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A THOM ISOMORPHISM FOR INFINITE RANK EUCLIDEAN
BUNDLES
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(communicated by Jonathan M. Rosenberg)

Abstract
An equivariant Thom isomorphism theorem in operator K-

theory is formulated and proven for infinite rank Euclidean
vector bundles over finite dimensional Riemannian manifolds.
The main ingredient in the argument is the construction of a
non-commutative C?-algebra associated to a bundle E → M ,
equipped with a compatible connection ∇, which plays the role
of the algebra of functions on the infinite dimensional total
space E. If the base M is a point, we obtain the Bott periodic-
ity isomorphism theorem of Higson-Kasparov-Trout [19] for in-
finite dimensional Euclidean spaces. The construction applied
to an even finite rank spinc-bundle over an even-dimensional
proper spinc-manifold reduces to the classical Thom isomor-
phism in topological K-theory. The techniques involve non-
commutative geometric functional analysis.

1. Introduction

First, we review the classical Thom isomorphism in topological K-theory, in a
smooth version appropriate for our infinite dimensional generalization. Let M be a
smooth finite dimensional manifold on which the compact group G acts via diffeo-
morphisms. The equivariant topological K-theory group of M (with compact sup-
ports) can be defined [36] as the abelian group K0

G(M) generated by G-homotopy
equivalence classes [σ] of smooth equivariant morphisms σ : F1 → F2 of smooth
complex vector G-bundles (with finite rank) which are isomorphisms off a compact
subset of M . Two such bundle morphisms σ and σ′ are G-homotopic if there is a G-
bundle morphism Σ on M×[0, 1], also with compact support, such that Σ|M×{0} ∼= σ
and Σ|M×{1} ∼= σ′. Addition in K0

G(M) is given by direct sum: [σ] + [σ′] = [σ⊕ σ′].
The map M 7→ K0

G(M) defines a contravariant functor from the category of smooth
G-manifolds (and smooth proper G-maps) to the category of abelian groups.

If p : E → M is a smooth vector G-bundle of finite rank on M (either real or
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complex), then K0
G(E) has a right K0

G(M)-module structure via the composition

K0
G(E)×K0

G(M) � //

⊗
33K0

G(E ×M)
(id×p)∗// K0

G(E)

where the first homomorphism is given by the outer tensor product £ and the
second homomorphism is induced by the proper G-map id×p : E → E ×M . Give
the vector bundle E a G-invariant bundle metric (·, ·) and let

Cliff(p∗E) = Cliff(p∗E)ev ⊕ Cliff(p∗E)od

denote the complex Clifford algebra bundle [4] of the pullback p∗E → E with its
natural Z2-grading and G-action. Consider the smooth G-equivariant morphism

CE : Cliff(p∗E)ev → Cliff(p∗E)od

which is defined via Clifford multiplication by the basepoint

CE(ω)(e) = e · ω, e ∈ E, ω ∈ Cliff(Ep(e))ev.

It is a vector bundle isomorphism off the zero section M ⊂ E. If M is compact, this
defines a K-theory element, called the Thom class,

λE = [CE : Cliff(p∗E)ev → Cliff(p∗E)od] ∈ K0
G(E).

The Thom homomorphism is then defined as the mapping

Φ : K0
G(M) → K0

G(E) : [σ] 7→ λE ⊗ [σ] (1)

via module multiplication by the Thom class. If M is not compact, then λE does
not define a K-theory class for E, but multiplication by λE is still well-defined
since λE ⊗ [σ] has compact support and we obtain a similar Thom homomorphism
in the non-compact case. An important result in topological K-theory is the Thom
isomorphism theorem [3, 22, 36] which is the statement that if p : E → M is
an oriented Euclidean vector bundle (of finite even rank) with spinc-structure then
Φ : K0

G(M) → K0
G(E) is an isomorphism of abelian groups.

Recall that if we take M = {•} to be a point, then E ∼= R2n is a finite dimen-
sional Euclidean vector space and the Thom isomorphism of R2n → {•} is the Bott
periodicity isomorphism K0

G({•}) ∼= K0
G(R2n). The Thom isomorphism can then be

viewed, in general, as multiplication by the Bott element λR2n along the fibers of
E → M , where rank(E) = 2n.

If a vector bundle p : E → M has infinite rank, say, if E is a real (or complex)
Hilbert bundle with infinite dimensional fiber E , then none of this works. This is
because the total space E is is not locally compact, and so lies outside the scope
of ordinary topological K-theory (even for compact groups.) We could try using an
equivariant Swan’s Theorem [3, 29] K0

G(M) ∼= KG
0 (C0(M)), where C0(M) is the

C?-algebra of continuous complex-valued functions on M which vanish at infinity.
However, this attempt fails because E is infinite dimensional and so C0(E) = {0}.
Another problem occurs when trying to define an equivariant K-theory when the
transformation group G is non-compact, since using finite rank vector G-bundles
is no longer appropriate. However, N. C. Phillips [30] has defined a topological



Homology, Homotopy and Applications, vol. 5(1), 2003 123

equivariant K-theory K0
G(M) for proper actions of locally compact groups. He then

proves a generalized Green-Julg-Rosenberg isomorphism:

K0
G(M) ∼= K0(C0(M)oα G),

where C0(M)oαG is (any) crossed product of A by G. But, again we have the prob-
lem that E is not locally compact. Most importantly, non-compact groups do not act
properly on a point. Thus, we must appeal directly to inherently non-commutative
geometric methods.

In this paper, we remedy these problems by defining an appropriate (equivariant)
Thom homomorphism using the K-theory of non-commutative C?- algebras. The
method is suggested by considering the case when M = {•} is a point and so E = E
is an infinite dimensional Euclidean space. In this very important case, we should
obtain the Bott periodicity of Higson-Kasparov-Trout [19]. Let G be a smooth,
second countable, locally compact Hausdorff topological group, e.g. a countable
discrete group.

Let E be a Euclidean (i.e., real Hilbert) space of countably infinite dimension.
If Ea is a finite dimensional subspace of E , then denote by C(Ea) the C?-algebra
C0(Ea, Cliff(Ea)) of continuous functions from Ea into the complexified Clifford
algebra of Ea vanishing at infinity. This C?-algebra has a Z2-grading inherited from
Cliff(Ea). Let A(Ea) denote the Z2-graded tensor product,

A(Ea) = C0(R)⊗̂C(Ea),

where C0(R) is graded into even and odd functions. If Ea is a subspace of another
finite dimensional subspace Eb of E , then there is a canonical homomorphism of
C?-algebras A(Ea) → A(Eb) (described in more generality in Section 2.) These
homomorphisms are injective and, more surprisingly, are functorial with respect to
subspace inclusion. This allows us to define the direct limit C?-algebra

A(E) = lim−→
Ea⊂E

A(Ea)

taken over the directed system of all finite dimensional linear subspaces {Ea} of the
infinite dimensional Euclidean space E . If E is equipped with an orthogonal action
of the group G, then G acts on the directed system of subspaces, so it induces an
action on the direct limit. Most importantly, the equivariant inclusion of the zero
dimensional subspace {0} ↪→ E induces a canonical equivariant ∗-homomorphism
β : A(0) → A(E). The Bott periodicity theorem of Higson-Kasparov-Trout [19] is
the statement that the map β : A(0) → A(E) induces an isomorphism in equivariant
K-theory1:

β∗ : KG
∗ (A(0)) → KG

∗ (A(E)).

Since A(0) o G ∼= C0(R) ⊗ C∗G it follows that KG
∗ (A(0)) ∼= K∗+1(C∗G), where

C∗G is the (full) group C?-algebra of G. Compare this to the compact group case
where K0

G({•}) = R(G) ∼= K0(C∗G) by the Peter-Weyl Theorem, where R(G) is
the representation ring of the compact group G.

