Barr and Beck theory [3].

Later Grandjean, Ladra and Pirashvili [13] have proved that there is an exact
homology sequence

· · · → Hn+1B(T, G, µ) → ζHCCG
n (T,G, µ) → HnG → HnB(T, G, µ) → · · · (1)

which relates the integral homology of the classifying space of a crossed module and
the cotriple homology of [4].

The (co)homology theory of [4] has trivial coefficients. In any algebraic category
the passage from trivial coefficients for the (co)homology theory to global or local
ones is achieved by a well known procedure which consists of taking abelian group
objects in the slice category; the cohomology of a crossed module Φ with a system
of global or local coefficients is equivalent to the cohomology in the slice category
of idΦ with trivial coefficients. Although there is no theoretic difficulty in realizing
this passage, to achieve it in practice in a concrete algebraic context like the one of
crossed modules is not entirely trivial.

One of the first questions to consider is whether it is possible identify a man-
ageable class of coefficients giving rise to a (co)homology theory of crossed modules
which has interesting properties and leads to applications. This was one of our mo-
tivating questions which we have tried to answer in this paper by concentrating
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our attention on two special cases of a system of local coefficients associated to a
π1-module, where π1 is the first homotopy group of the crossed module.

Our motivation for considering π1-module coefficients for the cotriple (co)homology
comes from the long exact sequence (1). Since the (co)homology of the classifying
space of a crossed module is defined in general with π1-module coefficients (see [11])
it is natural to expect that an appropriate cotriple (co)homology of crossed modules
with π1-module coefficients would lead to long exact (co)homology sequences gen-
eralizing (1) in the homology case. One of our main results, Theorem 13, establishes
precisely this.

Given a crossed module Φ with first homotopy group π1, the canonical projection
Φ ³ (1, π1, i) ≡ π1(Φ) induces a functor

(CM/π1(Φ))ab → (CM/Φ)ab. (2)

A system of local coefficients for the cohomology of a crossed module Φ could be
defined as an object of (CM/π1(Φ))ab. The functor (2) takes this system of local
coefficients into a system of global coefficients used to compute the (co)homology.

In this paper we work with two special cases of the above system of local coeffi-
cients; these correspond to the split extensions of crossed modules

(A, 1, 0) ½ (A, π1, 0) ³ (1, π1, i) (3)

and
(1, A, i) ½ (1, Ao π1, i) ³ (1, π1, i). (4)

In Sections 2 to 6 we consider the coefficients corresponding to the split extension
(3), and study the corresponding (co)homology theory. After recalling some back-
ground in Section 1, in Section 2 we introduce the (co)homology. For this purpose,
the notions of module and derivation in the sense of categories of interest [17] are
used to define a derivation functor, and a dual Diff functor, from crossed modules to
abelian groups. We point out that the notions of action, extensions and semidirect
product of crossed modules were also worked out by Norrie [16], internally in the
category of crossed modules. This has been used by Vieites and Casas [22] to give
a different approach to derivations of crossed modules.

In Section 3 we study the case of aspherical crossed modules; these form a sub-
category isomorphic to the category of surjective group homomorphisms. We prove
that our (co)homology for the aspherical crossed module corresponding to the sur-
jective group homomorphism f : G → G′ is isomorphic, up to a dimension shift, to
the relative group (co)homology of the pair (G′, G) defined by Loday [14]. Other
general properties of the (co)homology are proved in Section 4. In Section 5 we
establish the relationship between our theory and the (co)homology of the clas-
sifying space, recovering the result of [13] in the case of homology with integral
coefficients. This result is illustrated with an example in Section 6 where we obtain
some information about the (co)homology of the crossed module corresponding to
a ZG-module M .

The coefficients corresponding to the split extension (4) are treated in Sec-
tion 7. We prove that the corresponding cotriple (co)homology coincides with the
(co)homology of the classifying space of the crossed module, up to a dimension shift
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of 1, and in dimensions n > 0. An application to the cohomology of the classifying
space follows.

In the last section we elucidate the relationship between the cohomology of
crossed modules with π1-module coefficients introduced in Section 2 and the co-
homology of groups with operators studied in [6]. In order to study the relation-
ship between the two theories we establish the preliminary result, which may be
of independent interest, that when (T, G, µ) is a precrossed module the cohomol-
ogy H∗

G(T, A) of [6] can be described as cohomology of precrossed modules with a
system of local coefficients.
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1. Preliminaries

1.1. Crossed modules.
Recall that a crossed module Φ = (T,G, µ) consists of a group homomorphism

µ : T → G and of an action of G on T such that

µ( gt) = gµ(t)g−1, µ(t)t′ = tt′t−1

for each t, t′ ∈ T, g ∈ G. A homomorphism of crossed modules (fT , fG) : (T, G, µ) →
(T ′, G′, µ′) is a pair of group homomorphisms fT : T → T ′, fG : G → G′ such that
µ′fT = fGµ and fT ( gt) = fG(g)fT (t) for all g ∈ G, t ∈ T . We denote by CM the
category of crossed modules. This category has several equivalent descriptions.

Recall that a cat1-group consists of a group G with two endomorphisms d0, d1 :
G → G such that

d1d0 = d0, d0d1 = d1, [ker d0, ker d1] = 1. (5)

A morphism of cat1-groups (G, d0, d1) → (G′, d′0, d
′
1) is a group homomorphism

f : G → G′ such that d′if = fdi i = 0, 1.
The category of crossed modules is equivalent to the category of cat1-groups [15].

Given a crossed module (T, G, µ), the corresponding cat1-group is (T o G, d0, d1),
d0(t, g) = (1, g), d1(t, g) = (1, µ(t)g) for all (t, g) ∈ T oG.

Another description of the category of crossed modules is given by its equivalence
with the category SG61 of simplicial groups whose Moore complex has length 1 [15].
An object of SG61 is a simplicial group G∗ such that Ni(G∗) = 0 for i > 1 while
N1(G∗) 6= 0 where N∗ : SG61 → CM is the Moore normalization functor. This is
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defined by
NnG∗ = ∩

i>0
ker(∂n

i ) n > 0

with boundary map d : NnG∗ → Nn−1G∗, d = ∂0|NnG∗
. There is a functor N−1

∗ :
CM → SG61 with N−1

∗ (N∗G) ∼= G∗ which is given by

N−1
n (T, G, µ) = Tn oG n > 0,

∂i(t1, . . . , tn, g) = (t1, . . . , t̂i, . . . , tn, g) 1 6 i 6 n,

∂0(t1, . . . , tn, g) = (t2t−1
1 , . . . , tnt−1

1 , µt1g)
si(t1, . . . , tn, g) = (t1, . . . , ti, 0, . . . , tn, g).

Crossed modules are algebraic models for connected spaces which have trivial
homotopy groups in dimension n > 2, called 2-types (see for instance [15]). To any
crossed module (T,G, µ) one can associate a connected CW-space B(T, G, µ) called
its classifying space with

π1B(T, G, µ) ∼= G/µ(T ), π2B(T, G, µ) ∼= kerµ, πnB(T, G, µ) ∼= 0 for n > 2.

B(T,G, µ) is defined as the classifying space of the simplicial group N−1
∗ (T, G, µ).

The homotopy groups of a crossed module (T, G, µ) are defined as π1 = G/µ(T ),
π2 = ker µ, πn = 0 for n 6= 1, 2. A morphism of crossed modules is called a weak
equivalence if it induces isomorphisms of homotopy groups.

It can be proved (see for instance [15]) that the functor B(-) induces an equiva-
lence between the homotopy category of connected 2-types and the localization of
the category of crossed modules with respect to weak equivalences.

1.2. CCG (co)homology.
In [4] it is proved that the category of crossed modules is tripleable over Set,

hence it is an algebraic category. It is shown there that the functor U : CM → Set,
U(T, G, µ) = T ×G has a left adjoint F : Set → CM. This is given by

F(X) = (F (X), F (X) ∗ F (X), i)

where F (X) is the free group on X, ∗ is the free product, i is the inclusion, F (X)
is the kernel of the map p2 : F (X) ∗ F (X) → F (X) determined by p2u1 = 0,
p2u2 = id, u1, u2 being the coproduct injections.

It is proved in [4] that U is tripleable. This identifies the regular epimorphisms in
CM as those homomorphisms (fT , fG) : (T, G, µ) → (T ′, G′, µ′) such that fT and fG

are surjective. Hence for each set X the crossed module F(X) is a projective object
in CM; this category has enough projectives since any crossed module (T, G, µ)
admits the projective presentation FU(T,G, µ) ³ (T, G, µ).

Let G = FU be the cotriple arising from the pair of adjoint functors (F ,U).
This cotriple is used in [4] to define a (co)homology theory of crossed modules as
follows. Recall that given a crossed module (T, G, µ) its abelianisation is the abelian
crossed module (T,G, µ)ab = (T/[G,T ], G/[G,G], µ). For each n > 1 the nth CCG
homology of (T,G, µ) is the crossed module

HCCG
n (T,G, µ) = Hn−1(G•(T, G, µ)ab).
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If (A,B, δ) is an abelian crossed module (that is A and B are abelian groups and
B acts trivially on A), for each n > 1 the nth CCG cohomology of (T,G, µ) with
coefficients in (A,B, δ) is the abelian group

Hn
CCG((T, G, µ), (A, B, δ)) = Hn−1HomCM(G•(T, G, µ), (A,B, δ)) ∼=
∼= Hn−1HomAbCM(G•(T, G, µ)ab, (A, B, δ)).

1.3. Crossed modules as category of interest.
It is a known fact that the category of cat1-groups is a category of groups with

operations in the sense of [19]. Recall that this consists of the following data: a
category of groups with a set of operations Ω = Ω0 ∪ Ω1 ∪ Ω2 where Ωi is the
set of i-ary operations in Ω such that the group operations of identity, inverse and
multiplication (denoted 0,−,+) are elements of Ω0, Ω1, Ω2 respectively; one has
Ω0 = {0} and certain compatibility conditions hold (see [19]); finally there is a set
of identities E which includes the group laws.

In the case of cat1-groups, Ω0 = {0}, Ω1 = {−} ∪ {d0, d1}, Ω2 = {+} and E
consists of the group laws and of the identities (5). The compatibility conditions in
this case are that d0, d1 commute with +, hence they are group homomorphisms.

In the category of cat1-groups we therefore have the notions of singular object,
module, semidirect product, derivation. For a discussion of these notions in any
category of groups with operations see for instance [7] and [19].

A cat1-group (A, d0, d1) is a singular object if A is an abelian group. The cor-
responding crossed module is then an abelian crossed module. Given a cat1-group
(G, s0, s1), (A, d0, d1) is a (G, s0, s1)-module if (A, d0, d1) is singular and there is a
split extension of cat1-groups

(A, d0, d1) ½ (Q, s′0, s
′
1) ←³ (G, s0, s1).

This split singular extension induces an action of (G, s0, s1) on (A, d0, d1); a deriva-
tion D from (G, s0, s1) into (A, d0, d1) is a group derivation from G into A which
commutes with the 1-ary operations ω ∈ Ω1\{−}, that is such that Dsi = diD for
i = 0, 1.

Since CM is equivalent to the category of cat1-groups, it can be considered itself
as a category of groups with operations. Moreover, since CM is tripleable over Set
and the set Ω2 of 2-ary operations just consists of group multiplication, it is in fact a
category of interest in the sense of [17]. In this paper we shall use the interpretation
in terms of extensions of the first and second cotriple cohomology in a category of
interest given in [21].

