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Abstract
Given an orientable complete hyperbolic 3-manifold of fi-

nite volume M we construct a canonical class α(M) in
H3(B(SL2(C), T)) with B(SL2(C), T) the SL2(C)-orbit space
of the classifying space for a certain family of isotropy sub-
groups. We prove that α(M) coincides with the Bloch invariant
β(M) of M defined by Neumann and Yang in [13], giving with
this a simpler proof that the Bloch invariant is independent of
an ideal triangulation of M . We also give a new proof of the
fact that the Bloch invariant lies in the Bloch group B(C).

1. Introduction

Given a compact oriented hyperbolic 3-manifold M endowed with a spin struc-
ture there is a representation ρ : π1(M) → SL2(C) given by the spin structure. Such
representation corresponds to a map Bρ : M → BSL2(C) where BSL2(C) is the
classifying space of SL2(C) considered as a discrete group. There is a well-known
invariant 〈M〉 of M in H3(BSL2(C);Z) given by the image of the fundamental class
of M under the homomorphism induced in homology by Bρ. We extend this invari-
ant to an invariant α(M) when M is a complete oriented hyperbolic 3-manifold
of finite volume (i.e. M is compact or with cusps) but in this case α(M) takes
values in H3(B(SL2(C),T);Z) where B(SL2(C),T) is the SL2(C)-orbit space of
E(SL2(C),T), the classifying space for SL2(C)-actions with isotropy subgroups in
certain subgroup-closed SL2(C)-family T. We show that there is a canonical map
ψ : M+ → B(SL2(C), T) where M+ is the one-point compactification of M . The in-
variant α(M) is defined as the image of the fundamental class of M+ under the ho-
momorphism ψ∗ : H3(M+;Z) → H3(B(SL2(C), T);Z). The invariant α(M) extends
〈M〉 in the following sense: There is a canonical map k : BSL2(C) → B(SL2(C),T)
and when M is compact M+ = M and ψ ' k ◦ Bρ. Therefore the homomorphism
in homology induced by k sends 〈M〉 to α(M).
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By [17, Lemma 2.2] we have that H3(B(SL2(C), T);Z) ∼= P(C) where P(C) is
the pre-Bloch group. Using (degree one) ideal triangulations of M Neumann and
Yang defined in [13] an element β(M) ∈ P(C) called the Bloch invariant of M .
They proved that β(M) is independent of the ideal triangulation, showing that the
generator of certain relative homology group isomorphic to Z is mapped to β(M).
We prove that α(M) coincides with the Bloch invariant β(M). This gives a simpler
proof that the Bloch invariant is independent of the ideal triangulation.

A priori, we have that α(M) lies in P(C) but in [13] Neumann and Yang
proved that β(M) actually lies in certain subgroup B(C) of P(C) called the Bloch
group. We also give a new proof of this fact. We do this by constructing a map
R : M+ → BSL2(C)+ such that the canonical map ψ : M+ → B(SL2(C),T) fac-
tors through BSL2(C)+ as ψ ' h ◦ R, where h : BSL2(C)+ → B(SL2(C), T) is
the map induced by the canonical map k : BSL2(C) → B(SL2(C), T) by the plus-
construction. Taking the homomorphisms induced in homology we have that ψ∗
factors through H3(SL2(C);Z) and by the Bloch-Wigner exact sequence [8, Ap-
pendix A] (see Section 7) we have that the image of h∗ is precisely the Bloch group
B(C).

The paper is organised as follows. In Section 2 we recall a well-known theorem
which gives the global geometry of the aforementioned hyperbolic 3-manifolds. In
Section 3 we define the classifying spaces for families of isotropy subgroups and we
list some of their main properties. In Section 4 we define the invariant α(M). In
Section 5 we recall the definitions of the Bloch group B(C) and the Bloch invariant
and in Section 6 we prove that this invariant coincides with α(M). In Section 7 we
describe the Bloch-Wigner exact sequence and finally, in Section 8 we construct the
map R : M+ → BSL2(C)+ and prove that α(M) lies in the Bloch group B(C).

2. Hyperbolic 3-manifolds

A complete oriented hyperbolic 3-manifold M is the quotient of the hyperbolic 3-
space H3 by a discrete, torsion-free subgroup Γ of orientation preserving isometries.

Identify the upper half space model H3 with the set of quaternions { z + tj |
z ∈ C, t > 0 }. The space H3 is bounded by the extended complex plane Ĉ =
C ∪ {∞} (Riemann sphere). The group of orientation preserving isometries of H3

is isomorphic to PSL2(C) = SL2(C)/{±I} and the action of
(

a b
c d

) ∈ PSL2(C) in
H3 is given by the linear fractional transformation

φ(w) = (aw + b)(cw + d)−1, w = z + tj, ad− bc = 1,

which is the extension to H3 of the complex linear fractional transformation on Ĉ
given by

(
a b
c d

)
. This action is transitive and the isotropy group of the point (0, 1) ∈

H3 is PSU(2) ∼= SO(3), its maximal compact subgroup. Thus the correspondence
g 7→ g(0, 1) for g ∈ PSL2(C) induces a diffeomorphism

PSL2(C)/SO(3) ∼= SL2(C)/SU(2)
∼=−→ H3. (1)

Any discrete, torsion-free subgroup Γ of PSL2(C) acts freely and properly dis-
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continuously on H3. Then, the quotient map

π : H3 → Γ\H3 = M,

is the universal cover and therefore π1(M) = Γ. Note that M is a K(Γ, 1), i.e.
M = BΓ, the classifying space of Γ.

Two hyperbolic 3-manifolds M = Γ\H3 and M ′ = Γ′\H3 are isometric by an
orientation-preserving isometry if and only if Γ and Γ′ are conjugate in PSL2(C)
[14, Thm. 8.1.5]. To such an hyperbolic 3-manifold we can associate a representation
ρ : π1(M) = Γ → PSL2(C) which is canonical up to equivalence.

Using the diffeomorphism (1) we have that any complete, oriented, hyperbolic
3-manifold M is given by the double coset space

M = Γ\PSL2(C)/SO(3),

with Γ = π1(M) a discrete torsion-free subgroup. The canonical representation
Γ → PSL2(C) is given by the inclusion and it can be lifted to a representation
ρ : Γ → SL2(C) [6, Prop. 3.1.1]. There is a one-to-one correspondence between such
lifts and spin structures on M . Hence, any complete, oriented hyperbolic 3-manifold
M equipped with a spin structure can be seen as the double coset space

M = Γ\SL2(C)/SU(2),

where we identify Γ with a subgroup of SL2(C) using the representation ρ : Γ →
SL2(C) which corresponds to the spin structure.