1We define KG∗ (A) = K∗(AoG) where AoG is the full crossed product (see Definition 4.4).
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These considerations suggest the following. Let M be a finite dimensional Rie-
mannian manifold. Let C(M) denote the C?-algebra of continuous sections of the
complexified Clifford algebra bundle Cliff(TM) of the tangent bundle TM vanishing
at infinity. Let

A(M) = C0(R)⊗̂C(M)

denote the Z2-graded suspension of C(M). These non-commutative C?-algebras
will play a fundamental role in defining our Thom homomorphism for infinite rank
Euclidean bundles. If M is an oriented even-dimensional spinc-manifold, there is a
Morita equivalence [34] (given by the spinor bundle) between C(M) and C0(M). It
follows that if the group G acts properly on M in a compatible way:

KG
∗ (A(M)) ∼= K∗+1(C0(M)oG) ∼= K∗+1

G (M).

However, a non-compact group does not act properly on a point. Thus, we must allow
for a more general class of group actions, called isoreductive actions (see Definition
4.1) which have a local slice property similar to the notion of proper action as given
by Baum-Connes-Higson [6].

Now let p : E → M be a smooth Euclidean G-bundle modelled on E , i.e., a locally
trivial fiber bundle with fiber given by a Euclidean space E , of countably infinite
dimension, and structure group O(E) in the norm (or strong) operator topology.
We assume that the group G acts by Euclidean bundle automorphisms of E and
acts on M isoreductively. We will generalize the C?-algebra construction above to
obtain a direct limit C?-algebra

A(E) = lim−→
Ea⊂E

A(Ea)

taken over the directed system of all smooth finite rank Euclidean subbundles
E ⊃ Ea → M ordered by inclusion of subbundles. In order for this construction
to succeed, we must equip E with a compatible G-invariant connection ∇ which
controls splittings used in defining the connecting maps of the direct limit. The
equivariant inclusion of M ↪→ E as the zero subbundle then canonically induces
an equivariant “Thom” ∗-homomorphism Ψp : A(M) → A(E). The induced map
on equivariant K-theory ΨG

∗ : KG
∗ (A(M)) → KG

∗ (A(E)) is our desired equivariant
Thom homomorphism, and our main result is this:

Theorem 1.1. Let G be a smooth, second countable, locally compact group and
M be a smooth isoreductive Riemannian G-manifold. If p : E → M is a Euclidean
G-bundle with fiber a countably infinite dimensional Euclidean space E, equipped
with a G-invariant connection, then the map ΨG

∗ : KG
∗ (A(M)) → KG

∗ (A(E)) is an
isomorphism of abelian groups.

The outline is as follows. In Section 2, we develop the non-commutative geometric
tools needed to define our infinite rank Thom homomorphism and discuss the rela-
tions with the classical finite rank case. In Section 3, we construct the C?-algebra
A(E) and prove the non-equivariant version of Theorem 1.1. The equivariant Thom
homomorphism is developed in Section 4 and the proof of Theorem 1.1 is given in
Section 5. In Appendix A we review Z2-graded C?-algebras and their (essentially)
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self-adjoint unbounded multipliers and introduce a new balanced tensor product for
Z2-graded C0(M)-algebras that we need to make our construction work.

The author would like to thank P. Baum, N. Higson, D. Williams, I. Raeburn,
C. Gordon, N. C. Phillips, E. Guentner, and D. Dumitrascu for helpful suggestions
and enlightening discussions.

2. Clifford C?-algebras and Thom Isomorphism: The Finite
Rank Case

We assume throughout this section that all manifolds are finite dimensional,
second countable, Hausdorff, and infinitely differentiable, and all maps are infinitely
smooth. Let M be a Riemannian manifold with tangent bundle TM → M .

Definition 2.1. Let Cliff(TM) denote the Clifford bundle [4, 7] of TM . That is,
the bundle of Clifford algebras over M whose fiber at x ∈ M is the complex Clifford
algebra Cliff(TxM) of the Euclidean space TxM , i.e., the universal unital complex
∗-algebra that contains TxM as a real linear subspace such that v2

x = ‖vx‖21 for all
vx ∈ TxM . It has a natural Z2-graded Hermitian bundle structure.

Recall that the complex Clifford algebra of a finite dimensional Euclidean space
has a canonical C?-algebra structure [19, 22, 21].

Definition 2.2. Denote by C(M) the C?-algebra C0(M, Cliff(TM)) of continu-
ous sections of Cliff(TM) which vanish at infinity, with Z2-grading induced from
Cliff(TM). (See Appendix A for a review of graded C?-algebras.)

To be precise, we should use the notation C(M, g) to show the dependence of
the C?-algebra C(M) on the Riemannian metric g of M . However, any two bun-
dle metrics g1 and g2 on TM are equivalent via a Euclidean bundle isomorphism
(TM, g1) ∼= (TM, g2) which, by universality, induces a unitary Z2-graded bundle
isomorphism Cliff(TM, g1) ∼= Cliff(TM, g2) of Clifford algebra bundles. Thus, the
C?-algebras C(M, g1) ∼= C(M, g2) are isomorphic as Z2-graded C?-algebras.

Let C0(M) denote the C?-algebra of continuous complex-valued functions on M
which vanish at infinity. Note that pointwise multiplication

(fs)(x) = f(x)s(x), ∀x ∈ M,

where f ∈ C0(M) and s ∈ C(M), determines a nondegenerate ∗-homomorphism

C0(M) → ZM(C(M))

into the center of the multiplier algebra of C(M) of grading degree zero (where
C0(M) is always considered to be trivially graded.) Thus, we have the following.

Lemma 2.3. The C?-algebra C(M) has a canonical C0(M)-algebra structure, and
up to Z2-graded isomorphism, is independent of the Riemannian metric on M .

If M = V is a finite dimensional Euclidean vector space, then TM = V ×V and so
C(M) = C0(V,Cliff(V )) as in Definition 2.2 [19]. Using the canonical isomorphism
T (M1 ×M2) ∼= TM1 × TM2, we easily obtain the following result.
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Lemma 2.4. If M = M1 ×M2 then C(M) ∼= C(M1)⊗̂C(M2).

Definition 2.5. Let S denote the C?-algebra C0(R) of continuous complex-valued
functions on the real line which vanish at infinity, graded into even and odd func-
tions. If A is any Z2-graded C?-algebra then let SA be the graded tensor prod-
uct S⊗̂A. In particular, let A(M) = S⊗̂C(M), which can be viewed as a non-
commutative topological suspension2 of M .

Another relationship between the non-commutative C?-algebra C(M) and the
commutative C?-algebra C0(M) is given by spinc-structures [21]. Let C1 = Cliff(R)
denote the first complex Clifford algebra. The following is adapted from Theorem
2.11 of Plymen [31] and Proposition II.A.9 of Connes [12].

Proposition 2.6. Let M be an oriented Riemannian manifold. If M is even-
dimensional, there is a bijective correspondence between spinc-structures on M and
Morita equivalences (in the sense of Rieffel [34, 35]) between the C?-algebras
C0(M) and C(M). Thus, A(M) is Morita equivalent to C0(R ×M). If M is odd-
dimensional, then spinc-structures on M are in bijective correspondence with Morita
equivalences C0(M) ∼ C(M)⊗̂C1.

Proof. Assume dim(M) = 2m is even. Let S → M denote the spinor bundle
associated to a spinc-structure. This has a natural Euclidean bundle structure. The
module AS = C0(M,S) of continuous sections of S vanishing at infinity gives the
desired C0(M)−C(M)-imprimitivity bimodule implementing the Morita equivalence
C0(M) ∼ C(M). Since M is even-dimensional,

Cliff(TM) = Cliff(TM)ev ⊕ Cliff(TM)od

splits as a Z2-bundle with grading operator given by the bounded global section

ε = ime1 · e2 · · · e2m,

where {e1, · · · , e2m} is any oriented local orthonormal frame of TM . It follows
that C(M) = C0(M, Cliff(TM)) is an evenly graded C?-algebra with grading op-
erator ε ∈ M(C(M)). Thus, by Proposition 14.5.1 [8], the graded tensor product
C0(R)⊗̂C(M) and ungraded tensor product C0(R) ⊗ C(M) are isomorphic as (un-
graded) C?-algebras. Thus, since suspensions preserve Morita equivalence:

A(M) =def C0(R)⊗̂C(M) ∼= C0(R)⊗ C(M) ∼ C0(R)⊗ C0(M) ∼= C0(R×M).