1.4. Crossed modules in the category of cat1-groups.
Let C1G denote the category of cat1-groups and C2G the category of cat2-groups;

we refer to [15] for the definition of cat2-group. Since C1G is a category of groups
with operators, from [19] the category CM(C1G) of crossed modules in C1G is
equivalent to the category Cat(C1G) of internal categories in C1G. On the other
hand there is an equivalence of categories between Cat(C1G) and C2G, as explained
for instance in the proof of [10, I–6, Proposition 1.2.3]. It follows that CM(C1G)
is equivalent to C2G. The correspondences giving this equivalence of categories can
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be easily made explicit from [19] and [10]. The category C2G of cat2-groups is
also equivalent to the category Crs2 of crossed squares, [15]. Hence there is an
equivalence of categories between CM(C1G) and Crs2. The correspondences giving
this equivalence can be described explicitly as follows:

Lemma 1.
a) Let ((H, d0, d1), (H ′, d′0, d

′
1), α) be an object of CM(C1G). Let (T, G, µ) and

(T ′, G′, µ′) be the crossed modules corresponding to (H, d0, d1) and (H ′, d′0, d
′
1) re-

spectively. Then the following is a crossed square

T
µ - G h : G× T ′ → T

h(g, t′) = (1, g) (t′,1)(1, g−1)

T ′

α|T×1 ?

µ′
- G′

α|1×G?

where (t′,1)(1, g−1) is the crossed module action of H ′ ∼= T ′ oG′ on H ∼= T oG.
b) Conversely, if

T
α- T ′ h : T ′ ×G → T

G

µ
?

β
- G′

µ′
?

is a crossed square, the corresponding object of CM(C1G) is

(T oG, d0, d1)
(α,β)−−−→ (T ′ oG′, d′0, d

′
1)

where d0(t, g) = (1, g), d1(t, g) = (1, µ(t)g), d′0(t
′, g′) = (1, g′), d′1(t

′, g′) =
(1, µ(t′)g′) for all (t, g) ∈ T o G, (t′, g′) ∈ T ′ o G′ and the action of T ′ o G′ on
T oG is given by

(t′,g′)(t, g) = ( t′( g′t)h (t′, g′g), g′g)

for all (t′, g′) ∈ T ′ oG′, (t, g) ∈ T oG.

Proof. It follows from the correspondences giving the equivalence of categories
between CM(C1G) and C2G (see [19] and [10]) and between C2G and Crs2 (see
[15]). 2

2. Definition of the (co)homology and elementary properties

In order to define our (co)homology theory, we first introduce Der and Diff
functors on the category of crossed modules. We can do so in two equivalent ways,
working directly in the category CM or working in the equivalent category of cat1-
groups. We shall illustrate both ways in some detail. While the first one may be
slightly more transparent, the reason we write explicitly the derivation functor in
cat1-groups is that viewing our (co)homology theory as (co)homology of cat1-groups
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will allow us to apply in the next sections the interpretation in terms of extensions
of the first and second cotriple cohomology in a category of interest [21].

Let Φ = (T,G, µ) be a crossed module, A an abelian group. The abelian crossed
module (A, 1, 0) is a Φ-module if and only if there is a split extension of crossed
modules

(A, 1, 0) ½ (T ′, G′, µ′) ←³ (T, G, µ) (6)

Since the base group of the crossed module on the left is 1 the morphism (T ′, G′, µ′) →
(T, G, µ) is an isomorphism at the level of base groups and so we can assume G′ = G.
Also observe that the section in (6) gives, by conjugation on T ′, an action of T on
A, hence T ′ ∼= Ao T . So we can assume that the sequence (6) has the form

(A, 1, 0) ½ (Ao T, G, µ′) ←³ (T, G, µ)

where the morphisms on the left and on the right are the canonical inclusion and
projection respectively. The action of G on AoT induces an action of G on A; in fact,
since (prT , idG) is a map of crossed modules, prT ( g(a, 1)) = 1 for all g ∈ G, a ∈ A.
Also, since the splitting (iT , idG) is a map of crossed modules, (0, gt) = g(0, t)
for all g ∈ G, t ∈ T . It follows that, for all g ∈ G, t ∈ T , µ̃(a, t) = µ(t),
g(a, t) = g(a, 1) g(0, t) = ( ga, 1)(0, gt) and µ̃(a, t) = µ(t). Requiring that the Peiffer
identity holds for the crossed module (Ao T, G, µ̃) an easy calculation shows that
for each a, a′ ∈ A, t, t′ ∈ T

µ(t)a′ = a + ta′ − tt′t−1
a.

It follows that a = ta = µ(t)a for each a ∈ A, t ∈ T . Hence A is a π1-module,
where π1 = G/µ(T ). We denote A o Φ = (A × T, G, µ̃). From a general fact in
algebraic categories,

Der(Φ, (A, 1, 0)) ∼= HomCM/Φ(Φ, Ao Φ).

Since A o Φ = (A × T,G, µ̃) it is straightforward that HomCM/Φ(Φ, A o Φ) ∼=
HomG(T, A), where HomG(T, A) is the group of G-equivariant homomorphisms
from T to A. In conclusion we obtain

Der((T,G, µ), (A, 1, 0)) ∼= HomG(T,A). (7)

The same procedure can be repeated in the equivalent category of cat1-groups; let
(T o G, d, s), (A, 0, 0) be the cat1-groups corresponding to the crossed modules
(T, G, µ) and (A,1,0) respectively. It is easy to see that (A, 0, 0) is a (T o G, d, s)-
module if and only if there is a split extension of cat1-groups

(A, 0, 0) ½ (Ao (T oG), d′, s′) ←³ (T oG, d, s)

where d′(a, (t, g)) = (0, d(t, g)), s′(a, (t, g)) = (0, s(t, g)), a ∈ A, (t, g) ∈ T o G.
Requiring that the identity [ker d′, ker s′] = 1 holds, an easy calculation shows that,
for each a, a′ ∈ A, t, t′ ∈ T

a + (t,1)a′ − (t′,µ(t′)−1)a− a′ = 0.

It follows that a = (t,1)a = (1,µ(t))a for each a ∈ A, t ∈ T . Thus T oG acts on A,
T × 1 and 1× µ(T ) act trivially on A, so A is a π1-module, π1 = G/µ(T ).



Homology, Homotopy and Applications, vol. 5(1), 2003 268

From [17] a derivation from (T oG, d, s) into (A, 0, 0) is a map D : T oG → A
which is a group derivation and such that it commutes with the 1-ary operations
ω ∈ Ω1\{−}. Hence D(d(t, g)) = D(s(t, g)) = 0 for (t, g) ∈ T oG, so that D(1, g) =
0 for every g ∈ G.

In conclusion

Der((T oG, d, s), (A, 0, 0)) ∼= {D ∈ Der(T oG, A) | D(1, G) = 0}. (8)

The two approaches are clearly equivalent. In fact there is an isomorphism

α : {D ∈ Der(T oG,A) | D(1, G) = 0} → HomG(T,A)

given by α(D)(t) = D(t, 1), as easily checked. This motivates the following defini-
tion.

Definition 2. Let Φ = (T, G, µ) be a crossed module, A an abelian group, π1 =
G/µ(T ). We say that Φ acts on A if A is a π1-module. In this case we define

Der(Φ, A) = {D ∈ Der(T oG,A) | D(1, G) = 0} ∼= HomG(T,A).

where Der(T oG,A) denotes group derivations from T oG into A and the action
of T oG on A is given by (t, g)a = gµ(T )a.

Similarly if Φ acts on A we have a contravariant functor Der(-, A) : CM/Φ → Ab
on the slice category; in fact, given an object Φ′ → Φ of CM/Φ, the action of Φ on
A induces an action of Φ′ on A. When the context is clear, given an action of Φ on
A we will write Der(Φ′ → Φ, A) as Der(Φ′, A).

Given a crossed module Φ = (T,G, µ) let JT,G be the ideal of Z(T oG) generated
by {(1, g)− (1, 1) | 1 6= g ∈ G}. Then

Der(Φ, A) ∼= HomZ(ToG)

(IZ(ToG)

JT,G
, A

) ∼= HomZπ1

(
Zπ1⊗Z(ToG)

IZ(ToG)

JT,G
, A

)
.

This motivates our next definition.

Definition 3. Let Φ = (T, G, µ) be a crossed module. Define

Diff Φ = Zπ1⊗Z(ToG)

IZ(ToG)

JT,G
.

For a crossed module Φ acting on the abelian group A, we denote Diff (Φ, A) =
A⊗Zπ1Diff Φ. Similarly we have a covariant functor Diff (-, A) : CM/Φ → Ab.

The slice category CM/Φ is tripleable over Set/U(Φ) and we shall denote by G
the corresponding cotriple. We now consider the cotriple (co)homology of Φ with
coefficients in the Φ-module (A, 1, 0). This is the left (resp. right) derived functor
of the functor Diff (-, A) (resp. Der(-, A)) on the slice category CM/Φ with respect
to the cotriple G.

Definition 4. Let Φ = (T, G, µ) be a crossed module, A a π1-module. Define for
each n > 0

Dn(Φ, A) = HnDer(G•Φ, A)
Dn(Φ, A) = HnDiff (G•Φ, A).
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The following are elementary properties of the (co)homology which can be de-
duced from well known general facts about cotriple (co)homology in an algebraic
category [3]. In what follows a projective crossed module means a projective object
in the category of crossed modules.

Proposition 5. Let Φ = (T,G, µ) be a crossed module acting on the abelian group
A. Then

a) D0(Φ, A) ∼= Der(Φ, A), D0(Φ, A) ∼= Diff (Φ, A).
b) If Φ is a projective crossed module,

Dn(Φ, A) = 0, Dn(Φ, A) = 0 for each n > 0.

c) Any short exact sequence of π1-modules 0 → A → A′ → A′′ → 0 induces long
exact (co)homology sequences

· · · → Dn(Φ, A) → Dn(Φ, A′) → Dn(Φ, A′′) → Dn+1(Φ, A) → · · ·
· · · → Dn(Φ, A) → Dn(Φ, A′) → Dn(Φ, A′′) → Dn−1(Φ, A) → · · ·

3. (Co)homology of aspherical crossed modules

A crossed module Φ = (T,G, µ) is called aspherical when the map µ is injective.
The category of aspherical crossed modules is isomorphic to the category of surjec-
tive group homomorphisms. Given a surjective group homomorphism f : G → G′

the corresponding aspherical crossed module is (ker f,G, i) and will be denoted
by Φf . If Φf acts on the abelian group A, then A is a ZG′-module as well as
a ZG-module via f . We say in this case that A is an f -module and we denote
Der(Φf , A) = Der(f, A), Diff Φf = Diff f .

Lemma 6. Let f : G → G′ be a surjective group homomorphism, N = ker f , A an
f -module. Then

a) Der(f, A) ∼= HomZG′(Nab, A), Diff f ∼= Nab.

b) Suppose that there is a group homomorphism f ′ : G′ → G with ff ′ = id. Then
there are short exact sequences

0 → Der(G′, A) → Der(G, A) → Der(f, A) → 0
0 → A⊗ZG′Diff f → A⊗ZGIG → A⊗ZG′IG′ → 0.

Proof.
a) Let α : Der(f, A) → HomZG′(Nab, A) be defined by

α(D)(n[N,N ]) = D(n, 1), n ∈ N.

It is straightforward that α(D) is well defined; it is also a ZG′-homomorphism since,
for each g′ = f(g) ∈ G′, n ∈ N

α(D)(g′ · n[N, N ]) = α(D)(gng−1[N, N ]) = D((1, g)(n, 1)(1, g−1)) =
= (1, g)D(n, 1) = g′α(D)(n[N, N ]).

Let β : HomZG′(Nab, A) → Der(f, A) be defined by

β(ϕ)(n, g) = ϕ(n[N, N ]), (n, g) ∈ N oG.
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Then β(ϕ) is a derivation and β(ϕ) (1, G) = 0 . We have α β(ϕ) (n[N,N ]) =
β(ϕ)(n, 1) = ϕ(n[N, N ]) for each n ∈ N ; for each D ∈ Der(f,A), (n, g) ∈ N o G
it is βα(D)(n, g) = α(D)(n[N, N ]) = D(n, 1) = D(n, g). Thus α and β are inverse
bijections and Der(f,A) ∼= HomZG′(Nab, A). Since this isomorphism holds for each
ZG′-module A, Yoneda Lemma implies Diff f ∼= Nab.

b) Let α : Der(G,A) → Der(f,A) be defined by α(D)(n, g) = D(n), D ∈ Der(G,A),
(n, g) ∈ N o G. If ξ ∈ Der(f, A) , let D(g) = ξ(gf ′f(g−1), 1), g ∈ G. For each
g1, g2 ∈ G

ξ(g1g2f
′f(g−1

2 ) f ′ f(g−1
1 ), 1) = ξ((1, g1) (g2f

′f(g−1
2 ), 1) (1, g−1

1 )(g1f
′f(g−1

1 ), 1) =

= ξ(g1f
′f(g−1

1 ), 1) + (1, g1) ξ(g2f
′f(g−1

2 ), 1).