Throughout this paper, M will denote a non-compact orientable complete hy-
perbolic 3-manifold of finite volume. The global geometry of such manifolds is given
in the following theorem, see for instance [14, p. 647 Cor. 4 and Thm. 10.2.1].

Theorem 2.1. Let M be an orientable complete hyperbolic 3-manifold of finite
volume. Then there is a compact 3-manifold-with-boundary M0 in M such that
M − M0 is the disjoint union of a finite number of cusps. Each cusp of M is
diffeomorphic to T 2 × (0,∞), where T 2 denotes the 2-torus.

Remark 2.2. Let M be an oriented complete hyperbolic 3-manifold of finite volume
with d cusps. Take a base point x0 in M and a point xi in a torus section T 2

i

of the end corresponding to the i-th cusp (i = 1, . . . , d). Let qi(t) (0 6 t 6 1)
be a path in M with qi(0) = x0 and qi(1) = xi. Consider the homomorphism
(qi)# : π1(T 2

i , xi) → π1(M,x0) induced by qi and put Γi = (qi)#
(
π1(T 2

i , xi)
)
. The

subgroups Γi are called the peripheral torus subgroups of Γ. The image of Γi

under the representation ρ : Γ → SL2(C) given by the inclusion is a free abelian
group of rank 2 of SL2(C). The subgroups Γi consist only of parabolic elements,
that is, they fix no points of H3 and fix a unique point of the boundary Ĉ of H3. All
the elements in Γi have as a fixed point the corresponding cusp point [18, §4.5]. Since
the action of SL2(C) in Ĉ is transitive and the conjugates of parabolic isometries
are parabolic [14, p. 141] we can assume that the fixed point is the point at infinity
∞ which we denote by its homogeneous coordinates ∞ = [1, 0] and therefore the
subgroups Γi are conjugate to a group of matrices of the form

(±1 λ
0 ±1

)
, with λ ∈ C.
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3. Classifying spaces for families of isotropy subgroups

Let G be a group and let sub(G) denote the set of all subgroups of G. A subset
F of sub(G) is a subgroup-closed G-family if each subgroup of each element of F
belongs to F and, moreover, F is closed under taking conjugates by elements of G.
Let {Hi}i∈I be subgroups of G, we denote by F(Hi) the subgroup-closed G-family
consisting of all the subgroups of the {Hi}i∈I and all their conjugates by elements
of G.

Let X be a G-space. For each subgroup H of G, we define the set XH consisting
of points of X fixed by all of H.

A classifying space for G-actions with isotropy subgroups in F, or a
space of type E(G,F), is a G-space with the following properties: for each H ∈ F,
XH is contractible and for each H ∈ sub(G)− F, XH is empty.

The G-space E(G,F) has all its isotropy subgroups in F and it has the following
universal property. Given any G-space X with isotropy subgroups in F there exist
a G-map

X → E(G, F)

which is unique up to G-homotopy [19, Rmk. 7.2.1], [20, Thm. 6.6]. The classi-
fying space E(G, F) is unique up to G-homotopy equivalence [7, Prop. 2.2], [19,
Rmk. 7.2.2].

There are different ways of constructing the spaces E(G, F). We consider the
following two:

1. There exist a countable system {Hi}i∈I of subgroups Hi ∈ F such that every
group in F is conjugate to an Hi, that is, F = F(Hi). Let Ei = G/Hi∗G/Hi∗. . .
be the join of a countable number of copies of G/Hi. Then E(G, F) = ∗i∈IEi

is the join of the Ei, i ∈ I, with the Milnor topology [19, Prop. 7.2.1].

2. Let ∆ be any G-set such that F is precisely the set of subgroups of G which
fix at least one point of ∆. Then E(G,F) = ∆∗∆∗ . . . , the join of a countably
number of copies of ∆ [7, Prop. 2.2].

Example 3.1. Consider SL2(C) as a discrete group. Since the action of SL2(C)
on the universal bundle ESL2(C) is free and ESL2(C) is contractible we have that
ESL2(C) is a space of type E(SL2(C), {1}).

Example 3.2. Consider the sphere S2 as the extended complex numbers Ĉ. We
have that SL2(C) acts triply transitively on S2. Let T be the isotropy subgroup of
∞, T consists of the matrices of the form

( z a
0 z−1

)
, with a, z ∈ C and z 6= 0. Hence

we have a diffeomorphism given by

SL2(C)/T
∼=−→ S2

gT 7→ g · ∞.

Let J(S2) = S2 ∗ S2 ∗ . . . , the join of a countable number of copies of S2. By
construction 1 of E(G, F) we have that J(S2) is an E(SL2(C),F(T )).



Homology, Homotopy and Applications, vol. 1(2), 2000 329

Example 3.3. Let Γ be a discrete torsion-free subgroup of SL2(C). The action of
Γ on the hyperbolic 3-space H3 is free and since H3 is contractible, it is a space of
type E(Γ, {1}).

Let M = Γ\H3 be a non-compact orientable complete hyperbolic 3-manifold of
finite volume. Let π : H3 → Γ\H3 = M be the universal cover of M . Let C be the set
of cusp points, that is, the preimages of cusps of M in ∂H̄3 = Ĉ, or, equivalently,
fixed points of parabolic elements of Γ and let Ŷ = H3 ∪ C. The action of Γ on Ŷ
is no longer free. The cusp points have as isotropy subgroups the peripheral torus
subgroups Γ1, . . . , Γd of Γ or their conjugates; therefore, by the definition of E(Γ,F),
we have that Ŷ is a E(Γ, F(Γ1, . . . , Γd)).

We list some results about E(G, F):

Proposition 3.4 ([7, Cor. 2.3]). If F1 ⊆ F2 are subgroup-closed G-families, then
there exist a G-map E(G, F1) → E(G, F2) unique up to G-homotopy.

Corollary 3.5. • There is a SL2(C)-map ` : ESL2(C) → J(S2) unique up to
SL2(C)-homotopy.