The odd-dimensional case is similar, but we cannot remove the grading on the
suspension and we must tensor by C1.

Although C(M) and A(M) carry natural Z2-gradings, when we consider their
K-theory, we shall ignore the gradings. To make this point clearer, if A is any
C?-algebra—graded or not—then K∗(A) will denote the K-theory of the
underlying C?-algebra, without the grading.

Corollary 2.7. If M is an even-dimensional oriented Riemannian manifold with
spinc-structure, there are canonical K-theory isomorphisms

K∗(C(M)) ∼= K∗(M) and K∗(A(M)) ∼= K∗+1(M).

2Recall that for the ungraded tensor product we have C0(R)⊗ C0(M) ∼= C0(R×M).
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Let p : E → M be a smooth finite rank Euclidean bundle. We wish to show that
there is a natural “Thom” ∗-homomorphism

Ψp : A(M) → A(E)

where we consider E as a finite dimensional manifold with Riemannian structure
to be constructed as follows.

Given p : E → M , there is a short exact sequence [2, 7] of real vector bundles

0 // V E // TE
T∗p // p∗TM // 0

where the vertical subbundle V E = ker(T ∗p) is isomorphic to p∗E. This sequence
does not have a canonical splitting, in general, but choosing a compatible connection
∇ on E determines an associated vector bundle splitting.

Definition 2.8. A connection [7, 21] on E is a linear map

∇ : C∞(M, E) → C∞(M,T ∗M ⊗ E)

which satisfies Leibnitz’s rule, i.e., if s ∈ C∞(M, E) and f ∈ C∞(M), then

∇(fs) = df ⊗ s + f∇s

where d is the exterior derivative on smooth forms Ω∗(M) = C∞(M, Λ∗T ∗M). If
E has a Euclidean metric (·, ·), we say that ∇ is compatible with the metric if

X(s1, s2) = (∇Xs1, s2) + (s1,∇Xs2)

for all sections s1, s2 ∈ C∞(M,E) and vector fields X ∈ C∞(M, TM). If E is
equipped with a compatible connection ∇, then we call E an affine Euclidean bundle.

Lemma 2.9. Let p : E → M be a finite rank Euclidean bundle on the Riemannian
manifold M . Given a compatible connection ∇ on E there is an induced orthogonal
splitting TE ∼= p∗E ⊕ p∗TM of the exact sequence

0 → p∗E → TE → p∗TM → 0

where p∗E and p∗TM have the pullback metrics. Hence, the manifold E has an
induced Riemannian metric.

Proof. Let ∇∗ : C∞(E, p∗E) → C∞(T ∗E ⊗ p∗E) denote the pullback of ∇ on
the bundle p∗E → E, which is defined by the formula:

∇∗(fp∗s) = df ⊗ p∗s + fp∗(∇s)

for f ∈ C∞(M) and s ∈ C∞(M,E). The tautological section τ ∈ C∞(E, p∗E) is
the smooth section defined by the formula τ(e) = (e, e) for all e ∈ E. The derivative
of τ will be denoted by

ω = ∇∗τ ∈ C∞(T ∗E ⊗ p∗E) = Ω1(E, p∗E) ∼= Ω1(E, V E)

which is a connection 1-form (Definition 1.10 [7]). The kernel HE = ker(ω) ∼= p∗TM
of the connection 1-form ω is the horizontal subbundle of TE which provides the
desired splitting

TE = V E ⊕HE ∼= p∗E ⊕ p∗TM.
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Now give TE the direct sum of the pullback metrics on p∗E and p∗TM . This gives E
the structure of a Riemannian manifold and makes the splitting of TE orthogonal.

Thus, given a compatible connection ∇ on the Euclidean bundle E, we can de-
fine the C?-algebra C(E) as above using the induced Riemannian structure on the
manifold E. However, we also have the C?-algebra C0(E, Cliff(p∗E)) associated
to the pullback bundle p∗E → E. Both C(E) and C0(E, Cliff(p∗E)) have natural
C0(E)-algebra structures. However, the bundle map p : E → M induces a pullback
∗-homomorphism [33]

p∗ : C0(M) → Cb(E) = M(C0(E)) : f 7→ p∗(f) = f ◦ p

which induces a (graded) C0(M)-algebra structure on any (graded) C0(E)-algebra.
The following is an important result that relates these two C?-algebras3 to the
C0(M)-algebra C(M) of the base manifold M .

Theorem 2.10. Let p : E → M be a finite rank affine Euclidean bundle on the
Riemannian manifold M . There is a natural isomorphism of graded C?-algebras

C(E) ∼= C0(E, Cliff(p∗E))⊗̂
M
C(M)

where ⊗̂
M

denotes the balanced tensor product over C0(M) of Definition A.6.

Proof. By the previous lemma, there is an induced orthogonal splitting

TE = p∗E ⊕ p∗TM.

Thus, we have an induced isomorphism of Z2-graded Clifford algebra bundles

Cliff(TE) ∼= Cliff(p∗E ⊕ p∗TM) = Cliff(p∗E)⊗̂p∗Cliff(TM). (2)

Therefore, by taking sections, we have canonical balanced tensor product isomor-
phisms (see Proposition A.7)

C(E) =def C0(E, Cliff(TE)) ∼= C0(E, Cliff(p∗E)⊗̂p∗Cliff(TM))
∼= C0(E, Cliff(p∗E))⊗̂

E
C0(E, Cliff(p∗TM)).

But, we have, using pullbacks along p : E → M , that there are canonical pullback
isomorphisms (Proposition A.9)

C0(E, Cliff(p∗TM)) ∼= p∗C0(M, Cliff(TM)) = p∗C(M) =def C0(E)⊗̂MC(M).

Hence, it follows that

C(E) ∼= C0(E, Cliff(p∗E))⊗̂E C0(E, Cliff(p∗TM))
∼= C0(E, Cliff(p∗E))⊗̂E C0(E)⊗̂MC(M)
∼= C0(E, Cliff(p∗E))⊗̂

M
C(M)

using the canonical isomorphism A⊗̂E C0(E) ∼= A for graded C0(E)-algebras.
We now wish to define a certain “Thom operator” for the “vertical” algebra

C0(E, Cliff(p∗E)).

3Although C0(E, Cliff(p∗E)) ∼= p∗C0(M, Cliff(E)), we will not need this isomorphism.
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Associate to the Euclidean bundle E an unbounded section

CE : E → Cliff(p∗E) : e 7→ Cp(e)(e)

where Cp(e) is the Clifford operator on the Euclidean space Ep(e) from Definition
2.4 [19]. It is given globally by the composition

E
τ //

CE

77
p∗E C // Cliff(p∗E)

where τ ∈ C∞(E, p∗E) is the tautological section (in the proof of Lemma 2.9)
and C : p∗E ↪→ Cliff(p∗E) is the canonical inclusion C(e1, e2) = Cp(e1)(e2). The
following is then easy to prove.

Theorem 2.11. Let E be a finite rank Euclidean bundle on M . Multiplication by
the section CE : E → Cliff(p∗E) determines a degree one, essentially self-adjoint,
unbounded multiplier (see Definition A.1) of the C?-algebra C0(E, Cliff(p∗E)) with
domain Cc(E, Cliff(p∗E)).

We will call CE the Thom operator of E → M . Thus, we have a functional
calculus homomorphism

S = C0(R) → M(C0(E, Cliff(p∗E))) : f → f(CE)

from S to the multiplier algebra of C0(E, Cliff(p∗E)). Note that f(CE) goes to zero
in the “fiber” directions on E (since p(e) is constant), but is only bounded in the
“manifold” directions on E. Indeed, note that for the generators f(x) = exp(−x2)
and g(x) = x exp(−x2) of S, we have that f(CE) and g(CE) are, respectively,
multiplication by the following functions on E:

f(CE)(e) = exp(−‖e‖2) and g(CE)(e) = e · exp(−‖e‖2), ∀e ∈ E.