This shows that D is a derivation. Also, (αD)(n, g) = D(n) = ξ(n, 1) = ξ(n, g) so
α is surjective. Exactness at the other terms is straightforward and b) follows for
the cohomology case.

From the well known exact sequence Nab ½ ZG′⊗ZGIG ³ IG′ and from part a)
we obtain the exact sequence

A⊗ZG′Diff f
β′→ A⊗ZGIG

α′→ A⊗ZG′IG′ → 0

where β′(a ⊗ n[N, N ]) = a ⊗ (n − 1), a ∈ A, n ∈ N , α′(a ⊗ ∑
i bi(gi − 1)) =

a⊗∑
i bi(f(gi)− 1), a ∈ A, bi ∈ Z, 1 6= gi ∈ G. Let γ : A⊗ZGIG → A⊗ZG′Diff f

be defined by

γ(a⊗
∑

i
xi(gi − 1)) =

∑
i
a⊗ xi(f ′f(g−1

i )gi)[N, N ]

for a ∈ A, xi ∈ Z, 1 6= gi ∈ G. Then γβ′(a⊗n[N, N ]) = γ(a⊗(n−1)) = a⊗n[N, N ]
for each a ∈ A, n ∈ N , so γβ′ = id. It follows that kerβ′ = 0 and b) is proved. 2

We recall the notion of relative group (co)homology in the sense of [14]. Let f :
G → G′ be a surjective group homomorphism and A an f -module. Let C∗(G,A) and
C∗(G,A) be the standard (co)chain complexes for computing group (co)homology.
For each n > 0 define

Hn(G′, G; A) = Hncoker (C∗(G′, A) ½ C∗(G,A))
Hn(G′, G; A) = Hnker(C∗(G, A) ³ C∗(G′, A)).

Notice that this definition differs from the one in [14] by a dimension shift of 1.

Theorem 7. Let f : G → G′ be a surjective group homomorphism, A an f-module.
Then

Dn(Φf , A) ∼=
{

Der(f, A) n = 0
Hn+1(G′, G;A) n > 0

Dn(Φf , A) ∼=
{

Diff (f, A) n = 0
Hn+1(G′, G; A) n > 0.

Proof. Let G•Φf = (T•, G•, i•), S• = G•/i•(T•) and ψ• : G• ³ S• be the quotient
maps. Since Φf is aspherical, from [4] T• → ker f , G• → G, S• → G′ are free
simplicial resolutions and there is a short exact sequence of free simplicial groups
T• ½ G• ³ S•. Let ⊥ be the free cotriple on Groups and ⊥•f : ⊥•G ³ ⊥•G′
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the induced homomorphisms. Since, for each n, ψn and ⊥nf have a section, from
Lemma 6 there is a commutative diagram of cochain complexes

0 - Der(S•, A) - Der(G•, A) - Der(ψ•, A) - 0

0 - Der(⊥•G′, A)
o?

- Der(⊥•G,A)
o?

- Der(⊥•f,A)
?

- 0 ,

where ∼ are cochain homotopy equivalences. Taking the corresponding long exact
cohomology sequences in each row and applying the five Lemma we deduce that

HnDer(ψ•, A) ∼= HnDer(⊥•f, A)

for each n > 0. On the other hand there is a commutative diagram of cochain
complexes

0 - Der(⊥•G′, A) - Der(⊥•G,A) - Der(⊥•f,A) - 0

0 - C∗(G′, A)
? α•- C∗(G,A)

?
- cokerα•

?
- 0 ,

where Der(⊥•G,A) → C∗(G, A) and Der(⊥•G′, A) → C∗(G′, A) are the natural
cochain maps of the Barr-Beck theory which induce isomorphisms in cohomology
(see [2]). Taking the long exact cohomology sequence in each row of the above
diagram and applying the five Lemma we deduce that for each n > 0

HnDer(⊥•f, A) ∼= Hn+1cokerα• = Hn+1(G,G′; A).

The argument for homology is similar. 2

4. Further properties of the (co)homology

4.1. The relationship with CCG (co)homology.

In the next proposition we establish the relationship between the (co)homology
theory defined in Section 3 and the one in [4]. For a crossed module (T, G, µ) let
ζ(T, G, µ) = T .

Proposition 8. Let Φ = (T, G, µ) be a crossed module, A a trivial π1-module. Then
for each n > 0

Dn(Φ, A) ∼= Hn+1
CCG((T, G, µ), (A, 1, 0)).

Suppose further that A ∼= Z. Then for each n > 0

Dn(Φ,Z) ∼= ζHCCG
n+1 (T, G, µ).

Proof. Let G•(T,G, µ) = (T•, G•, i•), S• = G•/i•(T•). Since the action of π1

on A is trivial, using Lemma 6 and the well known isomorphism Tn/[Gn, Tn] ∼=
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Z⊗ZSn
(Tn)ab, we obtain for each n > 0

Hn+1
CCG((T, G, µ), (A, 1, 0)) = HnHomAbCM

(( T•
[G•, T•]

,
G•

[G•, G•]
, i•

)
, (A, 1, 0)

)
∼=

∼= HnHomZ

(
T•

[G•, T•]
, A

)
∼= HnHomZ(Z⊗Zπ1Zπ1⊗ZS•(T•)ab, A) ∼=

∼= HnHomZπ1(Diff G•Φ, A) = Dn(Φ, A).

Dn(Φ,Z) = Hn(Z⊗Zπ1Diff G•Φ) ∼= Hn(Z⊗Zπ1Zπ1⊗ZS•(T•)ab) ∼= Hn

(
T•

[G•, T•]

)

∼= Hn

(
ζ
( T•

[G•, T•]
,

G•
[G•, G•]

, i•
))

∼= ζHn(T•, G•, i•)ab = ζHCCG
n+1 (T,G, µ).

2

4.2. Interpretation of the first and second cohomology group.
Let Φ = (T,G, µ) be a crossed module acting on the abelian group A. We shall

need a notion of singular and two-fold special extensions of (T, G, µ) by (A, 1, 0).

Definition 9. Let Φ = (T, G, µ) be a crossed module acting on an abelian group A.

i) A singular extension of (T,G, µ) by (A, 1, 0) is a short exact sequence of
crossed modules

(A, 1, 0) ½ (T ′, G, µ′)
(f,idG)

³ (T, G, µ) (9)

such that the corresponding short exact sequence of cat1-groups

(A× 1, 0, 0) ½ (T ′ oG, d′, s′)
(f,idG)

³ (T oG, d, s) (10)

is a singular extension of (T oG, d, s) by the (T oG, d, s)-module (A× 1, 0, 0)
in the sense of categories of interest [21].

ii) A 2-fold special extension of (T, G, µ) by (A, 1, 0) is an exact sequence of
crossed modules

(A, 1, 0)
i½ (T ′′, G′′, µ′′)

(α,β)→ (T ′, G′, µ′)
(f,r)
³ (T, G, µ) (11)

such that the corresponding exact sequence of cat1-groups

(A× 1, 0, 0)
i½ (T ′′ oG′′, d′′, s′′)

(α,β)→ (T ′ oG′, d′, s′)
(f,r)
³ (T oG, d, s) (12)

is a 2-fold special extension of (T oG, d, s) by the (T oG, d, s)-module (A ×
1, 0, 0) in the sense of categories of interest [21].

We now give a more explicit characterization of singular and 2-fold special ex-
tensions of (T,G, µ) by (A, 1, 0).

Lemma 10. Let Φ = (T,G, µ) be a crossed module acting on the abelian group A.
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i) A singular extension of (T,G, µ) by (A, 1, 0) consists of a short exact sequence
of crossed modules (9) such that if f ′ : T → T ′ is a set map with ff ′ = idT ,
it is

f ′(t)af ′(t−1) = a, ga = [g]a (13)

for all g ∈ G, a ∈ A, where [g] = gµ(T ) ∈ π1, [g]a is the given π1-module
action on A and ga is given by the crossed module action of G on T ′.

ii) A 2-fold special extension of (T, G, µ) by (A, 1, 0) consists of an exact sequence
of crossed modules (11) where

T ′′
α- T ′ h : T ′ ×G′′ → T ′′

G′′

µ′′
?

β
- G′

µ
?

(14)

is a crossed square and if f ′ : T → T ′, r′ : G → G′ are set maps with
ff ′ = idT , rr′ = idG, then for all g ∈ G, t ∈ T , a ∈ A

r′(g)a = [g]a, f ′(t)a = a. (15)

Here [g] = gµ(T ) ∈ π1, [g]a is the given π1-module action on A while r′(g)a
(resp. f ′(t)a) is the action of G′ (resp. T ′) on T ′′ in the crossed square (14).

Proof.
(i) By definition (9) is a singular extension of crossed modules if and only if the

corresponding extension of cat1-groups (10) is a singular extension in the sense of
categories of interest. By definition this means that the induced action of (ToG, d, s)
on (A× 1, 0, 0) coincides with the given action, that is

(f ′(t), g)(a, 1)(f ′(t), g)−1 = (t,g)(a, 1).

An easy calculation shows this is equivalent to

(f ′(t) gaf ′(t−1), 1) = ( [g]a, 1).

Hence for all t ∈ T , g ∈ G, A ∈ A,

f ′(t) gaf ′(t−1) = [g]a. (16)

It is immediate to check that (16) is equivalent to (13).
(ii) By definition (11) is a 2-fold special extension of crossed modules if and only

if the corresponding extension of cat1-groups (12) is a 2-fold special extension in
the sense of categories of interest. By definition (see [21]) this means that

a) (A× 1, 0, 0) is a (T oG, d, s)-module,

b) ((T ′′ oG′′, d′′, s′′), (T ′ oG′, d′, s′), (α, β)) is a crossed module in the category
of cat1-groups,

c) (A × 1, 0, 0) i→ (T ′′ o G′′, d′′, s′′) is a morphism of (T ′ o G′, d′, s′)-structures,
where (T ′ oG′, d′, s′) acts on (A× 1, 0, 0) via (f, r).
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Condition b) and Lemma 1 imply that (14) is a crossed square, and the crossed
module action of T ′ oG′ on T ′′ oG′′ is given by

(t′,g′)(t′′, g′′) = ( t′( g′t′′)h(t′, g′g′′), g′g′′). (17)

It easily checked that condition c) is equivalent to requiring that the induced action
of (T o G, d, s) on (A × 1, 0, 0) given by (f ′(t),r′(g))(a, 1) coincides with the given
action which is ( [g]a, 1). Hence by (17) we obtain

(f ′(t)(r′(g)a)h(f ′(t), 1), 1) = ( [g]a, 1)

for all t ∈ T , g ∈ G , a ∈ A. From the axioms of crossed squares [15] h(f ′(t), 1) = 1,
hence the above is equivalent to

f ′(t)( r′(g)a) = [g]a (18)

for all t ∈ T , g ∈ G , a ∈ A. It is straightforward that (18) is equivalent to (15). 2

Two singular extensions of (T, G, µ) by (A, 1, 0),

(A, 1, 0) ½ (T ′i , G, µ′i) ³ (T, G, µ)

i = 1, 2 are congruent if there is a morphism of crossed modules ψ : (T ′1, G, µ′1) →
(T ′2, G, µ′2) such that the following diagram commutes

(A, 1, 0)-- (T ′1, G, µ′1) -- (T,G, µ)

(A, 1, 0)

wwwww
-- (T ′2, G, µ′2)

ψ
?