• There is a Γ-map l : H3 → Ŷ unique up to Γ-homotopy.

Let H be a subgroup of G. For a G-space X, let resHX be the H-space obtained
by restricting the group action. If F is a subgroup-closed G-family, let F/H =
{L ∩H | L ∈ F } be the induced family of subgroups of H.

Proposition 3.6 ([19, Prop. 7.2.4]).

resHE(G, F) = E(H, F/H).

Corollary 3.7. 1. resΓESL2(C) is Γ-homotopy equivalent to H3.

2. There is a Γ-map Ŷ → resΓJ(S2) unique up to Γ-homotopy.

Proof. Claim 1 is a direct consequence of Proposition 3.6. Also by Proposition 3.6 we
have that resΓJ(S2) is an E(Γ,F(T )/Γ). By Example 3.3 Ŷ is an F(Γ1, . . . , Γd) where
Γ1, . . . , Γd are the peripheral torus subgroups. We have that F(Γ1, . . . , Γd) ⊂ F(T )/Γ
and the result follows by Proposition 3.4.

Following this, we give a simplicial version of the map ` : ESL2(C) → J(S2) of
Corollary 3.5 which we use in following sections.

Example 3.8. Consider the universal bundle ESL2(C) as the geometric realisation
of the simplicial complex where an n-simplex is an (n + 1)-tuple (g0, . . . , gn) with
gi ∈ SL2(C), and the i-th face (resp., degeneracy) of such a simplex is obtained
by omitting (resp., repeating) gi. The action of g ∈ SL2(C) gives the simplex
(gg0, . . . , ggn). The infinite join J(S2) is the geometric realisation of the simplicial
set whose n-simplices are the n + 1-tuples (a0, . . . , an) of elements of S2 = Ĉ and
the i-th face (resp., degeneracy) of such a simplex is obtained by omitting (resp.,
repeating) ai. The action of g ∈ SL2(C) gives the simplex (ga0, . . . , gan). Hence the
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map ` : ESL2(C) → J(S2) is the (geometric realisation of the) SL2(C)-equivariant
simplicial map

(g0, . . . , gn) → (g0 · ∞, . . . , gn · ∞). (2)

Choosing a different basepoint instead of ∞ by Corollary 3.5 we get a SL2(C)-
homotopic map.

4. The invariant α(M) of M

To simplify notation, if G is a group and X is a G-space, we denote the space
of orbits G\X by XG. Also for the rest of the paper, let T = F(T ) with T as in
Example 3.2 and B(SL2(C), T) = E(SL2(C), T)SL2(C).

Let M be an orientable complete hyperbolic 3-manifold of finite volume, choosing
a spin structure on M we have that M = Γ\H3 for some discrete torsion-free
subgroup of SL2(C). Let Ŷ = H3∪C with C the set of cusp points and let M̂ = Γ\Ŷ .
If M is compact C = ∅ and M̂ = M , if M is non-compact we have that M̂ is the
end-compactification of M which is the result of adding the cusps of M .

By Corollary 3.7-1, we have that M = Γ\H3 is homotopically equivalent to
ESL2(C)Γ = BΓ and by Corollary 3.7-2 there is a Γ-map

M̂ → J(S2)Γ = E(SL2(C), T)Γ

which is unique up to Γ-homotopy. We also have that ESL2(C)SL2(C) = BSL2(C).
Combining this with Corollary 3.5 and taking the quotients by SL2(C) and Γ we
get the following commutative diagram

M
q̂ //

f

²²

M̂

ψ

²²
BSL2(C) k // B(SL2(C),T)

(3)

where q̂ (resp., k) is the map induced by the map l (resp. `) of Corollary 3.5 on
the sets of Γ (resp. SL2(C)) orbits; f = Bρ : BΓ → BSL2(C) is the map between
classifying spaces which on fundamental groups induces the canonical representation
ρ : Γ → SL2(C) of M , and ψ is given by the composition

ψ : M̂ → E(SL2(C), T)Γ → B(SL2(C),T). (4)

The map ψ induces an homomorphism

ψ∗ : H3(M̂ ;Z) → H3(B(SL2(C), T);Z). (5)

Let [M̂ ] denote the fundamental class of M̂ in H3(M̂ ;Z). We denote by α(M) the
canonical class in H3(B(SL2(C), T);Z) given by

α(M) = ψ∗([M̂ ]).
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5. The Bloch invariant

In the present section, following [13], we shall define the Bloch invariant of a
non-compact orientable complete hyperbolic 3-manifold of finite volume which has
an ideal triangulation.

The pre-Bloch group P(F ) of a field F is the quotient of the free abelian group
generated by the formal symbols [x], x ∈ F ∪ {∞} by the following relations

[0] = [1] = [∞] = 0

[x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)] = 0.

The Bloch group B(F ) is the kernel of the map

P(F ) λ−→ F× ∧ F×

[x] 7→ 2(x ∧ (1− x)),
(6)

where F× is the multiplicative group of F .
Let H̄3 = H3∪ Ĉ be the standard compactification of the hyperbolic 3-space H3.

We shall refer to the elements of the boundary Ĉ of H3 as points at infinity.
An ideal tetrahedron (or ideal simplex) is a tetrahedron in H̄3 with all its

vertices in Ĉ. Let4(a0, a1, a2, a3) be an ideal tetrahedron with vertices a0, a1, a2, a3.
The group PSL2(C) acts on Ĉ by fractional linear transformations and the action
is triply transitive. Therefore, there exists an element g ∈ PSL2(C) such that

g · a0 = 0, g · a1 = ∞, g · a2 = 1, g · a3 = z

where z = [a0 : a1 : a2 : a3] is the cross-ratio of the vertices given by

[a0 : a1 : a2 : a3] =
(a0 − a3)(a1 − a2)
(a0 − a2)(a1 − a3)

. (7)

Therefore the congruence classes of ideal tetrahedra are parameterised by z ∈
C − {0, 1}. We extend the definition of the cross-ratio to [a0 : a1 : a2 : a3] = 0
whenever ai = aj for some i 6= j.

Let M be a non-compact orientable complete hyperbolic 3-manifold of finite
volume. An ideal triangulation for M is a triangulation where all the tetrahedra
4i are ideal tetrahedra.