Definition 2.12. Let X denote the degree one, essentially self-adjoint, unbounded
multiplier of S = C0(R), with domain the compactly supported functions, given by
multiplication by x, i.e., Xf(x) = xf(x) for all f ∈ Cc(R) and x ∈ R.

By Lemma A.3, the operator X⊗̂1 + 1⊗̂CE determines a degree one, essentially
self-adjoint, unbounded multiplier of the tensor product

S⊗̂C0(E, Cliff(p∗E)) = SC0(E, Cliff(p∗E)).

We obtain a functional calculus homomorphism

βE : S → M(SC0(E, Cliff(p∗E))) : f 7→ f(X⊗̂1 + 1⊗̂CE)

from S into the multiplier algebra of SC0(E, Cliff(p∗E)). Now we can define our
“Thom ∗-homomorphism” for a finite rank affine Euclidean bundle. This will provide
the connecting map in the next section to define the direct limit C?-algebra for an
infinite rank affine Euclidean bundle.

Theorem 2.13. Let (E,∇,M) be as above. With respect to the isomorphism

A(E) ∼= S⊗̂C0(E, Cliff(p∗E))⊗̂
M
C(M)
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from Theorem 2.10, there is a graded ∗-homomorphism

Ψp = βE⊗̂M
idM : A(M) → A(E)

which on elementary tensors f⊗̂s ∈ S⊗̂C(M) = A(M) is given by

f⊗̂s 7→ f(X⊗̂1 + 1⊗̂CE)⊗̂M s.

Proof. From the discussion above, we have that βE⊗̂M
idM is the composition

S⊗̂C(M)
βE⊗̂ idM// M(SC0(E, Cliff(p∗E)))⊗̂C(M) → M(SC0(E, Cliff(p∗E)))⊗̂MC(M)

Checking on the generator f(x) = exp(−x2) of S, we compute that

f(X⊗̂1 + 1⊗̂CE)⊗̂
M

s = exp(−x2)⊗̂ exp(−‖e‖2)⊗̂
M

s ∈ A(E)

Similarly for g(x) = x exp(−x2), we find that

g(X⊗̂1 + 1⊗̂CE)⊗̂
M

s = x exp(−x2)⊗̂ exp(−‖e‖2)⊗̂
M

s

+ exp(−x2)⊗̂e · exp(−‖e‖2)⊗̂
M

s ∈ A(E).

It follows that the range of Ψp = βE⊗̂M
idM is in A(E) as desired.

Important Note: Compare the similarities of the C?-algebraic formula above
to formula (1) for the topological Thom homomorphism Φ : K0(M) → K0(E).
Both have the same form: pullback from M and multiply/tensor by the Thom
class/operator of the bundle E.

We now come to the main theorem of this section:

Thom Isomorphism Theorem 2.14. If E → M is a smooth finite rank affine
Euclidean bundle, then the ∗-homomorphism Ψp : A(M) → A(E) induces an iso-
morphism of abelian groups:

Ψ∗ : K∗(A(M)) → K∗(A(E))

The proof will be essentially the same argument as given in another “Thom iso-
morphism” theorem of the author (Theorem B.22 [37]). But first, we must develop
some functorial properties of these Thom maps.

Since the space of compatible connections ∇ on E → M is convex, we have the
following result.

Proposition 2.15. Let p : E → M be a smooth finite rank affine Euclidean bundle.
The homotopy class of the ∗-homomorphism Ψp : A(M) → A(E) is independent of
the choice of compatible connection ∇ on E.

Proposition 2.16. If p : E = M × V → M is a trivial finite rank affine Euclidean
bundle (with trivial connection ∇0 = d ) then we have a Z2-graded isomorphism

C(E) ∼= C(V )⊗̂C(M)

such that the Thom map has the form

Ψp
∼= βV ⊗̂ idC(M) : A(M) = S⊗̂C(M) → A(V )⊗̂C(M) ∼= A(E)

where βV : S → A(V ) : f 7→ f(X⊗̂1 + 1⊗̂CV ) is the Thom map for V → {0}.
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Proof. The trivial connection ∇0 = d gives the manifold E = M × V the Rie-
mannian metric induced by the isomorphism

TE = TM × TV → M × V = E.

The pullback vector bundle p∗E → E has the form

p∗E = (M × V )× V → M × V = E

and so the Clifford bundle Cliff(p∗E) = (M × V )× Cliff(V ), which gives:

C0(E, Cliff(p∗E)) = C0(M × V, (M × V )× Cliff(V )) ∼= C0(V, Cliff(V ))⊗̂C0(M).

By Theorem 2.10, it follows that

C(E) ∼= C0(E, Cliff(p∗E))⊗̂
M
C(M)

∼= C0(V, Cliff(V ))⊗̂C0(M)⊗̂MC(M)
∼= C(V )⊗̂C(M).

where we used the isomorphism C0(M)⊗̂
M
C(M) ∼= C(M). The result now easily

follows.
For example, if p : Eb → Ea is the orthogonal projection of a finite dimensional

Euclidean vector space Eb onto a linear subspace Ea then Ψp = βba is the “Bott
homomorphism” from Definition 3.1 of Higson-Kasparov-Trout [19].

Lemma 2.17. Let U be an open subset of the Riemannian manifold M . The in-
clusion i : U ↪→ M induces a short exact sequence

0 // A(U)
1⊗̂i∗ // A(M) // A(M\U) // 0

of C?-algebras. Thus, A(U) C A(M) as a (two-sided) C?-ideal.

Proof. Give the open subset U the restriction gU = i∗(g) of the Riemannian
metric g on M . The tangent bundle TU = TM |U = i∗(TM) is the restriction of
TM to U . Thus, it follows by universality that

Cliff(TU) = Cliff(i∗(TM)) = i∗Cliff(TM) = Cliff(TM)|U .

Since C(U) = C0(U,Cliff(TU)) we have an exact sequence of C?-algebras

0 // C(U)
i∗ // C(M) // C(M\U) // 0.

Taking the (maximal) graded tensor product with the nuclear, hence exact [39],
C?-algebra S = C0(R), we obtain an exact sequence of C?-algebras

0 // S⊗̂C(U)
1⊗̂i∗ // S⊗̂C(M) // S⊗̂C(M\U) // 0

as desired.
The next result shows that the functor M 7→ K∗(A(M)) has Mayer-Vietoris

exact sequences.
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Lemma 2.18. Let U and V be open subsets of M . There is an exact sequence

K0(A(U ∩ V )) // K0(A(U))⊕K0(A(V )) // K0(A(U ∪ V ))

²²
K1(A(U ∪ V ))

OO

K1(A(U))⊕K1(A(V ))oo K1(A(U ∩ V ))oo

of abelian groups.

Proof. By Lemma 2.17, A(U) and A(V ) are ideals in A(U ∪ V ). By an approxi-
mation argument we have the relations:

{
A(U) +A(V ) = A(U ∪ V )
A(U) ∩ A(V ) = A(U ∩ V )

since similar relations hold for C(U) and C(V ). The result now follows from Exercise
4.10.21 [20].

Lemma 2.19. Let (E,∇,M) be as above. If U is an open subset of M there is a
commutative diagram

A(E|U ) 1⊗̂ĩ∗−−−−→ A(E)

Ψp
U

x
xΨp

A(U) 1⊗̂i∗−−−−→ A(M)

where pU : E|U → U denotes the restriction of the Euclidean bundle E to U .