-- (T, G, µ).

wwwww

It follows that ψ is an isomorphism. Hence congruence defines an equivalence rela-
tion on the set of singular extensions of Φ by (A, 1, 0) and we can consider the set
of equivalence classes E1(Φ, A). This is an abelian group with Baer sum, the zero
element being the class [(A, 1, 0) ½ Ao Φ ³ Φ].

Two 2-fold special extensions of Φ = (T, G, µ) by (A, 1, 0) are related if there is
a morphism

(A, 1, 0)-- (T ′′1 , G′′1 , µ′1) - (T ′1, G
′
1, µ

′
1) -- (T, G, µ)

(A, 1, 0)

wwwww
-- (T ′′2 , G′′2 , µ′2)

α
?

- (T ′2, G
′
2, µ

′
2)

β
?

-- (T, G, µ)

wwwww

such that (α, β) is a morphism of crossed squares. This relation generates an equiv-
alence relation and we denote by E2(Φ, A) the set of equivalence classes of 2-fold
special extensions of Φ by (A, 1, 0). This is in fact an abelian group with Baer sum
[21].

Proposition 11. Let Φ be a crossed module acting on the abelian group A. There
are isomorphisms of abelian groups

D1(Φ, A) ∼= E1(Φ, A)

D2(Φ, A) ∼= E2(Φ, A).
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Proof. From Section 2, the cohomology D∗(Φ, A) is cotriple cohomology in the cat-
egory of interest CM with coefficients in the Φ-module (A, 1, 0). The interpretation
in terms of extensions of the first and second cotriple cohomology in any category of
interest can be found for example in [21]. The result is thus a direct specialization
of [21, Theorem 2.1.3, Proposition 2.1.5, Theorem 2.2.3, Proposition 2.2.4 ]. 2

If f : G → G′ is a surjective group homomorphism and A is an f -module, from
Theorem 7 and Proposition 11 we deduce that

H2(G′, G; A) ∼= E1(Φf , A), H3(G′, G; A) ∼= E2(Φf , A).

We observe that the first of these isomorphisms recovers a result of [14]. We notice
in fact that the group E1(Φf , A) is isomorphic to the group of relative extensions
of (G′, G) by A; these consist of exact sequences of groups

0 → A → M
µ→ G

f→ G′ → 1

such that µ is a crossed module and the induced action of G′ on A coincides with
the given one. A congruence of relative extensions is a commutative diagram

0 → A → M
µ→ G → G′ → 1

0 → A

www
→ Q

ψ ?
µ′→ G

www
→ G′

www
→ 1

such that (ψ, idG) is a morphism of crossed modules. Let Ext(G′, G; A) be the set
of equivalence classes, made into an abelian group as in [14]. There is a map of
abelian groups α : Ext(G′, G; A) → E1(Φ, A)

α [0 → A → M
µ→ G

f→ G′ → 1] = [(A, 1, 0) ½ (M,G, µ) ³ (ker f, G, i)].

It is immediate to check that α is well defined and that it is a bijection.
The interpretation of H3(G′, G;A) in terms of equivalence classes of 2-fold spe-

cial extensions of (ker f,G, i) by (A, 1, 0) does not seem to have been given in the
literature as far as the author knows. Notice that the identification of relative group
cohomology with cotriple cohomology of a crossed module also allows to give a sim-
plicial interpretation of Hn(G,G′;A) for any n by direct application of the results
of [9].

4.3. Universal coefficient formulae.
We shall establish universal coefficient formulae for the (co)homology of a crossed

module Φ acting trivially on an abelian group A.

Theorem 12. Let Φ = (T, G, µ) be a crossed module acting trivially on an abelian
group A. Then there are short exact sequences

0 → Ext1Z(Dn−1(Φ,Z), A) → Dn(Φ, A) → HomZ(Dn(Φ,Z), A) → 0

0 → Dn(Φ,Z)⊗ZA → Dn(Φ, A) → TorZ1 (Dn−1(Φ,Z), A) → 0.

Proof. Since the action of Φ on A is trivial, from Proposition 8 we know that
Dn(Φ, A) ∼= Hn+1(Φ, (A, 1, 0)) and Dn(Φ,Z) ∼= ζHCCG

n+1 (Φ).
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Since Z has global dimension 1, there exists a resolution A → I• of A by injec-
tive Z-modules with Im = 0 for m > 2; then (A, 1, 0) → (I•, 1, 0) is an injective
resolution of (A, 1, 0) which satisfies the hypotheses of [4, Theorem 18 (iv) ]. The
cohomology universal coefficient sequence then follows from [4, Theorem 18 (iv)].

For the homology case, denote Φ• = G•Φ and let ϕ•• be the double complex of
abelian groups

ϕ•• = P•⊗Zπ1Diff Φ•

where P• → A is a projective Z-resolution of A with Pn = 0 for n > 1 (such
resolution exists since Z has global dimension 1). For any crossed module Φ acting
trivially on A, since Z⊗Zπ1Diff Φ ∼= D0(Φ,Z) ∼= ζHCCG

1 Φ ∼= ζΦab we have

A⊗Zπ1Diff Φ ∼= A⊗ZζΦab.

In particular
P•⊗Zπ1Diff Φ• ∼= P•⊗Zζ(Φ•)ab.

Since D1(Φq, A) = 0 for each q, from the cohomology universal coefficient sequence
and from Proposition 8 we obtain Ext1Z(ζ(Φq)ab, A) = 0 for every abelian group A.
It follows that ζ(Φq)ab is a projective Z-module. Therefore

Hv
p (P•⊗Zπ1Diff Φq) ∼= Hv

p (P•⊗Zζ(Φq)ab) ∼=

∼= TorZp(ζ(Φq)ab, A) ∼=
{

A⊗Zπ1Diff Φq p = 0,

0 p > 0.

Taking homology again we obtain

Hh
q Hv

p (P•⊗Zπ1Diff Φ•) ∼=
{

Dq(Φ, A) p = 0,

0 p > 0.

Therefore the spectral sequence

Hh
q Hv

p (ϕ••) ⇒ Hp+q Totϕ••

collapses, giving Hn Totϕ•• = Dn(Φ, A) n > 0. Consider the second spectral
sequence

Hv
q Hh

p (ϕ••) ⇒ Hp+qTot ϕ••.

Fixing p and taking homology we have:

Hh
q (Pp⊗Zπ1Diff Φ•) ∼= Hh

q (Pp⊗Zζ(Φ•)ab) ∼= Pp⊗ZHh
q ζ(Φ•)ab ∼=

∼= Pp⊗Zζ HCCG
q+1 (Φ) ∼=

{
Pp⊗ZDq(Φ,Z) p = 0, 1,

0 p > 1.

Taking homology again:

Hv
p Hh

q (P•⊗Zπ1Diff Φ•) =

{
TorZp(Dq(Φ,Z), A) p = 0, 1,

0 p > 1.

So we obtain a universal coefficient spectral sequence

E2
pq ⇒ Dp+q(Φ, A)
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which has E2
pq = 0 for p 6= 0, 1.

Therefore there are short exact sequences 0 → E2
0n → HnTot ϕ•• → E2

1,n−1 → 0,
i.e.

0 → Dn(Φ,Z)⊗ZA → Dn(Φ, A) → TorZ1 (Dn−1(Φ,Z), A) → 0.

2

5. The relationship with the (co)homology of the classifying
space.

In [11] the (co)homology of a crossed module Φ with coefficients in a π1-module
A is defined as the (co)homology of the classifying space B(Φ) of the crossed module
with coefficients in the local system corresponding to A. We recall the algebraic de-
scription of this (co)homology. This is a special case of a more general construction,
which is well known.

If G∗ is a simplicial group and A is a π0(G∗)-module, since π1BG∗ ∼= π0G∗, A is
a local system on the classifying space BG∗ of G∗. There is an algebraic description
of the (co)homology H∗(BG∗, A) and H∗(BG∗, A). If C∗(G,A) (resp. C∗(G, A)) is
the standard chain (resp. cochain) complex for computing group homology (resp.
cohomology) then there are isomorphisms (see for instance [8, Lemma 5.1]):

H∗(Tot(C∗(G∗, A)) ∼= H∗(BG∗, A), H∗(Tot(C∗(G∗, A)) ∼= H∗(BG∗, A). (19)

If G∗ → H∗ is a map of simplicial groups which is a weak equivalence, that is such
that it induces isomorphisms of homotopy groups, and A a π0(G∗)-module, then
the induced maps H∗(BG∗, A) → H∗(BH∗, A) and H∗(BG∗, A) → H∗(BH∗, A)
are isomorphisms.

Let N−1
∗ (T,G, µ) be the simplicial group whose Moore complex has length 1

corresponding to the crossed module Φ = (T, G, µ) as in Section 1. Taking G∗ =
N−1
∗ (T, G, µ) in (19) we obtain the algebraic description of the (co)homology of the

classifying space of the crossed module. If a morphism of crossed modules α : Φ → Φ′

is a weak equivalence then the (co)homology groups of the classifying spaces of Φ
and Φ′ with coefficients in a π1-module A are isomorphic.

Our main result in this section is that the (co)homology of crossed modules
defined in Section 2 is related by a long exact sequence to the (co)homology of
the classifying space of the crossed module. In proving this result, we also give a
simplicial description of the (co)homology of the classifying space. An application
of this will be given in Section 7.

In the second part of this section we give an alternative description of the
(co)homology D∗(Φ, A) and D∗(Φ, A) without using cotriples.

Theorem 13. Let Φ = (T, G, µ) be a crossed module, A a π1-module. Let G•Φ =
(T•, G•, µ•) and S• ∼= G•/µ•(T•). Then

i) BS• and BΦ are weakly homotopy equivalent.
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ii)

HnDiff (S•, A) ∼=
{

Hn+1(BΦ, A) n > 0,

A⊗Zπ1Iπ1 n = 0.

HnDer(S•, A) ∼=
{

Hn+1(BΦ, A) n > 0,

Der(π1, A) n = 0,

iii) There are long exact (co)homology sequences

· · · → Dn(Φ, A) → Hn+1(G,A) → Hn+1(B(T, G, µ), A) →
→ Dn−1(Φ, A) → · · · → A⊗Zπ1Diff Φ → A⊗Zπ1Diff G →
→ A⊗Zπ1Diff π1 → 0

0 → Der(π1, A) → Der(G,A) → Der(Φ, A) → H2(B(T,G, µ), A) →
→ H2(G, A) → D1(Φ, A) → · · ·

Proof.
(i) Let sCM be the category of simplicial crossed modules, SimplSet (resp.

Simpl2Set) the category of simplicial (resp. bisimplicial) sets. Let N−1
∗ : CM →

SG61 be as in §1.1 and let N : SG → SimplSet be the functor associating to a
simplicial group the diagonal of the bisimplicial set obtained by forming the nerve
of the group in each dimension of the simplicial group. The composite N ◦N−1

∗ is
a functor CM → SimplSet. By definition, the classifying space of a crossed module
Φ is the geometric realization of the simplicial set NN−1

∗ (Φ). Given a simplicial
crossed module, we can apply N ◦N−1

∗ in each dimension to obtain a bisimplicial
set. Hence we have a functor F : sCM → Simpl2Set.

Consider in particular the simplicial crossed modules G•Φ = (T•, G•, µ•) and
Φ = (T, G, µ) (the second is a constant simplicial crossed module).

We claim that F (G•Φ) → F (Φ) is a pointwise weak equivalence of bisimplicial
sets in the sense that all the maps F (G•Φ)∗m → F (Φ)∗m are weak equivalences of
simplicial sets. In fact, denoting by {·} the one point set

(FG•Φ)nm = (NN−1
∗ (Tn, Gn, µn))m =

{
{·} m = 0,

Tm2

n ×Gm
n m > 0.

(FΦ)nm = (NN−1
∗ (T, G, µ))m =

{
{·} m = 0,

Tm2 ×Gm m > 0.