Remark 5.1. In [9] Epstein and Penner proved that these kind of manifolds can be
decomposed into convex ideal polyhedra, but to the best of our knowledge it is still
unknown whether this decomposition can be subdivided into an ideal triangulation
(compare [13, §10]).

For this reason, from now on we shall assume that when M is a non-compact
orientable complete hyperbolic 3-manifold of finite volume it has an ideal triangu-
lation.

Let M be an hyperbolic 3-manifold and let 41, . . . ,4n be the ideal tetrahedra
of an ideal triangulation of M . Let zi ∈ C be the parameter of 4i for each i. These
parameters define an element β(M) =

∑n
i=1[zi] in the pre-Bloch group. The element

β(M) ∈ P(C) is called the Bloch invariant of M .
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Remark 5.2. Neumann and Yang defined the Bloch invariant using degree one
ideal triangulations, in that way it is defined for all hyperbolic 3-manifolds of
finite volume, even the compact ones, see [13, §2] for details.

In [13, Thm. 1.1] Neumann and Yang proved that β(M) depends only on M and
not on the triangulation, and that it actually lies in the Bloch group B(C). In the
following section, we give a simpler proof of the independence of the Bloch invariant
of the ideal triangulation proving that α(M) = β(M). In section 8 we give another
proof that α(M) = β(M) ∈ B(C).

6. The invariant α(M) is the Bloch invariant

In this section we prove that the characteristic class α(M) of an orientable com-
plete hyperbolic 3-manifold of finite volume M equals its Bloch invariant β(M), in
particular, this gives a new proof that the Bloch invariant is independent of the
ideal triangulation, or from a different point of view, we can compute α(M) using
an ideal triangulation of M .

For the rest of the paper we shall consider J(S2)SL2(C) as the model for B(SL2(C),
T).

Firstly, by [17, Lemma 2.2] (but using SL2(C) instead of GL2(C)) we have that
H3(B(SL2(C),T);Z) = H3(J(S2)SL2(C);Z) ∼= P(C), hence α(M) ∈ P(C). The
isomorphism is given by

(a0, a1, a2, a3)SL2(C) 7→ [a0 : a1 : a2 : a3], (8)

(a0, a1, a2, a3)SL2(C) denotes the SL2(C)-orbit of the 3-simplex (a0, a1, a2, a3) and
[a0 : a1 : a2 : a3] is the cross-ratio of the ai ∈ Ĉ, i = 0, 1, 2, 3.

Theorem 6.1. Let M be an orientable complete hyperbolic 3-manifold of finite
volume. Then α(M) = β(M).

Proof. Let M be a non-compact orientable complete hyperbolic 3-manifold of finite
volume. Let π : H3 → Γ\H3 = M be the universal cover of M . Then M lifts to
an exact, convex, fundamental, ideal polyhedron P for Γ [14, Thm. 11.2.1]. An
ideal triangulation of M gives a decomposition of P into a finite number of ideal
tetrahedra. Since P = { gP | g ∈ Γ } is an exact tessellation of H3 [14, Thm. 6.7.1],
this decomposition of P gives an ideal triangulation of H3.

As in Example 3.3, let C be the set of cusp points and let Ŷ = H3 ∪ C, which
is the result of adding the vertices of the ideal tetrahedra of the ideal triangulation
of H3. Hence we can consider Ŷ as a simplicial complex with vertices given by the
cusp points.

To prove the theorem, we use the simplicial version of the Γ-map Ŷ → J(S2)
given in Corollary 3.7-2. Consider J(S2) as the geometric realization of a simplicial
complex as in Example 3.8. Considering Ŷ as the geometric realisation of its ideal
triangulation and since its vertices are the cusp points C ⊂ Ĉ we have that the Γ-map
Ŷ → J(S2) is given by the (geometric realisation of the) Γ-equivariant simplicial
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map

Ŷ → J(S2)
(a0, a1, a2, a3) 7→ (a0, a1, a2, a3).

The composition (4) induces on 3-chains the map

C3(M̂) → C3(J(S2)SL2(C))
(a0, a1, a2, a3)Γ 7→ (a0, a1, a2, a3)SL2(C) = (0,∞, 1, z)SL2(C).

where (a0, a1, a2, a3)Γ (resp. (a0, a1, a2, a3)SL2(C)) denotes the Γ-orbit (resp. SL2(C)-
orbit) of the 3-simplex (a0, a1, a2, a3) and z = [a0 : a1 : a2 : a3].

If 4i = 4(ai
0, a

i
1, a

i
2, a

i
3), i = 1, . . . , n, are the ideal tetrahedra of an ideal trian-

gulation of M and zi = [ai
0 : ai

1 : ai
2 : ai

3] ∈ C is the parameter of 4i for each i, now
is clear that under the homomorphism (5) the fundamental class [M̂ ] is sent to the
Bloch invariant β(M)

H3(M̂) → H3(J(S2)Γ) → P(C)

[M̂ ] 7→
n∑

i=1

(ai
0, a

i
1, a

i
2, a

i
3)Γ 7→

n∑

i=1

(ai
0, a

i
1, a

i
2, a

i
3)SL2(C)) =

n∑

i=1

[zi].

For the case when M is compact, following [13, §2] choose a degree one ideal
triangulation of M given by a geometric 3-cycle Y and a map f : Y − Y (0) → M
with |Y | = M . As in [13, §4], form the pull-back covering

̂Y − Y (0) //

²²

H3

²²
Y − Y (0) // M

and complete to get a simplicial complex Ŷ with a Γ-action (which is free except
maybe at the vertices). By Corollary 3.7 there is a Γ-map Ŷ → J(S2) and we
can substitute H3 by ESL2(C). Taking the quotients by SL2(C) and Γ we get the
following commutative diagram

Y − Y (0) //

f

²²

M

ψ

²²
BSL2(C) k // B(SL2(C),T)

since Γ\Ŷ = Y = M . The rest of the proof is as for the non-compact case using
this Ŷ .