Proof. Let i : U ↪→ M denote the inclusion of U as an open submanifold of M . The
restricted bundle E|U = i∗(E), which as a subset of E, is open since E|U = p−1(U)
as a set. We have a commuting diagram

E|U ĩ−−−−→ E

pU

y
yp

U
i−−−−→ M

where the horizontal maps are the inclusions as open subsets and the vertical maps
are the bundle projections. Give E|U the restriction of the Euclidean metric on
E. Let ∇U = i∗(∇) denote the restriction of ∇ to E|U . The tautological section
τU : E|U → p∗E|U is the restriction τU = τ |EU

= ĩ∗(τ) of the tautological section τ
of E. It follows that the connection 1-form θU = ∇∗UτU ∈ Ω1(E|U , p∗E|U ) satisfies

θU = ∇∗UτU = p∗U i∗(∇)̃i∗(τ) = ĩ∗(∇τ) = ĩ∗(θ)

and so is the restriction of the connection 1-form θ ∈ Ω1(E, p∗E) of ∇ to E|U . This
implies that the horizontal subbundle H(E|U ) is

p∗UTU ∼= H(E|U ) = ker θU
∼= ĩ∗(ker θ) = ĩ∗(HE) ∼= (p∗TM)|E|U .
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Thus, we have coherent splittings

TE = p∗E ⊕ TM

TE|U
T ĩ

OO

= p∗E|U ⊕ TU

p∗ ĩ⊕Ti

OO

where the vertical maps are open inclusions. This implies that we have an induced
commuting diagram

C(E) ∼= C0(E, Cliff(p∗E))⊗̂MC(M)

C(E|U )

ĩ∗

OO

∼= C0(E|U , Cliff(p∗E|U ))⊗̂UC(U)

ĩ∗⊗̂i∗

OO

of C?-algebras. Since the Thom operator CEU
: E|U → Cliff(p∗E|U ) is the re-

striction of the Thom operator CE to E|U ,the result easily follows by checking on
generators exp(−x2)⊗̂sU and x exp(−x2)⊗̂sU of S⊗̂C(U).

We are now ready to prove the finite rank Thom Isomorphism Theorem 2.14.

Proof of Theorem 2.14. If M = {0} is a one-point space, then E = V is a finite
dimensional Euclidean space and so, by Lemma 2.4, Ψp = βV : S = A(0) → A(V ).
The induced map on K-theory Ψ∗ = β∗ : K∗(S) → K∗(A(V )) is an isomorphism
by the Bott periodicity theorem 2.6 of Higson-Kasparov-Trout [19].

If E = M × V → M is a trivial bundle, then we may assume that ∇ = d
is the trivial connection by Proposition 2.15. Thus, by Lemma 2.4 we have that
Ψp = βV ⊗̂ idC(M) : A(M) = S⊗̂C(M) → A(V )⊗̂C(M) ∼= A(E). The induced map
on K-theory is an isomorphism, again by the proof of Theorem 2.6 [19], by tensoring
with idC(M). Indeed, the inverse of Ψ∗ is induced by

{φt⊗̂ idC(M)} : A(V )⊗̂C(M) → SK(L2(V, Cliff(V ))⊗̂C(M)

where

{φt} : A(V ) → SK(L2(V, Cliff(V )) : f⊗̂s 7→ f(X⊗̂1 + 1⊗̂t−1DV )(1⊗̂s)

is the asymptotic morphism of the Dirac operator DV on L2(V, Cliff(V )) of Defini-
tions 2.7 & 2.8 [19].

Let {Un}∞1 be a countable covering by open subsets of M such that E trivializes
over each Un. We now proceed by induction on n. If n = 1 the result follows by
Lemma 2.3, Proposition 2.16 and the discussion above. Suppose we have proved
the result for E restricted to U = U1 ∪ U2 ∪ · · · ∪ Un (or any open subset of U).
Set V = Un+1. By Lemmas 2.17 and 2.19, there is a commuting cubical diagram of
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C?-algebra homomorphisms

A(E|U ) // A(E|U∪V )

A(E|U∩V )

ffLLLLLLLLLL
// A(E|V )

ffMMMMMMMMMM

A(U) //

OO

A(U ∪ V )

OO

A(U ∩ V )

ffLLLLLLLLLL

OO

// A(V )

ffMMMMMMMMMM

OO

where the vertical arrows are the appropriate Thom maps and the top and bottom
squares are inclusions. By Lemma 2.18 we have Mayer-Vietoris sequences

· · · // k∗(E|U∩V ) // k∗(E|U ))⊕ k∗(E|V ) // k∗(E|U∪V ) // k∗+1(E|U∩V ) // · · ·

· · · // k∗(U ∩ V ) //

OO

k∗(U)⊕ k∗(V ) //

OO

k∗(U ∪ V ) //

OO

k∗+1(U ∩ V )

OO

// · · ·
where we have used the simplifying notation k∗(M) = K∗(A(M)). By induction,
the vertical arrows are isomorphisms from k∗(U), k∗(V ), and k∗(U∩V ) (since U∩V
is an open subset of U .) By the Five Lemma, we conclude that the vertical arrows
from k∗(U ∪ V ) are also isomorphisms. This concludes the proof.

Corollary 2.20. If E is a finite even rank oriented Euclidean spinc-bundle (with
spin connection ∇) on an even-dimensional oriented Riemannian spinc-manifold
M , then Ψp : A(M) → A(E) induces the topological Thom isomorphism

K∗(A(M))
Ψ∗ //

∼=
²²

K∗(A(E))

∼=
²²

K∗+1(M) Φ // K∗+1(E)

Proof. From the splitting TE = p∗E ⊕ p∗TM , we see that E has a canonical
structure as an oriented even-dimensional spinc-manifold. The result now follows by
Proposition 2.6, Corollary 2.7, and the previous proof.

3. The C?-algebra of an Infinite Rank Euclidean Bundle

In this section, we are going to construct a C?-algebra A(E) for an infinite rank
Euclidean bundle E → M , analogous to the one in Definition 2.5. It should be
stressed that in the infinite dimensional case A(E) is not the suspension of a C?-
algebra. We choose the notation A(E) to be consistent with the notation in [18],
which differs from the potentially confusing notation in the original Bott periodicity
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paper [19]. First we need to investigate the transitivity properties of the Thom maps
from the previous section.

Fix a smooth finite dimensional Riemannian manifold M . Let p2 : E2 → M be
a finite rank Euclidean bundle with metric (·, cdot)2. Suppose that E1 ⊂ E2 is a
vector subbundle of E2, i.e., there is an exact sequence of vector bundles

0 // E1 i // E2.

Let p1 = p2|E1 : E1 → M be the subbundle projection.
We can restrict the bundle metric on E2 to get a metric (·, ·)1 = i∗(·, ·)2 on E1

so that i is an inclusion of Euclidean bundles. We then have a canonical orthog-
onal splitting E2 = E⊥ ⊕ E1 of Euclidean bundles. Now let ∇2 be a compatible
connection on E2. We can then define a connection ∇1 on E1 by the composition

C∞(M, E2) ∇2
// C∞(M, T ∗M ⊗ E2)

(1⊗p21)∗
²²

C∞(M, E1)

i∗

OO

∇1
// C∞(M, T ∗M ⊗ E1)

where p21 : E2 = E⊥ ⊕E1 → E1 is the orthogonal bundle projection onto E1. The
connection ∇1 is the called the projection of the connection ∇2 onto E1.

Lemma 3.1. The projected connection ∇1 on the subbundle E1 is compatible with
the induced metric (·, ·)1.

Let E21 denote the vector bundle p21 : E2 → E1. There is then a Euclidean
bundle isomorphism E21 ∼= p∗1E

⊥, and an induced connection ∇21 = p∗1∇⊥, where
∇⊥ is the induced connection on p2 : E⊥ → M via projecting ∇2 as above. (Note
that ∇2 = ∇⊥⊕∇1 with respect to the orthogonal splitting E2 = E⊥⊕E1.) Hence,
we have a commuting diagram of vector bundle projections

E2

p2

²²

p21

}}||
||

||
||

E1

p1 !!CC
CC

CC
CC

M

and an associated diagram of Thom ∗-homomorphisms (via Theorem 2.13):

A(E2)

A(E1)

Ψ21

::uuuuuuuuu

A(M)
Ψ1

ddIIIIIIIII

Ψ2

OO
(3)
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We want to prove that this diagram commutes, i.e., the Thom maps are transitive.
The proof is similar to Proposition 3.2 [19], which will be an immediate corollary.