By the properties of the cotriple resolution G•Φ [4], G• → G and T• → T are
free simplicial resolutions of groups, therefore Tm2

• × Gm
• → Tm2 × Gm is a weak

equivalence in SimplSet, hence for each m, F (G•Φ)∗m → F (Φ)∗m is a weak equiv-
alence of simplicial sets, that is F (G•Φ) → F (Φ) is a pointwise weak equivalence
in Simpl2Set. It is proved in [12, Ch. IV, Proposition 1.7] that if f : X → Y is
a pointwise weak equivalence of bisimplicial sets, in the sense that all the maps
f : Xm → Ym are weak equivalences of simplicial sets, then the induced map
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f∗ : diag (X) → diag (Y ) of associated diagonal simplicial sets is a weak equiva-
lence. It follows that diag F (G•Φ) → diag F (Φ) is a weak equivalence in SimplSet, so
that the respective geometric realizations |diag F (G•Φ)| and |diag F (Φ)| are weakly
homotopy equivalent.

Recall (see for instance [20, p. 94]) that the geometric realization |diag X| of the
diagonal of a bisimplicial set X is homeomorphic to the geometric realization of
the simplicial space obtained by taking the geometric realization in vertical direc-
tions and is also homeomorphic to the geometric realization of the simplicial space
obtained by taking the geometric realization in the horizontal directions. Hence
|diag F (G•Φ)| is homeomorphic to the geometric realization of the simplicial space
{|NN−1

∗ (Tn,Gn,µn)|}={B(Tn,Gn,µn)}; but since each crossed module (Tn,Gn,µn)
is aspherical, B(Tn, Gn, µn) ∼= B(1, Sn, i) ∼= BSn. The geometric realization of the
simplicial space {BSn} is homeomorphic to the geometric realization of the simpli-
cial group S•, BS•. So in conclusion |diag F (G•Φ)| ∼= BS•.

On the other hand clearly |diag F (Φ)| = BΦ, so that BΦ and BS• are weakly
homotopy equivalent, proving (i).

(ii) It follows from (i) that for each n > 0, Hn(BΦ, A) ∼= Hn(BS•, A). On the
other hand we observe that for each n > 1

Hn(BS•, A) ∼= Hn−1Diff (S•, A) (20)

In fact, we can compute Hn(BS•, A) as indicated in (19). Since Sm is free, 0 →
ISm → ZSm → Z → 0 is a free resolution of the trivial Sm-module Z, hence
C•(Sm, A) is the complex 0 → A⊗ZSmISm → A → 0. It follows that H∗(BS•, A) is
the total homology of the bicomplex ψ••

0 0 0 0

· · · - A⊗ZS3IS3

?
- A⊗ZS2IS2

?
- A⊗ZS1IS1

?
- A⊗ZS0IS0

?
- 0

· · · - A
?

id
- A

?

id
- A

?

id
- A

?
- 0

0
?

0
?

0
?

0
?

.

The spectral sequence of this double complex is

E1
pq = Hh

q (ψ∗p) =





0 p = 0, q > 0 or p > 1,

A p = 0, q = 0,

Hq(A⊗ZS•IS•) p = 1, q > 0.

Therefore

E2
pq =

{
0 for p 6= 0, 1 or p = 0, q > 0
Hq(A⊗ZS•IS•) p = 1, q > 0.

So there are short exact sequences 0 → E2
0n → HnTotψ•• → E2

1,n−1 → 0 and since
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E2
0n = 0 for n > 0 and E2

1,n−1 = Hn−1(A⊗ZS•IS•) for n > 1 we deduce

Hn(BS•, A) ∼= HnTotψ•• ∼= E2
1,n−1 = Hn−1(A⊗ZS•IS•)

for n > 1, which is (20). It follows that HnDiff (S•, A) ∼= Hn+1(BΦ, A) for n > 1.
It remains to prove that H0Diff (S•, A) ∼= A⊗Zπ1Iπ1 . Consider the following

diagram:

0 - A⊗Zπ1Diff G1Φ - A⊗Zπ1Diff G1
- A⊗Zπ1Diff S1

- 0

0 - A⊗Zπ1Diff G0Φ
?

- A⊗Zπ1Diff G0

?
- A⊗Zπ1Diff S0

?
- 0

A⊗Zπ1Diff Φ
?

- A⊗Zπ1Diff G
?

- A⊗Zπ1Diff π1

?
- 0

0
?

0
?

0
?

.

The first two rows from the top are exact by Lemma 6. We claim that the bottom
row is also exact. In fact, it is straightforward to check that there is an exact
sequence

0 → Der(π1, A) α→ Der(G,A)
β→ Der(Φ, A) (21)

where α(D)(g) = D(gµ(T )), g ∈ G, D ∈ Der(π1, A) and β(D) = Dd1 − Dd0,
d1(t, g) = µ(t)g, d0(t, g) = g, (t, g) ∈ T o G. Consider the map γ : Diff Φ →
Zπ1⊗ZGIG defined by

γ
(
x⊗

[∑
i
ai(yi − e)

])
= x⊗

(∑
i
ai(d1(yi)− 1)−

∑
i
ai(d0(yi)− 1)

)

x ∈ Zπ1, e 6= yi ∈ T oG, ai ∈ Z. By left exactness of HomZπ1(-, A) we obtain an
exact sequence

0 → HomZπ1(coker γ, A) → Der(G,A) → Der(Φ, A).

Since HomZπ1(γ, A) = β, (21) implies that HomZπ1(coker γ, A) ∼= HomZπ1(Iπ1 , A)
for every Zπ1-module A; hence coker γ ∼= Iπ1 and we have the exact sequence

Diff Φ → Zπ1⊗ZGIG → Iπ1 → 0.

From right exactness of A⊗Zπ1- the claim follows. Since the first two columns
from the left of the diagram are also exact, it follows from an easy diagram chas-
ing argument that the third column is also exact. Therefore H0(A⊗Zπ1Diff S•) ∼=
A⊗Zπ1Diff π1. The argument for cohomology is similar.

(iii) From [4] T• → T and G• → G are free simplicial resolutions and there is

a short sequence of free simplicial groups T• ½ G•
ψ•³ S•. From Lemma 6 we have

short exact sequences of (co)chain complexes

0 → A⊗Zπ1Diff ψ• → A⊗Zπ1Diff G• → A⊗Zπ1Diff S• → 0
0 → Der(S•, A) → Der(G•, A) → Der(ψ•, A) → 0.
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Taking the corresponding long exact (co)homology sequences and using (ii) we ob-
tain

· · · → Dn(Φ, A) → Hn+1(G,A) → HnDiff (S•, A) → Dn−1(Φ, A) → · · ·
→ A⊗Zπ1Diff Φ → A⊗Zπ1Diff G → H0Diff (S•, A) → 0

(22)

0 → H0Der(S•, A) → Der(G,A) → Der(Φ, A) → H1Der(S•, A) →
→ H2(G,A) → D1(Φ, A) → · · · .

(23)

2

Since, from Proposition 8, Dn(Φ,Z) ∼= ζHCCG
n+1 (T,G, µ), the long exact homology

sequences of Theorem 13 for the case A = Z recovers the result of [13, Corollary 4]
which is established there via a different method . The following are consequences
of the theorem above.

Corollary 14. Let Φ = (T, G, µ) and Φ′ = (T ′, G′, µ′) be two crossed modules
acting on the abelian group A. Suppose that there is a weak equivalence Φ → Φ′

inducing isomorphisms H∗(G,A) ∼= H∗(G′, A), H∗(G,A) ∼= H∗(G′, A). Then for
each n > 0

Dn(Φ, A) ∼= Dn(Φ′, A), Dn(Φ, A) ∼= Dn(Φ′, A).

Proof. By hypothesis there exists a crossed module homomorphism (f, g) : Φ → Φ′

inducing isomorphisms of homotopy groups. Let G•Φ = (T•, G•, µ•), G•Φ′ =
(T ′•, G′•, µ′•), S• = G•/µ•(T•), S′• = G′•/µ′•(T ′•). The homomorphisms G•(f, g) :
G•Φ → G•Φ′ induce homomorphisms S• → S′•. By Lemma 6 we have a commuta-
tive diagram of chain complexes

0 - A⊗Zπ1Diff G•Φ - A⊗Zπ1Diff G• - A⊗Zπ1Diff S• - 0

0 - A⊗Zπ′1Diff G•Φ′
?

- A⊗Zπ′1Diff G′•
?

- A⊗Zπ′1Diff S′•
?

- 0 ,

where π1 and π′1 are the first homotopy groups of Φ and Φ′ respectively. Since Φ and
Φ′ are weakly equivalent, by Theorem 13 H∗(A⊗Zπ1Diff S•) ∼= H∗(A⊗Zπ′1Diff S′•).
Taking the corresponding long exact homology sequence in each row of the above
diagram and using the hypothesis that H∗(G,A) ∼= H∗(G′, A) we deduce by the
Five Lemma that D∗(Φ, A) ∼= D∗(Φ′, A). The case of cohomology is similar. 2

Corollary 15. Let Φ = (T,G, µ) be a crossed module acting on the abelian group
A, and Φ′ = (R, F, δ) a crossed module weakly equivalent to Φ with F a free group.
Let π1

∼= G/µ(T ) ∼= F/δ(R). Then

Hn+2(B(Φ), A) ∼= Dn(Φ′, A), Hn+2(B(Φ), A) ∼= Dn(Φ′, A)

for each n > 1 and

H2(B(Φ), A) ∼= ker(A⊗Zπ1Diff Φ′ → A⊗Zπ1Diff F )

H2(B(Φ), A) ∼=coker (Der(F,A) → Der(Φ′, A)).
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Proof. Apply Theorem 13 using the fact that H∗(B(Φ), A) ∼= H∗(B(Φ′), A),
H∗(B(Φ), A) ∼= H∗(B(Φ′), A) and Hn(F,A) = Hn(F, A) = 0 for n > 2. 2

Notice that, since Der(Φ, A) ∼= {D ∈ HomGr(T, A) | gD(t) = D( gt)} from Corol-
lary 15 we recover the result of [11, Theorem 6], which is established there by dif-
ferent method. Moreover, taking A = Z and using the fact that Z⊗Zπ1Diff Φ′ ∼=
R/[R,F ] and Z⊗Zπ1Diff F ∼= F/[F, F ], we recover the Hopf-type formula for
H2(B(Φ),Z) first proved in [11, Theorem 6].

Our aim in the remaining part of this section is to give a description of the
(co)homology D∗(Φ, A) and D∗(Φ, A) without using cotriples.

Let Φ = (T, G, µ) be a crossed module. The inclusion (1, G, i) ↪→ (T, G, µ) in-
duces an inclusion of simplicial groups N−1

∗ (1, G, i) → N−1
∗ (T, G, µ). In turn this

determines for each m, n an injection Cm(N−1
n (1, G, i), A) ½ Cm(N−1

n (T, G, µ), A)
and a surjection Cm(N−1

n (T, G, µ), A) ³ Cm(N−1
n (1, G, i), A). We therefore have

an injective map of chain complexes of abelian groups

Tot C∗(N−1
∗ (1, G, i), A) ½ Tot C∗(N−1

∗ (T, G, µ), A) (24)

and a surjective map of cochain complexes of abelian groups

TotC∗(N−1
∗ (T, G, µ), A) ³ TotC∗(N−1

∗ (1, G, i), A). (25)

Denote by β•(Φ, A) the cokernel in (24) and by β•(Φ, A) the kernel in (25).

Lemma 16. Let Φ = (T, G, µ) be an aspherical crossed module with T, G, π1 free
groups, and let A be a π1-module. Then

Hnβ•(Φ, A) = Hnβ•(Φ, A) = 0 for each n 6= 2,

H2β•(Φ, A) ∼= Diff (Φ, A),

H2β•(Φ, A) ∼= Der(Φ, A).

Proof. Consider the long exact homology sequence associated to the short exact
sequence of chain complexes

TotC∗(N−1
∗ (1, G, i), A) ½ TotC∗(N−1

∗ (T,G, µ), A) ³ β•(Φ, A).