Remark 6.2. Recall that by Theorem 2.1 M is homotopically equivalent to M0

therefore we can think that the map q̂ : M0 → M̂ collapses each torus component
of M0 to a point. On the other hand, consider the quotient map c : M̂ → M+ from
the end-compactification to the one-point-compactification of M which consists in
identifying all the cusps points of M̂ to a single point. Since the action of G on
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J(S2) identifies all the 0-simplices, all the cusps points of M̂ are mapped to the
unique 0-simplex of J(S2)SL2(C) under the map ψ : M̂ → J(S2)SL2(C), thus the
map ψ descends to a map M+ → J(S2)SL2(C) which we shall also call ψ. Since the
map c induces an isomorphism in H3 we also have that α(M) = ψ∗([M+]) = β(M)
with [M+] the fundamental class of M+. Hence, diagram (3) is equivalent to the
following with q = c ◦ q̂

M0
q //

f

²²

M+

ψ

²²
BSL2(C) k // J(S2)SL2(C)

(9)

7. The Bloch-Wigner exact sequence

In the present section we describe the Bloch-Wigner exact sequence [8, Appendix
A] which will help us in the next section to prove that α(M) = β(M) ∈ B(C).

Recall that for a (discrete) group G its (Eilenberg–Mac Lane) cohomology groups
Hn

EM (G, A) with coefficients in a G-module A is the homology of the complex

Cn(G,A) = { f : Gn+1 → A | gf(g0, . . . , gn) = f(gg0, . . . , ggn) }
with coboundary δ : Cn(G,A) → Cn+1(G,A) given by

δ(f)(g0, . . . , gn+1) =
n+1∑

i=0

(−1)if(g0, . . . , ĝi, . . . , gn+1),

where ĝi indicates that gi is omitted.

Lemma 7.1. Let G = SL2(C). Consider the function given by

τ̄ : G×G×G×G → P(C)

τ̄(g0, g1, g2, g3) =
[
[g0 · ∞ : g1 · ∞ : g2 · ∞ : g3 · ∞]

]
, ∞ ∈ Ĉ,

where [a0 : a1 : a2 : a3] with ai ∈ Ĉ is the cross-ratio given by (7) and a cross-ratio
of non-distinct points is taken as zero. Then τ̄ represents a cohomology class in
H3

EM (SL2(C),P(C)) which we denote by τ .

Proof. Clearly τ̄ is invariant under the left diagonal action of G. First we are going
to show that it is a cocycle of the complex C•(G,P(C)). Since the action of SL2(C)
in Ĉ is triply transitive we can assume that

(g0 · ∞, g1 · ∞, g2 · ∞, g3 · ∞, g4 · ∞) = (0,∞, 1, x, y).

Thus, we have

δ(τ̄)(g0, g1, g2, g3, g4) = [∞ : 1 : x : y]− [0 : 1 : x : y] + [0 : ∞ : x : y]
− [0 : ∞ : 1 : y] + [0 : ∞ : 1 : x],



Homology, Homotopy and Applications, vol. 1(2), 2000 335

and applying the definition of the cross-ratio we get

δ(τ̄)(g0, g1, g2, g3, g4) = [
1− x

1− y
]− [

1− x−1

1− y−1
] + [

y

x
]− [y] + [x],

which is the 5-term relation which defines P(C) and therefore it is zero. Hence, τ
represents a class in H3

EM (SL2(C),P(C)).

Evaluating the class τ of Lemma 7.1 on homology we get a homomorphism

HEM
3 (SL2(C),Z) τ−→ P(C)

(g0, g1, g2, g3)SL2(C) 7→
[
[g0 · ∞ : g1 · ∞ : g2 · ∞ : g3 · ∞]

]
,

(10)

also denoted by τ .
Consider the map k : BSL2(C) → J(S2)SL2(C) of (3) which is the map induced

by the SL2(C)-map ` : ESL2(C) → J(S2) of Corollary 3.5 on the sets of SL2(C)-
orbits.

Proposition 7.2. The homomorphism k∗ : H3(BSL2(C),Z) → P(C) induced by k
in homology is the homomorphism τ in (10).

Proof. From (2) we have that the map k is given by (the geometric realisation of)
the simplicial map

(g0, . . . , gn)SL2(C) → (g0 · ∞, . . . , gn · ∞)SL2(C),

which applied to 3-simplices and composed with the isomorphism (8) is precisely
the map τ (10).

The Bloch–Wigner exact sequence [8, Appendix A] is given by

0 → Q/Z → HEM
3 (SL2(C),Z) τ−→ P(C) λ−→ ∧2

Z(C×)
sym−−→ K2(C) → 0, (11)

where Q/Z = H3(µC;Z) with µC ⊂ C× the group of roots of unity. The first map is
induced by the inclusion of µC into the diagonal of SL2(C). The homomorphism τ
is the one given in (10). The homomorphism λ was defined in (6) and for u, v ∈ C×,
sym(u ∧ v) = {u, v} ∈ K2(C) denotes the K2-symbol.

8. The Bloch invariant lies in B(C)

In the present section we prove that α(M) = β(M) ∈ B(C) by factoring the
canonical homomorphism ψ∗ : H3(M+;Z) → P(C) through the homomorphism
τ : HEM

3 (SL2(C),Z) → P(C) of (11). We do this constructing a map R : M+ →
BSL2(C)+ such that ψ ' h◦R, where h : BSL2(C)+ → J(S2)SL2(C) is the map in-
duced by the canonical map k : BSL2(C) → J(S2)SL2(C) by the plus-construction.
Therefore ψ∗ = τ ◦R∗.
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8.1. Construction of the map R
Let G be a group and let H be a perfect normal subgroup. Consider Quillen’s

plus construction relative to H. Let F be the homotopy fibre of

F → BG → BG+ (12)

then, F has the following properties (see [16, (2.1)], [10])
1. F is connected and π1(F) is a universal central extension of H.
2. F is acyclic, i.e., H̃•(F) = 0.
3. πi(F) = πi+1(BG+) for i > 2.
4. The sequence (12) is both a fibration sequence and a cofibration sequence (see

[10, Thm. (2.5)], [4, Thm. (7.7)]).
Let M be a non-compact orientable complete hyperbolic 3-manifold of finite vol-

ume endowed with a spin structure. By Theorem 2.1 M is homotopically equivalent
to M0, and therefore, the representation ρ : Γ → SL2(C) corresponds to a map

f = Bρ : M0 → BSL2(C).