Proposition 3.2. Let p2 : E2 → M be a finite rank Euclidean bundle with con-
nection ∇2. If p1 : E1 → M is a finite rank vector bundle such that there is a
vector bundle inclusion i : E1 ↪→ E2, then diagram (1) above commutes, where
Ψ21 : A(E1) → A(E2) is the Thom homomorphism associated to the orthogonal
projection p21 : E2 → E1.

Proof. First we need to check that the Riemannian metric (from Lemma 2.9) on
the total space manifold E2 induced by the triple (E2,∇2,M) (used to define the
C?-algebra C(E2)) is the same as the Riemannian metric on the manifold E21 = E2

induced by the triple (E21,∇12, E1). Using the induced metrics and connections
from above, we have the following orthogonal splittings of bundles:





TE2 = p∗2E
2 ⊕ p∗2(TM)

TE21 = p∗21E
21 ⊕ p∗21(TE1)

TE1 = p∗1E
1 ⊕ p∗1(TM)

By plugging the third into the second and using the fact that p2 = p1 ◦ p21, we
obtain the first splitting. Hence, these orthogonal splittings are compatible with
each other. Therefore, there is a canonical identification C(E2) = C(E21) of graded
C?-algebras.

The orthogonal splitting E2 = E⊥ ⊕ E1 induces an orthogonal splitting

p∗2E
2 = p∗2E

⊥ ⊕ p∗2E
1 = p∗21E

21 ⊕ p∗21p
∗
1E

1.

This implies that we have a canonical Clifford algebra bundle decomposition

Cliff(p∗2E
2) ∼= Cliff(p∗21E

21)⊗̂p∗21Cliff(p∗1E
1). (4)

This decomposition induces a canonical isomorphism of graded C?-algebras

C0(E2,Cliff(p∗2E
2)) ∼= C0(E2, Cliff(p∗21E

21))⊗̂
E2 p∗21C0(E1,Cliff(p∗1E

1))

= C0(E21, Cliff(p∗21E
21))⊗̂

E2 p∗21C0(E1,Cliff(p∗1E
1))

where we use the fact that E21 = E2 as manifolds. Consequently, we have

A(E2) ∼= S⊗̂C0(E21, Cliff(p∗21E
21))⊗̂

E2 p∗21C0(E1,Cliff(p∗1E
1))⊗̂MC(M). (5)

Note that since since p∗21C0(E1,Cliff(p∗1E
1)) = C0(E2)⊗̂E1C0(E1, Cliff(p∗1E

1))
this implies that

A(E2) ∼= S⊗̂C0(E21,Cliff(p∗21E
21))⊗̂E1C0(E1, Cliff(p∗1E

1))⊗̂
M
C(M) (6)

∼= S⊗̂C0(E2,Cliff(p∗21E
21))⊗̂E1C(E1) ∼= A(E21)

which is the decomposition for the Thom map Ψ21 : A(E1) → A(E2).
Let C2 = CE2 : E2 → Cliff(p∗2E

2) be the Thom operator for p2 : E2 → M and
let C1 = CE1 : E1 → Cliff(p∗1E

1) be the Thom operator for p1 : E1 → M as in
Theorem 2.11. Let C21 : E21 → Cliff(p∗21E

21) be the Thom operator for the bundle
p21 : E21 → E1. If e = e⊥ ⊕ e1 ∈ E2 = E⊥ ⊕ E1, then one computes:

C2(e) = Cp2(e)(e) = Cp21(e)(e
⊥)⊗̂1 + 1⊗̂Cp1p21(e)(e

1)
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with respect to the decomposition (4) above. Thus, it implies that we have a tensor
product decomposition of essentially self-adjoint unbounded multipliers

C2 = C21⊗̂1 + 1⊗̂p∗21C1

induced by the C?-algebra decomposition above.
It suffices to compute the composition Ψ21◦Ψ1 on generators ofA(M) = S⊗̂C(M)

of the form exp(−x2)⊗̂s and x exp(−x2)⊗̂s where s ∈ C(M). We obtain (using
isomorphisms (5) and (6)) the elements, respectively4,

exp(−x2)⊗̂ exp(−C2
21)⊗̂p∗21 exp(−C2

1 )⊗̂s

and

x exp(−x2)⊗̂ exp(−C2
21)⊗̂p∗21 exp(−C2

1 )⊗̂s

+exp(−x2)⊗̂C21 exp(−C2
21)⊗̂p∗21 exp(−C2

1 )⊗̂s

+exp(−x2)⊗̂ exp(−C2
21)⊗̂p∗21C1 exp(−C2

1 )⊗̂s

However, by Corollary A.4, we have equalities

exp(−C2
2 ) = exp(−C21)2⊗̂p∗21 exp(−C2

1 )

and also

C2 exp(−C2
2 ) = C21 exp(−C2

21)⊗̂p∗21 exp(−C2
1 ) + exp(−C2

21)⊗̂p∗21(C1 exp(−C2
1 )).

But under the map Ψ2 the generators exp(−x2)⊗̂s and x exp(−x2)⊗̂s are mapped,
respectively, to the elements

exp(−x2)⊗̂ exp(−C2
2 )⊗̂s

and

x exp(−x2)⊗̂ exp(−C2
2 )⊗̂s + exp(−x2)⊗̂C2 exp(−C2

2 )⊗̂s.

Therefore, the composition Ψ21◦Ψ1 agrees with Ψ2 on generators since p2 = p1◦p21,
and hence the two maps are equal.

Let E be a complete Euclidean space of infinite dimension. Denote by O(E) the
orthogonal group of all invertible bounded linear maps T : E → E which preserve
the inner product:

〈T (v), T (w)〉 = 〈v, w〉, ∀v, w ∈ E .

Let E be an infinite dimensional manifold [2, 25] modelled on E .

Definition 3.3. A smooth map p : E → M is a Euclidean bundle modelled
on E if it defines a smooth locally trivial fiber bundle E with fiber E and structure
group O(E) in the norm (or strong operator) topology [25, 30].

It follows that E is equipped with a metric 〈·, ·〉x on each fiber Ex, which varies
smoothly in x ∈ M . That is, the map (e, f) 7→ 〈e, f〉p(e) is smooth on the fiber
product E×

M
E = {(e, f)|p(e) = p(f)}.

4We drop the subscripts on tensor products for clarity.
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Definition 3.4. A subset Sa ⊂ E will be called a subbundle if there is a real
vector bundle pa : Ea → M and an exact sequence

0 // Ea i // E,

of vector bundles such that i(Ea) = Sa. That is, i : Ea → E is a vector bundle
morphism such that for each x ∈ M the continuous linear map ix : Ea

x → Ex on
fibers is split injective (i.e., with split range). This gives Sa the (unique) structure
of a vector bundle, and we will identify Ea ∼= Sa ⊆ E. If rank(Ea) = n < ∞ then
we will call Ea ⊂ E a finite rank subbundle.

The following is adapted from Proposition 3.4.18 [2].

Proposition 3.5. Let p : E → M be a Euclidean bundle modelled on E and let
q : E → M be a finite rank vector bundle. If f : E → E is a vector bundle
map let fx : Ex → Ex be the linear restriction to the fibers over x ∈ M and let
range(f) =

⋃
x∈M range(fx). Then range(f) ⊂ E is a finite rank subbundle if and

only if x 7→ rank(fx) is locally constant on M .