We have Hn(G,A) = 0 for n > 2 as G is free; since (T, G, µ) is weakly equivalent to
(1, π1, i) and π1 is free, Hn(B(Φ), A) ∼= Hn(π1, A) = 0 for n > 2 andH1(B(Φ), A)∼=
H1(π1, A).Thus this long exact homology sequence givesHnβ•(Φ,A)=Hnβ•(Φ,A)=
0 for n > 2 and the exact sequence

0 → H2β•(Φ, A) → H1(G,A) → H1(π1, A) → H1β•(Φ, A) →
→ H0(G,A) → H0(π1, A) → H0β•(Φ, A) → 0.

Since H0(G,A) ∼= AG
∼= Aπ1

∼= H0(π1, A) it follows that Hiβ•(Φ, A) = 0 for i = 0, 1
and

H2β•(Φ, A) ∼= ker(H1(G, A) → H1(π1, A)).

On the other hand, since π1 is free, the five-term homology sequence associated to
the extension T ½ G ³ π1 reduces to

0 → A⊗Zπ1Tab → H1(G,A) → H1(π1, A) → 0.
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Thus by Lemma 6, H2β•(Φ, A) ∼= Diff (Φ, A). The argument for cohomology is
similar. 2

Proposition 17. Let Φ be a crossed module acting on the abelian group A. Then
for each n > 2

Hn(β•(Φ, A)) ∼= Dn−2(Φ, A), Hn(β•(Φ, A)) ∼= Dn−2(Φ, A).

Proof. Let G•Φ = (T•, G•, i•) and consider the bicomplexes {ψpq}, {χpq}, {Lpq},
ψpq = βq((Tp, Gp, ip), A),

χpq = (TotC∗(N−1
∗ (Tp, Gp, ip), A))q,

Lpq = (TotC∗(N−1
∗ (1, Gp, i), A))q.

We aim to show that for each n > 2

HnTot ψ•• ∼= Hnβ•(Φ, A). (26)

The morphism of simplicial crossed modules (T•, G•, i•)→(T,G, µ) and (1, G•, i)→
(1, G, i) (here (T, G, µ) and (1, G, i) are thought of as constant simplicial crossed
modules) induce morphisms of double complexes χ•• → Tot C∗(N−1

∗ (T, G, µ), A)
and L•• → TotC∗(N−1

∗ (1, G, i), A). We claim that these morphisms induce isomor-
phisms in the total homologies in dimensions n > 2. In fact if S• = G•/i•(T•) , the
double complex χ•• gives rise to a spectral sequence

E1
pq = HqTot C∗(N−1

∗ (Tp, Gp, ip), A) ∼= Hq(B(Tp, Gp, ip), A) ∼=
∼= Hq(B(1, Sp, i), A) ∼= Hq(Sp, A),

E2
pq = HpE

1
∗q.

On the other hand since each Sp is a free group, the double complex α••

0 0 0 0

· · · - A⊗ZS3IS3

?
- A⊗ZS2IS2

?
- A⊗ZS1IS1

?
- A⊗ZS0IS0

?
- 0

· · · - A
?

id
- A

?

id
- A

?

id
- A

?
- 0

0
?

0
?

0
?

0
?

.

gives rise to a spectral sequence with the same E1 and E2 terms, hence HnTot α•• ∼=
HnTot χ••. As shown in the proof of theorem 13, for each n > 2 HnTot α•• =
Hn−1(A⊗ZS•IS•) and by Theorem 13 ii) Hn−1(A⊗ZS•IS•) ∼= Hn(BΦ, A); hence
HnTot χ•• ∼= Hn(BΦ, A) ∼= HnTot C∗(N−1

∗ (T, G, µ), A) for each n > 2.
Similarly, since each Gp is free,

TotC∗(N−1
∗ (1, G•, i), A)q =

{
A q = 0,

A⊕ (A⊗ZG•IG•) q > 0.
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Therefore L•• gives rise to a spectral sequence

E1
pq = Hp(TotC∗(N−1

∗ (1, G•, i), A))q =

{
0 q = 0,

Hp(A⊗ZG•IG•) q > 0.

E2
pq = HqE

1
p∗ =

{
0 q 6= 1,

Hp(A⊗ZG•IG•) q = 1.

It follows that, for each n > 2, HnTotL•• = E2
n−1,1 = Hn−1(A⊗ZG•IG•) =

Hn(G, A) ∼= HnTotC∗(N−1
∗ (1, G, i), A). This proves the claim.

Consider the commutative diagram of short exact sequences of double complexes
of abelian groups

L••- - χ•• -- ψ••

Tot C∗(N−1
∗ (1, G, i), A)

?
-- TotC∗(N−1

∗ (T,G, µ), A)
?

-- β•((T, G, µ), A).
?

Taking the induced long exact sequences in total homologies in each row of the
diagram, from the claim and the Five lemma it follows that, for each n > 2

HnTot ψ•• ∼= Hnβ•((T, G, µ), A)

which is (26).
On the other hand, by Lemma 16 the double complex ψ•• gives rise to a spectral

sequence

E1
pq = Hqβ•((Tp, Gp, ip), A) =

{
0 q 6= 2,

Diff ((Tp, Gp, ip), A) q = 2

so that

E2
pq = HpE

1
∗q =

{
0 q 6= 2,

HpDiff ((T•, G•, i•), A) = Dp(Φ, A) q = 2.

Hence E2
pq ⇒ Hp+qTotψ•• = Hp+qβ•((T, G, µ), A) collapses, giving

Hnβ•(Φ, A) = E2
n−2,2 = Dn−2(Φ, A)

for n > 2. The argument for cohomology is similar. 2

We notice that the description of the (co)homology D∗(Φ, A) and D∗(Φ, A) given
in the above proposition gives rise to a version of Theorem 13 (ii), which differs from
the previous one in low dimensions.

Corollary 18. Let Φ = (T, G, µ) be a crossed module, A a π1-module. There exist
long exact (co)homology sequences

→ Dn(Φ, A) → Hn+1(G,A) → Hn+1(B(T, G, µ), A) → Dn−1(Φ, A) →
· · · → H2(G,A) → H2(B(T, G, µ), A) → A⊗Zπ1Diff Φ →
→ H1(G,A) → H1(π1, A) → 0
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0 → H1(π1, A) → H1(G,A) → Der(Φ, A) → H2(B(T, G, µ), A) →
→ H2(G,A) → D1(Φ, A) → · · ·

Proof. Take the long exact (co)homology sequences associated to the short exact
sequences of (co)chain complexes

Tot C∗(N−1
∗ (1, G, i), A) ½ Tot C∗(N−1

∗ (T, G, µ), A) ³ β•(Φ, A)

β•(Φ, A) ½ TotC∗(N−1
∗ (T,G, µ), A) ³ Tot C∗(N−1

∗ (1, G, i), A).

Apply Proposition 17 and the fact (see [11]) that H1(B(Φ), A) ∼= H1(π1, A) and
H1(B(Φ), A) = H1(π1, A). 2

We finally notice that a more topological approach than the one given in this pa-
per should allow to obtain a topological interpretation of the (co)homology D∗(Φ, A)
and D∗(Φ, A) as relative (co)homology of the pair of spaces (BΦ, BG) with local
coefficients. In fact, it is reasonable to conjecture that, for each n > 0, Hnβ•(Φ, A)
(resp. Hnβ•(Φ, A)) is isomorphic to Hn(BΦ, BG; A) (resp. Hn(BΦ, BG; A)) , so
that by Proposition 17, for each n > 2 Dn−2(Φ, A) (resp. Dn−2(Φ, A)) would be
isomorphic to Hn(BΦ, BG; A) (resp. Hn(BΦ, BG; A)).

6. An example

Let M be a G-module and consider the crossed module Φ = (M, G, 0). The map of
crossed modules (i, idG) : (1, G, i) → (M, G, 0) has a section (0, idG) : (M,G, 0) →
(1, G, i). Therefore the corresponding map B(G) ↪→ B(M, G, 0) has a section
B(M,G, 0) → B(G). Hence the long exact sequences of Theorem 13 give split short
exact sequences for each n > 2

0 → Hn(G,A) ←→ Hn(B(M, G, 0), A) → Dn−2((M, G, 0), A) → 0

0 → Dn−2((M,G, 0), A) → Hn(B(M, G, 0), A) ←→ Hn(G,A) → 0.
(27)

It follows that for each n > 2

Hn(B(M, G, 0), A) ∼= Hn(G,A)⊕Dn−2((M,G, 0), A)

Hn(B(M, G, 0), A) ∼= Hn(G, A)⊕Dn−2((M, G, 0), A).
(28)

Recall that for every crossed module (T,G, µ) with homotopy groups π1 and π2

there is a fibration sequence

K(π2, 2) → |B(T,G, µ)| → K(π1, 1)

where K(π2, 2) and K(π1, 1) are Eilenberg–MacLane spaces. Hence we have corre-
sponding Serre spectral sequences:

E2
pq = Hp(π1, Hq(K(π2, 2), A)) ⇒ Hp+q(B(T,G, µ), A)

Epq
2 = Hp(π1,H

q(K(π2, 2), A)) ⇒ Hp+q(B(T,G, µ), A).

In the following proposition we shall use the well known fact that, for every abelian
group A

H1K(A, 2) = 0 = H3K(A, 2), H2K(A, 2) ∼= A, H4K(A, 2) ∼= Γ2A (29)
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where Γ2 denotes Whitehead’s universal quadratic functor.

Proposition 19. Let M be a ZG-module and let Φ = (M,G, 0) act on the abelian
group A.
a) There are exact sequences

D2(Φ, A) → H2(G,M⊗ZA) → H0(G, TorZ1 (M, A)) →
→ D1(Φ, A) → H1(G,M⊗ZA) → 0

0 → H1(G, HomZ(M, A)) → D1(Φ, A) → H0(G, Ext1Z(M,A)) →
→ H2(G, HomZ(M, A)) → D2(Φ, A).

b) If TorZ1 (M,A) = 0 then there is an exact sequence

D3(Φ, A) → H3(G, M⊗ZA) → H0(G, Γ2M⊗ZA) →
→ D2(Φ, A) → H2(G,M⊗ZA) → 0.

If Ext1Z(M,A) = 0 then there is an exact sequence

0 → H2(G,HomZ(M, A)) → D2(Φ, A) → H0(G, HomZ(Γ2M, A)) →
→ H3(G,HomZ(M, A)) → D3(Φ, A).

Proof. The Serre spectral sequences for the crossed module (M, G, 0) are

E2
pq = Hp(G,Hq(K(M, 2), A)) ⇒ Hp+q(B(M, G, 0), A)

Epq
2 = Hq(G, Hq(K(M, 2), A)) ⇒ Hp+q(B(M, G, 0), A)

while the same spectral sequence for the crossed module (1, G, i) has E2
pq = Epq

2 = 0
for q 6= 0; also Hn(B(1, G, i), A) = Hn(G,A) and Hn(B(1, G, i), A) = Hn(G,A).

Hence from (27) we deduce that there are spectral sequences

Ẽ2
pq = Hp(G,Hq+2(K(M, 2), A)) ⇒ Dp+q((M,G, 0), A)

Ẽpq
2 = Hp(G,Hq+2(K(M, 2), A)) ⇒ Dp+q((M,G, 0), A).

The corresponding exact sequences of low degree terms are

D2(Φ, A) → H2(G,H2(K(M, 2), A)) → H0(G,H3(K(M, 2), A)) →
→ D1(Φ, A) → H1(G, H2(K(M, 2), A)) → 0.

0 → H1(G,H2(K(M, 2), A)) → D1(Φ, A) → H0(G,H3(K(M, 2), A)) →
→ H2(G,H2(K(M, 2), A)) → D2(Φ, A).

By (29) and the universal coefficient theorem,

H2(K(M, 2), A) ∼= M⊗ZA, H3(K(M, 2), A) ∼= TorZ1 (M,A)
H2(K(M, 2), A) ∼= HomZ(M, A), H3(K(M, 2), A) ∼= Ext1Z(M, A)

so that part a) follows.
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If TorZ1 (M, A) = 0 then Ẽ2
p1 = Hp(G, TorZ1 (M, A)) = 0. Hence (see [5]) there is

an exact sequence D3 → Ẽ2
3,0 → Ẽ2

0,2 → D2 → Ẽ2
2,0 → 0, i.e.