Recall that SL2(C) is the group of elementary matrices E2(C) of GL2(C). Since
C is a field, we have that SL2(C) = E2(C) is a perfect group. Applying the plus-
construction to the space BSL2(C) we get the (co-)fibration (12) for G = SL2(C)

F j−→ BSL2(C)
p−→ BSL2(C)+. (13)

Let ∂M0 be the boundary of M0. Note that M0/∂M0 is homeomorphic to the
one-point compactification M+ of M . Consider the following diagram where
ι : ∂M0 → M0 is the inclusion and q : M0 → M+ is given by collapsing ∂M0 to a
point as in (9).

∂M0
ι //

g

²²

M0
q //

f

²²

M+

R

²²
F j // BSL2(C)

p // BSL2(C)+.

(14)

Our aim is to extend the map p ◦ f to a map R : M+ → BSL2(C)+, this is
possible if and only if the map p ◦ f ◦ ι is nullhomotopic and every extension R
corresponds to a nullhomotopy of p ◦ f ◦ ι. The homotopy class of the extension R
only depends on f and the nullhomotopy of p ◦ f ◦ ι [11, Lemma 11.2’].

Lemma 8.1. There is a one-to-one correspondence between nullhomotopies Ht : p◦
f ◦ ι ∼ ∗ and pairs (g, H̃t) with g : ∂M0 → F and H̃t a homotopy H̃t : f ◦ ι ∼ j ◦ g.

Proof. Let Ht be a nullhomotopy of p ◦ f ◦ ι, since p is a fibration we can lift Ht to
a homotopy H̃t such that H̃0 = f ◦ ι and p ◦ H̃t = Ht for all t ∈ [0, 1]. Since H1 is
the constant map, the image of H̃1 is contained in F . Let g = H̃1, hence (g, H̃t) is
the pair corresponding to the nullhomotopy Ht.

Let (g, H̃t) with g : ∂M0 → F and H̃t : f ◦ ι ∼ j ◦ g. Since p is a fibration and
j : F → BSL2(C) is the inclusion of its fibre, p ◦ H̃t gives the desired nullhomotopy
of p ◦ f ◦ ι.
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By Lemma 8.1 to define an extension R is enough to give a map g : ∂M0 → F such
that the left square of (14) commutes up to homotopy and to choose a homotopy
H̃t : f ◦ ι ∼ j ◦ g.

The boundary ∂M0 consists of a disjoint union of tori, we construct the map
g : ∂M0 → F on each torus component separately. The restriction of f ◦ ι to a
component T 2

i of the boundary gives a map

fi = f ◦ ι|T 2
i
: S1 × S1 → BSL2(C).

This map induces in homotopy the homomorphism

Z × Z → SL2(C)
(m, n) 7→ AmBn

for some commuting matrices A,B ∈ SL2(C), which are the generators of the
corresponding peripheral torus subgroup Γi of Γ. The matrices A and B corresponds
to the homotopy classes of the loops given by the restrictions fi|S1×{∗} : S1×{∗} →
BSL2(C) and fi|{∗}×S1 : {∗} × S1 → BSL2(C).

We need to find maps gi : T 2
i → F which make the following diagram commute

up to homotopy

T 2
i

gi //

ι

²²

F
j

²²
M0

f // BSL2(C).

(15)

Since SL2(C) is a perfect group it has a universal central extension given by

1 → H2(SL2(C)) → St2(C)
ϕ−→ SL2(C) → 1, (16)

where St2(C) is the Steinberg group. This universal central extension is induced by
the homotopy exact sequence of the fibration (13) and we have that π1(F) = St2(C)
(property 1 of (12)).

Take loops a, b : S1 → F such that ϕ(a) = A and ϕ(b) = B. Then we can form
the map

a ∨ b : S1 ∨ S1 → F . (17)

The obstruction to extend this map to a map S1×S1 → F is given by the Whitehead
product [a, b] of a and b given by the commutator. Thus, we need to prove that
[a, b] vanish for any lifts a, b ∈ St(C) of A and B respectively, when A and B are
the generators of a peripheral torus subgroup of Γ. For that, we need to recall a
construction of elements in K2(C) = H2(SL2(C)) given in [12, §8].

Consider the universal central extension given in (16). Given two matrices A,B ∈
SL2(C) which commute, choose representatives a, b ∈ St2(C) such that ϕ(a) = A
and ϕ(b) = B. The commutator [a, b] = aba−1b−1 is then an element of K2(C). We
shall use Milnor’s notation

A ? B = aba−1b−1 ∈ K2(C)

for this commutator. The element A?B does not depend on the choice of represen-
tatives a and b.
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As a direct consequence of identities satisfied by commutators the product ?
satisfies the following properties:

• Bimultiplicativity

(A1A2) ? B = (A1 ? B)(A2 ? B) (18)

• Invariance under inner automorphisms of SL2(R)

(PAP−1) ? (PBP−1) = A ? B. (19)

By Remark 2.2 the matrices A,B ∈ SL2(C) represent parabolic isometries of H3

and they are conjugate to matrices of the form

Ā =
(

λ δ
0 λ

)
, B̄ =

(
µ ε
0 µ

)

with λ = ±1, µ = ±1, and δ 6= 0, ε 6= 0. By property (19), to prove that A ? B = 1
is enough to prove that Ā ? B̄ = 1 for all the possible values of λ and µ.

Proposition 8.2. Let Ā and B̄ as above. Then Ā ? B̄ = 1.

Proof. By the bimultiplicativity (18) of the ?-product we have that

Ā2 ? B̄2 = (Ā ? B̄2)(Ā ? B̄2) = (Ā ? B̄)4.

By a result of Bass and Tate [3, Prop. 1.2] K2(C) is a uniquely divisible abelian
group, i.e., a vector space over Q. Therefore, if we prove that (Ā ? B̄)4 = 1, it will
imply that Ā ? B̄ = 1. We have that

Ā2 =
(

1 2λδ
0 1

)
= e2λ

12 B̄2 =
(

1 2µε
0 1

)
= e2µε

12

where ea
ij denotes the elementary matrix with its ij entry equal to a. Let xa

ij be the
corresponding generator of the Steinberg group, thus,

Ā2 ? B̄2 = x2λδ
12 x2µε

12 x−2λδ
12 x−2µε

12 = x
2(λδ+µε)
12 x

−2(λδ+µε)
12 = 1.

We thank Michel Matthey for suggesting to use that K2(C) is uniquely divisible
to simplify the computations. This proposition can also be proved without using
this fact but one has to analyse the four cases separately (see [5]).