Theorem 3.6. Suppose E has countably infinite dimension. If p : E → M is a
Euclidean bundle modelled on E, there is an increasing sequence

M = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ E

of finite rank subbundles such that rank(En) = n and E =
⋃∞

0 En.

Proof. The locally trivial fiber bundles with structure group O(E) are classified
by the cocycles in the sheaf cohomology H1(M, O(E)) (which is not a group since
O(E) is not abelian) [34]. However, by Kuiper’s Theorem [24], the group O(E) is
contractible in the norm (or strong operator) topology. Hence, there is only the
trivial cocycle corresponding to F = M ×E → M , the trivial Euclidean bundle over
M modelled on E . Thus, there is a vector bundle isomorphism Φ : F → E. Since E
has countably infinite dimension, there is an increasing sequence

{0} = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ E
of subspaces of E such that dim(V n) = n. Let Fn = M × V n ⊂ F be the associated
finite rank subbundle of F for all n > 0. It follows that if we define En = Φ(Fn) ⊂ E,
then the sequence {En}∞0 is our desired increasing sequence of finite rank subbun-
dles.
Important Note: Although every Euclidean bundle E with infinite dimensional
fiber is trivializable, the finite dimensional subbundles are not necessarily trivializ-
able. Moreover, if a group G is acting on E and M in a compatible way, as we will
consider in the next section, then E itself may not be equivariantly trivializable.

Definition 3.7. Let Ea and Eb be finite rank subbundles of E. We will define
Ea ¹ Eb if Ea ⊆ Eb as subsets of E and there is an exact sequence 0 → Ea → Eb
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of vector bundles such that the following diagram commutes:

0

²²
0 // Ea

²²

// E

id

²²
0 // Eb // E

That is, Ea is a subbundle of Eb in a way that is compatible with their subbundle
structures from E.

Definition 3.8. Let p : E → M be a Euclidean bundle bundle modelled on E.
Denote by FB(E) the collection of all smooth finite rank subbundles pa : Ea → M .
Note that FB(E) is a directed system under inclusion ¹ of subbundles.

Given a finite rank subbundle Ea ⊂ E there is an induced Euclidean metric 〈·, ·〉a,
which on the fibers Ea

x is given by restricting the metric 〈·, ·〉x of the fiber Ex to the
subspace Ea

x ⊂ Ex. We also need a compatible connection ∇a on Ea, and this can
be done by equipping E → M with a compatible connection.

Lemma 3.9. Let p : E → M be a Euclidean bundle modelled on E. There exists
a connection ∇ : C∞(M, E) → C∞(M, T ∗M ⊗ E) which is compatible with the
Euclidean metric 〈·, ·〉 on E.

Proof. Standard partition of unity argument.
If Ea ⊂ E is a finite rank subbundle, then there is an orthogonal decomposition of

Euclidean bundles E = E⊥⊕Ea. Let p⊥a : E → Ea denote the orthogonal projection
onto Ea. We can then induce (project) a connection ∇a on Ea by the diagram

C∞(M, E) ∇ // C∞(M, T ∗M ⊗ E)

(1⊗p⊥a )∗
²²

C∞(M, Ea)

i∗

OO

∇a
// C∞(M, T ∗M ⊗ Ea)

One can then easily check that ∇a is compatible with the induced metric 〈·, ·〉a.
Given any two finite rank subbundles Ea ¹ Eb of E, we then have a canonical

orthogonal decomposition Eb ∼= E⊥
ab ⊕ Ea Thus, we can define a bundle projection

pab : Eb → Ea. Let Eba denote the vector bundle pab : Eb → Ea. By the discussion
prior to Proposition 3.2, this has a Euclidean bundle structure given by Eba ∼= p∗aE⊥

ab

and compatible connection ∇ab = p∗a∇⊥ where ∇b = ∇⊥ ⊕ ∇a. By Theorem 2.13
there is a Thom ∗-homomorphism

Ψab : A(Ea) → A(Eb)

which will be the connecting map in our construction of the direct limit C?-algebra
associated to E.
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Lemma 3.10. Let p : E → M be an affine Euclidean bundle modelled on E. If
Ea ¹ Eb ¹ Ec are finite rank affine subbundles of E, then there is a commutative
diagram of Thom ∗-homomorphisms:

A(Ec)

A(Eb)

Ψbc

::uuuuuuuuu

A(Ea)
Ψab

ddIIIIIIIII

Ψac

OO

Proof. Note that since Ea, Eb and Ec are fibered as Euclidean bundles with
compatible connections over the Riemannian manifold M , they have canonical Rie-
mannian structures, as manifolds, from Lemma 2.9. We also have a commuting
diagram of bundle projections

Ec

pbc

}}{{
{{

{{
{{

pac

²²

Eb

pab !!CC
CC

CC
CC

Ea

Note that the Riemannian structure that Ec has as a bundle over Ea and Eb is
compatible with the structure coming from Ec → M . Similarly for Eb. The result
now follows from Proposition 3.2

Definition 3.11. Let p : E → M be a smooth affine Euclidean bundle modelled on
E. We define A(E) to be the direct limit C?-algebra

A(E) = lim−→
a

A(Ea),

where the direct limit is taken over the directed system FB(E) of all finite rank
subbundles Ea ⊂ E, using the ∗-homomorphisms Ψab : A(Ea) → A(Eb) above.

Note that since E is infinite dimensional, A(E) is not the suspension of a C?-
algebra. However, A(E) is a graded, separable, nuclear C?-algebra.

By transitivity again, we have that the ∗-homomorphisms

Ψa : A(M) → A(Ea)

are compatible with the direct limit, so there is a canonical Thom map

Ψp : A(M) → lim−→
a

A(Ea) = A(E).

Note that this is equivalent to identifying M as the zero finite rank subbundle
(section) of E → M .
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Lemma 3.12. If M = {0} is a point, so that E = E → {0}, then

Ψ = β : A(0) → A(E)

is the Bott homomorphism of Higson-Kasparov-Trout [19]

By the finite rank Thom isomorphism theorem 2.14, the connecting maps Ψab :
A(Ea) → A(Eb) induce isomorphisms in K-theory:

Ψab∗ : K∗(A(Ea)) → K∗(A(Eb)).

Using the continuity of operator K-theory with respect to direct limits [40], we
obtain:

K∗(A(E)) = K∗(lim−→
a

A(Ea)) ∼= lim−→
a

K∗(A(Ea)) ∼= K∗(A(M)).

Therefore, we have proved the non-equivariant

Thom Isomorphism Theorem 3.13. Let E be an affine Euclidean bundle on M
modelled on E. The inclusion M ⊂ E as the zero subbundle induces an isomorphism
in K-theory:

Ψ∗ : K∗(A(M)) → K∗(A(E)).

4. The Equivariant Thom Isomorphism

In order to formulate the equivariant version of our theorem, we need to choose
an appropriate class of group actions. The most popular class of group actions on
manifolds are proper actions because of their application to K-theory [30], the
index theory of elliptic operators [23, 27], and Baum-Connes Conjectures [6]. Since
our theorem must reduce to the Bott periodicity theorem [19] when M = {•} is a
point, we must allow for the trivial action of a non-compact group on a point. But,
non-compact groups do not act properly on a point.

Let G be a smooth, second countable, locally compact, Hausdorff topological
group (e.g., a countable discrete group.) A locally compact space M is a G-space if
it has a continuous (or smooth if M is smooth) G-action

G×M → M.

If H is a closed subgroup of G, and x ∈ M then an H-slice through x is an H-
invariant open neighborhood U of x such that the map G × U → M given by
(g, u) 7→ gu descends to a G-equivariant homeomorphism

G×H U = (G× U)/H → GU

and such that GU is an open neighborhood of x ∈ M . If M is a smooth manifold
on which G acts smoothly via diffeomorphisms, then we require that this be a
G-equivariant diffeomorphism.

Definition 4.1. Let (M,d) be a locally compact metric G-space. The action of G
on M is isoreductive if:

(i) G acts by isometries of (M,d);
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(ii) for every x ∈ M there is a closed subgroup H of G and an H-slice U
through x which is H-equivariantly contractible.