D3(Φ, A) → H3(G,H2(K(M, 2), A) → H0(G,H4(K(M, 2), A)) →
→ D2(Φ, A) → H2(G,H2(K(M, 2), A)) → 0.

From (29) and the universal coefficient theorem, we have H4(K(M, 2),A) = Γ2M⊗ZA
so that part b) follows for the homology case.

If Ext1Z(M, A) = 0 then Ẽp1
2 = Hp(G, Ext1Z(M,A)) = 0 so there is an exact

sequence 0 → Ẽ2,0
2 → D2 → Ẽ0,2

2 → Ẽ3,0
2 → D3 , i.e.

0 → H2(G,H2(K(M, 2), A)) → D2(Φ, A) → H0(G,H4(K(M, 2), A)) →
→ H3(G,H2(K(M, 2), A)) → D3(Φ, A).

From the universal coefficient theorem H4(K(M, 2), A)) = HomZ(Γ2M, A) so that
part b) follows. 2

We point out that for the case of homology with Z-coefficients, (28) and the
homology exact sequences of Proposition 19 were also given in [13].

7. An application to the cohomology of the classifying space

In this section we apply the simplicial description of the cohomology of the clas-
sifying space of a crossed module proved in Theorem 13 ii) to give an interpretation
of these cohomology groups in dimensions n = 2, 3.

Lemma 20. Let Φ = (T, G, µ) be a crossed module, A an abelian group. Then
(1, A, i) is a Φ-module if and only if A is a π1-module. In this case there is an
isomorphism

Der(Φ, (1, A, i)) ∼= Der(π1, A).

Proof. From Section 1, the singular object (1, A, i) is a Φ-module if and only if
there is a split extension of crossed modules

(1, A, i) ½ (T ′, G′, µ′) ³← (T, G, µ). (30)

In particular we have split short exact sequences of groups 1 ½ T ′ ³ T and
A ½ G′ ³← G; thus we can assume that T ′ = T , G′ ∼= A o G, that the map
prG : AoG → G is prG(a, g) = g and that the map iG : G → AoG is iG(g) = (0, g).
Hence we have the split short exact sequence

(1, A, i)- - (T, AoG, µ′) ¾(idT ,iG)

(idT ,prG)
-- (T, G, µ). (31)

Since (idT , iG) is a crossed module map, µ′idT = iGµ, hence µ′(t) = (0, µ(t)) for all
t ∈ T , that is µ′ = (0, µ). Since (idT ,prG) is a crossed module map, (a,g)t = gt for
all (a, g) ∈ AoG, t ∈ T . The axioms of crossed module for (T, AoG, (0, µ)) give,
for all (a, g) ∈ AoG, t ∈ T

(0, µ)( (a,g)t) = (a, g)(0, µ(t))(a, g)−1.
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An easy calculation shows that this is equivalent to

(0, µ( gt)) = (a− µ( gt)a, µ( gt))

for all t ∈ T , g ∈ G, a ∈ A. It follows that a = µ( gt)a. In particular, taking g = 1
we obtain a = µ(t)a for all t ∈ T , a ∈ A, so that A is a π1-module.

Conversely, if A is a π1-module, then (31) is a split singular extension of crossed
modules, hence (1, A, i) is a Φ-module. We have

Der(Φ, (1, A, i)) ∼= HomCM/Φ(Φ, (T,AoG, (0, µ)).

We now show that there is an isomorphism

α : HomCM/Φ(Φ, (T, AoG, (0, µ)) → Der(π1, A).

Let α(idT , (D, idG)) = D. Then D ∈ Der(G,A) and since (D, idG)µ = (0, µ) we
have Dµ = 0 so that D ∈ Der(π1, A). Clearly α is injective. Given D ∈ Der(π1, A)
let D(g) = D(gµ(T )), g ∈ G. Then D ∈ Der(G,A) and α(idT , (D, idG)) = D, so
that α is also surjective. 2

We can similarly define a functor Der(-, (1, A, i)) : CM/Φ → Ab on the slice
category.

In the next proposition we show that the cohomology of the classifying space of
a crossed module can be described as cotriple cohomology.

Proposition 21. Let Φ = (T,G, µ) be a crossed module, A a π1-module. Then for
each n > 0

Hn(B(Φ), A) ∼= Hn−1Der(G•Φ, (1, A, i)).

Proof. Let G•Φ = (T•, G•, i•), S• = G•/i•(T•). From Lemma 20

HnDer(G•Φ, (1, A, i)) ∼= HnDer(S•, A).

The result follows from Theorem 13 ii). 2

The following corollary generalizes a result of [4, Theorem 10 (iv)] which is
established there in the case of aspherical crossed modules.

Corollary 22. Let Φ = (T,G, µ) be a crossed module, A a trivial π1-module. Then
for each n > 0

Hn
CCG((T, G, µ), (1, A, i)) ∼= Hn(B(Φ), A).

Proof. Let G•Φ = (T•, G•, i•), S• = G•/i•(T•). Since actions are trivial

Der(S•, A) ∼= HomGp(S•, A) ∼= HomCM((T•, G•, i•), (1, A, i)).

By definition Hn
CCG((T, G, µ), (1, A, i)) ∼= Hn−1HomCM((T•, G•, i•), (1, A, i)) and

the result follows from Theorem 13 ii). 2

We finally obtain the interpretation for the second and third cohomology group
of the classifying space. We need the notion of singular and 2-fold special extensions
of (T, G, µ) by (1, A, i).

Definition 23. Let Φ=(T, G, µ) be a crossed module acting on an abelian group A.



Homology, Homotopy and Applications, vol. 5(1), 2003 289

i) A singular extension of (T,G, µ) by (1, A, i) is a short exact sequence of
crossed modules

(1, A, i) ½ (T, G′, µ′)
(idT ,f)

³ (T, G, µ) (32)

such that the corresponding short exact sequence of cat1-groups

(1×A, id, id) ½ (T oG′, d′, s′) ³ (T oG, d, s) (33)

is a singular extension of (T oG, d, s) by the (T oG, d, s)-module (1×A, id, id)
in the sense of categories of interest [21].

ii) A 2-fold special extension of (T, G, µ) by (1, A, i) is an exact sequence of
crossed modules

(1, A, i)
i½ (T ′′, G′′, µ′′)

(α,β)−−−→ (T ′, G′, µ′)
(f,r)
³ (T, G, µ) (34)

such that the corresponding exact sequence of cat1-groups

(1×A, id, id) ½ (T ′′oG′′, d′′, s′′)
(α,β)−−−→ (T ′oG′, d′, s′)

(f,r)
³ (ToG, d, s) (35)

is a 2-fold special extension of (T o G, d, s) by the (T o G, d, s)-module (1 ×
A, id, id) in the sense of categories of interest [21].

A more explicit characterization of singular and 2-fold special extensions of
(T, G, µ) by (1, A, i) can be given as follows.

Lemma 24. Let Φ = (T,G, µ) be a crossed module acting on the abelian group A.
i ) A singular extension of (T, G, µ) by (1, A, i) consists of a short exact sequence

of crossed modules (32) such that if f ′ : G → G′ is a set map with ff ′ = idG,
it is f ′(g)af ′(g−1) = [g]a for all g ∈ G, a ∈ A where [g] = gµ(T ) ∈ π1 and
[g]a is the given π1-module action on A.

ii) A 2-fold special extension of (T,G, µ) by (1, A, i) consists of an exact sequence
of crossed modules (34) where

T ′′
α- T ′ h : T ′ ×G′′ → T ′′

G′′
µ

?

β
- G′

µ′
?

(36)

is a crossed square and if r′ : G → G′ is a set map with rr′ = idG, then for
all g ∈ G , a ∈ A,

r′(g)a = [g]a.

Here [g] = gµ(T ) ∈ π1, [g]a is the given π1-module action on A and r′(g)a is
the action of G′ on G′′ in the crossed square (36).

Proof.

i) By definition, (33) is a singular extension of cat1-groups. Hence for all t ∈ T ,
g ∈ G, a ∈ A

(t, f ′(g))(1, a)(t, f ′(g−1)) = (1, [g]a),
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that is
(t f ′(g)af ′(g−1)t−1, f ′(g)af ′(g−1)) = (1, [g]a).

Since (1, A, i) is a normal subcrossed module of (T, G, µ), t f ′(g)af ′(g−1)t−1 = 1
for all t ∈ T , g ∈ G, a ∈ A; hence we only require that f ′(g)af ′(g−1) = [g]a.

ii) By definition, (34) is a 2-fold extension in cat1-groups. Let f ′ : T → T ′ be a
set map with ff ′ = idT . Since ((T ′′ oG′′, d′′, s′′), (T ′ oG′, d′, s′), (α, β)) is a
crossed module in the category of cat1-groups, by Lemma 1 (36) is a crossed
square and the crossed module action of T ′ oG′ on T ′′ oG′′ is given by

(t′,g′)(t′′, g′′) = ( t′( g′t′′)h(t′, g′g′′), g′g′′). (37)

Further, arguing as in the proof of Lemma 10 ii), the induced action of (T o
G, d, s) on (1×A, id, id) given by (f ′(t),r′(g))(1, a) has to coincide with the given
action, which is (1, [g]a). Hence by (37) we obtain

(h(f ′(t), r′(g)a), r′(g)a) = (1, [g]a)

for all t ∈ T , g ∈ G, a ∈ A. By the axioms of crossed squares [15]

αh(f ′(t), r′(g)a) = f ′(t) β( r′(g)a)f ′(t)−1 = f ′(t)f ′(t)−1 = 1.

Hence, since α is injective, h(f ′(t), r′(g)a) = 1. Therefore we only require
r′(g)a = [g]a

for all g ∈ G, a ∈ A. 2

It is possible to introduce an equivalence relation on the set of singular and 2-fold
special extensions of (T,G, µ) by (1, A, i) in a way similar to what explained in §4.2.
The sets of equivalence classes of singular and 2-fold special extensions of (T, G, µ)
by (1, A, i) become abelian groups under Baer sum.

Theorem 25. Let Φ = (T,G, µ) be a crossed module, A a π1-module. Then
H2(B(Φ), A) is isomorphic to the group of equivalence classes of singular extensions
of (T,G, µ) by (1, A, i) and H3(B(Φ), A) is isomorphic to the group of equivalence
classes of 2-fold special extensions of (T, G, µ) by (1, A, i).

Proof. From Proposition 21, H2 (B(Φ), A) ∼= H1 Der (G• Φ, (1, A, i)) and
H3(B(Φ), A) ∼= H2Der(G•Φ, (1, A, i)). By the interpretation in terms of extensions
of the first and second cotriple cohomology groups in categories of interest given in
[21, Theorems 2.1.3 and 2.2.3] the result follows. 2

8. The relationship with cohomology of groups with opera-
tors

Our purpose in this section is to elucidate the relationship between the coho-
mology theory D∗((T, G, µ), A) of a crossed module (T, G, µ) with coefficients in a
π1-module A and the cohomology H∗

G(T, A) studied in [6]. The latter is the coho-
mology of a group T endowed with a G-action by automorphisms with coefficients
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in a G-equivariant T -module A; this consists of an abelian group A with actions of
T and G such that

g( ta) =
gt( ga), g ∈ G, t ∈ T a ∈ A.

The possibility that a relationship between the two theories may exist is suggested
by the fact that, by [6, p. 11]

D0((T, G, µ), A) ∼= Der((T, G, µ), A) ∼= HomG(T, A) ∼= DerG(T, A) ∼= H1
G(T, A).

We shall also exhibit a counterexample showing that in general Dn((T, G, µ), A)
and Hn+1

G (T, A) are not isomorphic for n > 0.
In order to establish the relationship with H∗

G(T, A) we first prove that if (T, G, µ)
is a precrossed module, Hn

G(T, A) can be recovered as cohomology of a precrossed
module for n > 0.