Therefore, by Proposition 8.2 the map (17) extends to a map S1×S1 → F which
makes the diagram (15) commute up to homotopy since S1×S1 is a classifying space
B(Z×Z) and the maps fi and j◦gi induce the same homomorphism on fundamental
groups.

Taking all the maps gi : T 2
i → F together we get the desired map g : ∂M0 → F .

Choose a homotopy H̃t : f ◦ ι ∼ j ◦ g, since ι : ∂M0 → M0 is a cofibration we can
lift H̃t to a homotopy H̄t such that H̄0 = f and H̄t ◦ ι = H̃t for all t ∈ [0, 1]. Let
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f1 = H̄1, then we have the following strictly commutative diagram

∂M0
ι //

g

²²

M0
q //

f1

²²

M+

RH

²²
F j // BSL2(C)

p // BSL2(C)+,

(20)

where

RH : M+ → BSL2(C)+ (21)

is the map defined by the nullhomotopy H corresponding to (g, H̃t) by Lemma 8.1.

8.2. Factoring ψ through R

Our next task is to prove that τ ◦ RH∗ = ψ∗. For this, we need the following
lemmata.

Lemma 8.3. π1(J(S2)SL2(C)) = 0.

Proof. It is a direct application of a result by M. A. Armstrong [1, Thm. 3], [2,
Thm. 6.18] which says that π1(J(S2)SL2(C)) = SL2(C)/F where F is the normal
subgroup of SL2(C) generated by those elements which leave fixed at least one point
of J(S2). Obviously the elements of SL2(C) which are matrices of the form

(
1 a
0 1

)
,

with a ∈ C and of the form
(

1 0
b 1

)
, with b ∈ C are in F , they fix (∞, . . . ,∞) and

(0, . . . , 0) respectively. But these are elementary matrices and the whole SL2(C) is
generated by elementary matrices (since SL2(C) = E2(C)), therefore F = SL2(C).

Lemma 8.4. π2(J(S2)SL2(C)) = 0, π3(J(S2)SL2(C)) = P(C).

Proof. By the proof of [17, Lemma 2.2] we have that H1(J(S2)SL2(C)) = 0,
H2(J(S2)SL2(C)) = 0 and H3(J(S2)SL2(C);Z) ∼= P(C). By Lemma 8.3 J(S2)SL2(C)

is simply connected and the lemma follows by Hurewicz Theorem.

Remember that a map between path connected spaces is acyclic if its homotopy
fibre is an acyclic space. By the properties of (12) the homotopy fibration

F j−→ BSL2(C)
p−→ BSL2(C)+

is acyclic since F is acyclic. We have also that j is a cofibration and p is the cofibre
of j.

By Corollary 3.5 there is a SL2(C)-map ` : ESL2(C) → J(S2) unique up to
SL2(C)-homotopy which induces a map k : BSL2(C) → J(S2)SL2(C) between the
SL2(C)-orbit spaces. Let π1(p) and π1(k) the homomorphisms on fundamental
groups induced by p and k, by Proposition 8.3 we have that kerπ1(p) = kerπ1(k) =
SL2(C) and by [10, Prop. (3.1)], [4, (5.2)] there exist a map h : BSL2(C)+ →
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J(S2)SL2(C) unique up to homotopy which makes the following diagram commute

J(S2)SL2(C)

F j // BSL2(C)

k

88ppppppppppp
p // BSL2(C)+.

h

OO
(22)

Remark 8.5. The map h is also given by the functoriality of the plus-construction
applied to the map k, that is h = k+, since J(S2)+SL2(C) = J(S2)SL2(C).

Proposition 8.6. The following diagram commutes (up to homotopy)

M+
RH//

ψ %%JJJJJJJJJJ BSL2(C)+

h

²²
J(S2)SL2(C)

where RH is the map given in (21), ψ is the canonical map (9) and h is the map
given in (22).

Proof. Firstly, we modify diagram (9) to make it compatible with diagram (20).
Consider the homotopy H̄t : f ∼ f1 that we use in (20) and a homotopy F̄t : k ∼ h◦p.
Define a homotopy Ft : k◦f ∼ h◦p◦f1 by F̄t◦H̄t. Since q : M0 → M+ is a cofibration
we can extend Ft to a homotopy F̃t such that F̃1 = ψ and F̃t◦q = Ft for all t ∈ [0, 1].
Let ψ1 = F̃1, then we get the following strictly commutative diagram

M0
q //

f1

²²

M+

ψ1

²²
BSL2(C)

h◦p // J(S2)SL2(C).

(23)

Putting together diagrams (20) and (23) we get

∂M0
ι //

g

²²

M0
q //

f1

²²

M+

RH

²²

ψ1

''OOOOOOOOOOOO

F j // BSL2(C)
p // BSL2(C)+

h // J(S2)SL2(C)

(24)

From diagram (20) we have that

f1 ◦ ι = j ◦ g, (25)
RH ◦ q = p ◦ f1. (26)

From diagram (23) we have

ψ1 ◦ q = h ◦ p ◦ f1. (27)
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We want to prove that the triangle in (24) commutes (up to homotopy), that is
ψ1 ' h ◦RH . Substituting (26) in (27) we obtain

ψ1 ◦ q = h ◦RH ◦ q.

To simplify notation, put vo = ψ1, v1 = h ◦ RH , G = SL2(C) and J =
J(S2)SL2(C). Thus we have two maps vi : M+ → J , i = 0, 1, such that v0 ◦q = v1 ◦q.
We want to prove that vo ' v1.

Let F : BG× I → J given by F (z, t) = h ◦ p for all t ∈ [0, 1] then H = F ◦ (f1 ×
id) : M0 × I → J is the constant homotopy between vo ◦ q and v1 ◦ q since

H(x, 0) = F (f(x), 0) = h ◦ p ◦ f1(x) = ψ1 ◦ q(x) = v0 ◦ q(x)
H(x, 1) = F (f(x), 1) = h ◦ p ◦ f1(x) = h ◦RH ◦ q(x) = v1 ◦ q(x).