Recall that a precrossed module (T, G, µ) consists of a group homomorphism
µ : T → G together with an action of G on T such that µ( gt) = gµ(t)g−1, g ∈ G,
t ∈ T . A morphism of precrossed modules (f, h) : (T, G, µ) → (T ′, G′, µ′) consists
of group homomorphisms f : T → T ′, h : G → G′ with f( gt) = h(g)f(t), t ∈ T ,
g ∈ G. Denote by PCM the category of precrossed modules. PCM is equivalent
to the category of pre-cat1-groups. A pre-cat1-group is a group G together with two
endomorphisms d0, d1 : G → G such that d1d0 = d0, d0d1 = d1. A morphism
f : G → G′ of pre-cat1-groups is a group homomorphism commuting with d0, d1.

In [1] is proved that the category of precrossed modules is tripleable over Set; the
corresponding cotriple is then used to define a cotriple (co)homology of precrossed
modules with trivial coefficients. Following the same method used for crossed mod-
ules, we introduce a cotriple cohomology of precrossed modules with a system of
local coefficients.

Notice that PCM is a category of interest in the sense of [17]; this follows from
the fact that PCM is equivalent to pre-cat1-groups and from the tripleability of
PCM over Set.

Lemma 26. Let (T, G, µ) be a precrossed module, A an abelian group. Then (A, 1, 0)
is a (T, G, µ)-module (in the category of interest PCM) if and only if A is a G-
equivariant T -module in the sense of [6] and in this case

Der((T, G, µ), (A, 1, 0)) ∼= DerG(T, A).

Proof. If (A, 1, 0) is a (T,G, µ)-module, there is a split singular extension in PCM

(A, 1, 0) ½ (T ′, G′, µ̃) ³← (T, G, µ).

In particular there are split extensions of groups A ½ T ′ ³← T and 1 ½ G′ ³← G,
so that we can assume that G′ = G, and that T ′ ∼= AoT , where the action of T on
A is by conjugation via the splitting; we can also assume that the map Ao T → T
is the projection and T → Ao T is the inclusion. So we have the split extension in
PCM

(A, 1, 0)-- (Ao T, G, µ̃)
(prT ,idG)--¾
(i,idG)

(T, G, µ). (38)
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The action of G on A o T induces an action of G on A; in fact, since (prT , idG)
is a map of precrossed modules, prT ( g(a, 1)) = 1 for all g ∈ G, a ∈ A. Since the
maps in the split extension (38) are maps of precrossed modules, we have, for all
a ∈ A, g ∈ G, t ∈ T , µ̃(a, t) = µ(t), g(a, t) = g(a, 1) g(0, t) = ( ga, 1)(0, gt) =
( ga, gt). In particular we obtain, for all a ∈ A, g ∈ G, t ∈ T , ( g( ta), gt) =
g( ta, t) = g((0, t)(a, 1)) = (0, gt)( ga, 1) = (

gt( ga), gt). Hence g( ta) =
gt( ga) so

that, in the terminology of [6] A is a G-equivariant T -module. Conversely if A is a
G-equivariant T -module , (38) is a split singular extension in PCM, so (A, 1, 0) is
a (T, G, µ)-module. We have

Der((T, G, µ), (A, 1, 0)) ∼= HomPCM/(T,G,µ)((T, G, µ), (Ao T,G, µ̃)).

We now show that there is an isomorphism

α : HomPCM/(T,G,µ)((T,G, µ), (Ao T, G, µ̃)) → DerG(T, A).

Let α((D, idT ), idG) = D. Notice that D ∈ DerG(T, A); in fact D ∈ Der(T, A) and
since ((D, idT ), idG) is a morphism of precrossed modules, (D(gt),g t) = g(D(t), t) so
that D(gt) = gD(t). Clearly α is injective. Let D∈ DerG(T, A). Then ((D, idT ), idG)
is a morphism of precrossed modules over (T, G, µ) and α((D, idT ), idG) = D 2

Notice that if (T, G, µ) is a crossed module and A is a π1-module, A is a G-
equivariant trivial T -module in the terminology of [6, p. 15]. If I : CM → PCM is
the inclusion, we have in this case

Der(I(T,G, µ), (A, 1, 0)) ∼= Der((T,G, µ), A).

Remark 27.

An equivalent version of Lemma 26 is obtained by working in pre-cat1-groups
rather than in PCM. Let (A, 0, 0) and (T oG, d0, d1) be the pre-cat1-groups corre-
sponding to the precrossed modules (A, 1, 0) and (T,G, µ) respectively. It is easily
checked that (A, 0, 0) is a (ToG, d0, d1)-module if and only if A is a (ToG)-module
and

Der((T oG, d0, d1), (A, 0, 0)) ∼= {D ∈ Der(T oG,A) | D(1, G) = 0}.
The two versions of the lemma are clearly equivalent. Recall in fact [6, Theorem
2.2] that the categories of G-equivariant T -modules and that of (T o G)-modules
are equivalent, with the action of T o G on a G-equivariant T -module A given by
(t,g)a = t( ga); moreover it is straightforward to check that there is an isomorphism

α : DerG(T, A) → {D ∈ Der(T oG,A) | D(1, G) = 0}
given by α(D)(t, g) = D(t), (t, g) ∈ T oG.

Let G be the cotriple on PCM of [1].

Proposition 28. Let (T, G, µ) be a precrossed module, A a G-equivariant T -module.
Then for each n > 0

HnDer(G•(T, G, µ), (A, 1, 0)) ∼= Hn+1
G (T,A).
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Proof. From [6, Theorem 2.6] for each n > 0

Hn
G(T, A) ∼= Hn(BToG, BG, A) ∼= Hn(ker(C∗(T oG,A) r•→ C∗(G,A)),

where C∗(ToG, A) and C∗(G,A) are the ordinary cochain complexes for computing
group cohomology and r• are the restriction maps.

Denote G•(T, G, µ) = (T•, G•, µ•). From Lemma 26 and Remark 27, there is a
short exact sequence for each n

0 → Der((Tn, Gn, µn), (A, 1, 0)) → Der(Tn oGn, A) → Der(Gn, A) → 0

where the map Der(Tn o Gn, A) → Der(Gn, A) is restriction. It is proved in [1, p.
12] that T• oG• → T oG and G• → G are free simplicial resolutions. Hence, if ⊥
is the ordinary free cotriple on Groups we obtain short exact sequences of cochain
complexes

0 - Der((T•, G•, µ•), (A, 1, 0)) - Der(T• oG•, A) - Der(G•, A) - 0

0 - ker r′•
?

- Der(⊥•(T oG), A)

o
? r′•- Der(⊥•G,A)

o
?

- 0

0 - ker r•
?

- C∗(T oG,A)

o
? r•- C∗(G,A)

o
?

- 0 .

In the above diagram the maps Der(T•oG•, A) ∼→Der(⊥•(ToG), A), Der(G•, A) ∼→
Der(⊥•G, A) are homotopy equivalences, and Der(⊥•(T oG), A) → C∗(T oG,A),
Der(⊥•G, A) → C∗(G,A) are the natural cochain maps of the Barr-Beck theory
which induce isomorphisms in cohomology (see [2]). Taking the long exact coho-
mology sequences in each row of the above diagram and applying the Five Lemma
we obtain for all n > 0

HnDer((T•, G•, µ•), (A, 1, 0)) ∼= Hn ker r′• ∼= Hn+1 ker r• ∼= Hn+1
G (T, A).

Finally, by Lemma 26, by [6, p. 11] and by general properties of cotriple cohomology

H0Der((T•, G•, µ•), (A, 1, 0)) ∼= Der((T, G, µ), (A, 1, 0)) ∼= DerG(T,A) ∼= H1
G(T,A).

2

Theorem 29. Let (T, G, µ) be a crossed module, A a π1-module. Let sn : Gn
I ⇒

IGn, I : CM ↪→ PCM be as in [1] and sn = Der(sn, A). There exists a long exact
cohomology sequence

0 → H0coker s• → D1((T, G, µ), A) → H2
G(T, A) → H1coker s• →

→ D2((T,G, µ), A) → H3
G(T, A) → · · ·

Proof. It is proved in [1, p. 14] that there exists a surjective homomorphism of
resolutions

Gn
I(T, G, µ) · · · G2

I(T,G, µ) -- GI(T, G, µ) - (T,G, µ)

IGn(T, G, µ)

sn?
· · · IG2(T,G, µ)

s2?
-- IG(T, G, µ)

s1?
- I(T, G, µ) .

wwww (39)
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The natural transformation sn : Gn
I → IGn is defined inductively by sn+1 =

snG ◦ Gn
s1 for every n > 1, and s1 is the natural transformation sending each

crossed module (T, G, µ) to the canonical projection G(T, G, µ) → PG(T,G, µ) =
G(T,G, µ) where P : PCM → CM is Peiffer abelianization [1]. Hence (39) gives
rise to an injective morphism of cochain complexes

0 - Der(IG(T,G, µ), (A, 1, 0)) - Der(IG2(T, G, µ), (A, 1, 0)) - · · ·

0 - Der(GI(T,G, µ), (A, 1, 0))

s1?
∩

- Der(G2
I(T, G, µ), (A, 1, 0))

s2?
∩

- · · ·
Since Der(IG•(T,G, µ), (A, 1, 0)) ∼= Der(G•(T, G, µ), A) we therefore have a short
exact sequence of cochain complexes

Der(G•(T, G, µ), A)
s•½ Der(G•I(T,G, µ), (A, 1, 0)) ³ coker s•.

Since H0Der(G•(T, G, µ), A) ∼= H0Der(G•I(T, G, µ), A) ∼= DerG(T, A), taking the
corresponding long exact cohomology sequence and using Proposition 28 the result
follows. 2

The following counterexample shows that in general Dn((T, G, µ), A) and
Hn+1

G (T,A) are not isomorphic for n > 0. Let C∞ be the infinite cyclic group with
generator t, let H be the subgroup of C∞ generated by t2 so that C∞/H ∼= C2, the
cyclic group of order 2. Consider the crossed module Φ = (H, C∞, i) and let A be a
C2-module. Let σ be the generator of C2 and N = 1 + σ; since Hn(C∞, A) = 0 for
n > 1 by Theorem 7

Dn(Φ, A)∼=Hn+1(C2, C∞; A)∼=Hn+2(C2;A)∼=
{
{a ∈ A : Na = 0}/(σ−1)A n odd,

AC2/NA n even, n > 0.

On the other hand, since H acts trivially on A, in the terminology of [6] A is a
C∞-equivariant trivial H-module, so that by [6, Corollary 3.7] for all n > 1

Hn+1
C∞ (H, A) ∼= Hn+1(H o C∞, A).

Since the action of C∞ on H is trivial, H o C∞ ∼= H × C∞. From the Lyndon /
Hochschild – Serre spectral sequence

Epq
2 = Hp(C∞,Hq(H, A)) ⇒ Hp+q(H × C∞, A),

since Epq
2 = 0 for p 6= 0, 1, there are exact sequences, for each n > 1

H1(C∞,Hn−1(H,A)) ½ Hn(H × C∞, A) ³ H0(C∞,Hn(H, A)).

Since Hn(H, A) = 0 for n > 2, H1(H, A) ∼= A, we obtain

Hn+1
C∞ (H,A) ∼=

{
H1(C∞, A) ∼= AC∞ n = 1,

0 n > 1.

Hence in general Dn(Φ, A) 6= Hn+1
C∞ (H,A) for n > 0.

We finally remark that, since Hi(H) = 0 for all i > 2, from [6, p. 19] there are
isomorphisms Hn+1

C∞ (H,A) ∼= Extn
C∞(Hab, A) for all n > 0. Hence this counterex-

ample also shows that despite the isomorphism D0((T, G, µ), A) ∼= HomG(T,A) ∼=
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HomG-Mod(Tab, A) for any crossed module (T, G, µ), in general the cohomology
groups Dn((T,G, µ), A) and Hn

G-Mod(Tab, A) are not isomorphic for n > 0.
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