Such homotopy is equivalent to a map H̃ : M0 → JI , where JI denotes the con-
tinuous (free) maps from I to J , given by H̃(x)(t) = H(x, t). Hence we have the
following commutative diagram

∂M0
ι //

²²

M0
H̃ //

q

²²

JI

e

²²
∗ // M+

v0×v1//

;;

J × J,

where e is evaluation on {0, 1} ⊂ I. To find a homotopy between v0 and v1 is
equivalent to give a lifting of v into JI , this is possible if the pair of maps (H̃ ◦ ι, ∗)
is nullhomotopic [11, Lemma 11.1’], where ∗ denotes the constant map to the base-
point. The map e is a fibration with fibre ΩJ , the loop space of J , and since e◦H̃ ◦ ι
is the constant map, the map H̃ ◦ ι has its image in ΩJ . The condition that the
pair of maps (H̃ ◦ ι, ∗) is nullhomotopic is equivalent to H̃ ◦ ι being nullhomotopic
in ΩJ .

Putting F̃ : BG → JI as F̃ (z)(t) = F (z, t) we have the following commutative
diagram

∂M0
ι //

g

²²

M0
H̃ //

f1

²²

JI

e

²²
F

j
// BG

F̃

;;wwwwwwwww
// J × J.

Since e ◦ F̃ ◦ j is also the constant map, the map F̃ ◦ j also has its image in ΩJ ,
therefore we have the following commutative diagram

∂M0
H̃◦ι //

g

²²

ΩJ

F
F̃◦j

<<yyyyyyyyy

By lemma 8.4 π1(ΩJ) = π2(J) = 0. Hence the map induced on fundamental groups
π1(F̃ ◦ j) is zero and since F is acyclic by [10, Cor. (3.2)] F̃ ◦ j is nullhomotopic
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in ΩJ . Therefore H̃ ◦ ι is nullhomotopic in ΩJ which implies that v0 and v1 are
homotopic.

Now it is a corollary the fact that the invariant α(M) (and so the Bloch invariant)
lies in the Bloch group, compare with [13, §1, §5].

Corollary 8.7. α(M) ∈ B(C).

Proof. The diagram of Proposition 8.6 induces the following commutative diagram
in homology

H3(M+;Z)
RH∗ //

ψ1∗ ))SSSSSSSSSSSSSSS H3(BSL2(C)+;Z)

h∗=τ

²²
H3(J(S2)SL2(C);Z) = P(C)

(28)

By Remark 8.5 we have that h = k+, hence h and k induce the same homomorphism
in homology. By Proposition 7.2 we have that k∗ = τ where τ is the map (10). Hence
h∗ = τ and

α(M) = ψ1∗([M+]) = τ ◦RH∗([M̂ ]) ∈ B(C),

since by the Bloch-Wigner exact sequence (11), the image of τ is the Bloch group
B(C).

Corollary 8.8. Let M be a non-compact orientable complete hyperbolic 3-manifold
of finite volume which has an ideal triangulation by ideal tetrahedra 41, . . . ,4n. Let
zi ∈ C be the parameter of 4i for each i. Then

2
n∑

i=1

zi ∧ (1− zi) = 0 ∈ ∧2
Z(C×). (29)

Proof. By Corollary 8.7 and the Bloch-Wigner exact sequence (11) β(M) is in the
kernel of the homomorphism λ given in (6) and the left-hand-side of (29) is precisely
λ(β(M)).

Remark 8.9. By a result of Sah [15, Prop. 2.9 (a), Thm. 4.1 (b)] we have that
K3(C) ∼= H3(SL(C);Z) ∼= H3(SL2(C);Z)⊕KM

3 (C) and K ind
3 (C) ∼= H3(SL2(C);Z).

Here KM
3 (C) is Milnor’s K-theory and K ind

3 (C) is the idecomposable part of K3(C).
We can construct an element in K ind

3 (C) mapping the fundamental class [M+] to
H3(SL2(C);Z) with the homomorphism RH∗ in (28) and we have that such el-
ement is mapped to the Bloch invariant under τ . Composing RH with the map
s : BSL2(C)+ → BSL(C)+ induced by the inclusion, we get an element in K3(C)
and it can be proved that such an element is also mapped to the Bloch invariant
under a homomorphism H3(SL(C);Z) → B(C) given by τ .

The present paper is the result of an attempt to lift the Bloch invariant to K3(C)
in this way. Unfortunately the map RH depends on a specific choice of nullhomotopy
of p◦f ◦ι in (14), and there is a Q/Z indeterminacy due to such choice. To get rid of
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the indeterminacy we should quotient H3(SL2(C);Z) by Q/Z but we get back the
Bloch group B(C) by the Bloch-Wigner exact sequence (11). Thus, to lift the Bloch
invariant to K3(C) one should look for a canonical way to construct an element in
K3(C) from M .

Acknowledgments: The first author would like to thank Michel Matthey for many
fruitful discussions.
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Mathématique, 25:53–75, 1979.

[11] Peter Hilton. Homotopy Theory and Duality. Notes on mathematics and its
applications. Gordon and Breach, New York, 1965.

[12] J[ohn] [W.] Milnor. Introducton to Algebraic K-Theory. Study 72. Princeton
University Press, Princeton, New Jersey, 1971.

[13] Walter D. Neumann and Jun Yang. Bloch invariants of hyperbolic 3-
manifolds. Duke Math. J., 96(1):29–59, 1999.

[14] John G. Ratcliffe. Foundations of Hyperbolic Manifolds. Graduate Texts in
Mathematics 149. Springer-Verlag, 1994.

[15] Chih-Han Sah. Homology of classical lie groups made discrete III. Journal
of Pure and Applied Algebra, 56:269–312, 1989.



Homology, Homotopy and Applications, vol. 1(2), 2000 344

[16] A. A Suslin. On the equivalence of K-theories. Communications in Algebra,
9(15):1559–1566, 1981.

[17] A. A. Suslin. K3 of a field and the Bloch group. Proceedings of the Steklov
Institute of Mathematics, 4:217–239, 1991.

[18] William P. Thurston. Three-Dimensional Geometry and Topology, volume 1.
Princeton University Press, Princeton, New Jersey, 1997.

[19] Tammo tom Dieck. Transformation Groups and Representation Theory. Lec-
ture Notes in Mathematics 766. Springer-Verlag, Berlin-Heidelberg, 1979.

[20] Tammo tom Dieck. Transformation Groups. Number 8 in Studies in Mathe-
matics. Walter de Gruyter, Berlin, 1987.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n1a14/v5n1a14.(dvi,ps,pdf)
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