Note that if M = {•} is a point, the trivial G-action is vacuously isoreductive
since we can choose H = G and G×G {•} = {•}. If G is a countable discrete group
and M is a discrete G-space, then M is isoreductive with respect to the trivial
metric d(x, y) = 1 (x 6= y) since we can choose U = {x} = B(x, 1), H = Gx (the
isotropy subgroup of x) and G×Gx

{x} ∼= G · x is the orbit of x.
Recall that an action of G on M is called proper [1, 30] if the structural map

G×M → M ×M

(g,m) 7→ (gm, m)

is a proper map, i.e., the inverse image of a compact set is compact.
For the following, see the discussion in Example (1.4) [6].

Lemma 4.2. If G is a countable discrete group, every smooth isometric proper
action of G on a Riemannian manifold is isoreductive.

Indeed, using a G-partition of unity [30] we can average any metric on M to
obtain a G-invariant metric. Also, for any x ∈ M we can choose H = Gx the
(finite) isotropy subgroup of x and Gx-slice consisting of an open ball of small
enough radius.

Recall that a C?-algebra A is called a G-C?-algebra if G acts continuously on
A by C?-algebra automorphisms (i.e., for every a ∈ A the map G → A given by
g 7→ ga is continuous.)

Lemma 4.3. An isometric action of G on M induces a continuous action of G on
A(M) as Z2-graded C?-algebra automorphisms.

Proof. Given the isometry g : M → M there is an induced Euclidean bundle
isomorphism Tg : TM → TM of the tangent bundle TM . This induces an iso-
morphism T̂ g : Cliff(TM) → Cliff(TM) of the Z2-graded Clifford bundle. Hence,
we obtain an induced automorphism gτ : C(M) → C(M) of Z2-graded C?-algebras
given by (gτs)(x) = T̂ g(s(g−1x)) for all x ∈ M and s ∈ C(M). Tensoring with idS
gives the automorphism g∗ = idS ⊗̂gτ : SC(M) = A(M) → A(M).

Definition 4.4. If A is a G-C?-algebra, we define the equivariant K-theory KG
∗ (A)

to the be the K-theory of the full crossed product C?-algebra AoG:

KG
j (A) = Kj(AoG), j = 0, 1.

For compact groups, the above definition is actually the Green-Julg-Rosenberg
Theorem 11.7.1 [8]. See Pedersen [28] for a discussion of full crossed product C?-
algebras. It follows that if φ : A → B is an equivariant ∗-homomorphism then
there is an induced C?-algebra ∗-homomorphism φG : A o G → B o G. Hence,
there is an induced homomorphism φG

∗ : KG
∗ (A) → KG

∗ (B) of equivariant K-theory
groups. We chose the full crossed product because of this universal property and its
compatibility with equivariant E-theory [17].
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Note that if the action of G on M is proper then K∗
G(M), the equivariant topolog-

ical K-theory of M (as defined by N.C. Phillips [30]) exists. This K-theory satisfies
a generalized Green-Julg-Rosenberg theorem:

K∗
G(M) ∼= K∗(C0(M)oα G)

where C0(M)oα G is any (e.g., full or reduced) crossed product of C0(M) by G.

Proposition 4.5. If M is an oriented even-dimensional spinc-manifold and G acts
on M properly such that the spinc-structure is G-invariant, then there are canonical
isomorphisms

KG
∗ (A(M)) ∼= K∗+1

G (M)

in equivariant K-theory.

¿From now on, we assume that M is a smooth finite-dimensional G-manifold
equipped with a fixed G-invariant Riemannian metric and the action of G is isore-
ductive with respect to this metric.

Definition 4.6. Let pa : Ea → M and pb : Eb → M be smooth Euclidean bundles
on M . If g : M → M is an isometry, then a bundle map g̃ : Ea → Eb is called a
Euclidean bundle isomorphism over g if the following diagram commutes

Ea
g̃ //

pa

²²

Eb

pb

²²
M

g // M

and g̃x : Ea
x → Eb

g(x) is an isomorphism of Euclidean spaces for each x ∈ M .

Let E be a Euclidean space of countably infinite dimension.

Definition 4.7. A Euclidean G-bundle E on M with fiber E is a smooth Eu-
clidean bundle p : E → M modelled on E equipped with a smooth action G×E → E
by Euclidean bundle automorphisms such that the projection p : E → M is G-
equivariant. That is, for each g ∈ G there is a Euclidean bundle automorphism
g̃ : E → E over g : M → M such that g̃1 ◦ g̃2 = g̃ where g = g1g2 ∈ G.

Lemma 4.8. Let p : E → M be a Euclidean G-bundle with fiber E. Then for any
smooth finite rank subbundle Ea ⊂ E and g ∈ G, the image g · Ea has a canonical
structure as a finite rank subbundle and

g̃! = g̃|Ea : Ea → g · Ea

is a finite rank Euclidean bundle isomorphism over g : M → M .

Proof. By Definition 3.4, there is a subset Sa ⊂ E, a finite rank Euclidean bundle
pa : Ea → M and an exact sequence of Euclidean bundles

0 // Ea
ia // E
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such that i(Ea) = Sa. Now, define the subbundle g ·Ea ⊂ E as follows. As a subset
of E we have g ·Ea = g · ia(Ea) = g ·Sa = {g ·e : e ∈ Sa}. As a finite rank Euclidean
bundle we use pa : Ea → M but with associated exact sequence

0 // Ea
g̃◦ia // E

given by the composition

0 // Ea
ia // E

g̃ // E

It follows that there is a commutative diagram

0 // Ea
ia //

g̃

²²

E

g̃

²²
0 // Ea

g̃◦ia // E

where g̃! : Ea → Ea is the Euclidean bundle automorphism i−1
a ◦ g̃ ◦ ia : Ea → Ea.

Remark 4.9. We should make the important observation that the action of G on
E may not preserve any finite rank subbundle except, of course, the zero subbundle
M ⊂ E. Also, if the action of G on M has no fixed points, then the fibers Ex

∼= E
may carry no action of G.

Definition 4.10. Let (Ea,∇a) and (Eb,∇b) be Euclidean bundles on M with com-
patible connections. Let g : M → M be an isometry of M . If g̃ : Ea → Eb is a
Euclidean bundle isomorphism over g, then we call g̃ an affine Euclidean iso-
morphism (over g) if the following diagram commutes:

C∞(M,Eb) ∇b
// C∞(M, T ∗M ⊗ Eb)

C∞(M,Ea) ∇a
//

g̃∗

OO

C∞(M, T ∗M ⊗ Eb)

(T∗g⊗g̃)∗

OO

where T ∗g : T ∗M → T ∗M is the induced Euclidean bundle isomorphism of the
cotangent bundle T ∗M ∼= TM . We denote this by (g̃, g) : (Ea,∇a) → (Eb,∇b).

Lemma 4.11. Let (g̃, g) : (Ea,∇a) → (Eb,∇b) be an affine Euclidean isomorphism
of finite rank affine Euclidean bundles on M . There is an induced isomorphism of
Z2-graded C?-algebra (g̃, g)∗ : A(Ea) → A(Eb) such that the following diagram
commutes

A(Ea)
(g̃,g)∗
∼=

// A(Eb)

A(M)

Ψa

OO

g∗
∼=

// A(M)

Ψb

OO

where g∗ is the isomorphism from Lemma 4.3 and Ψa and Ψb are the Thom maps
from Theorem 2.13.
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Proof. Using the connections and the fact that (g̃, g) transforms the connection
∇a into the connection ∇b, there is a commutative diagram

TEb = p∗bE
b ⊕ p∗bTM

TEa =

T g̃

OO

p∗bE
a ⊕ p∗aTM

g̃∗⊕Tg∗ ∼=
OO

where the vertical maps appearing on the RHS are the Euclidean bundle isomor-
phisms induced by the pair (g̃, g). Thus, with the metrics induced by the splitting,
the induced map T g̃ : TEa → TEb is a Euclidean bundle isomorphism, which im-
plies that g̃ : Ea → Eb induces an isometry between the Riemannian manifolds Ea

and Eb.
There is also an induced commutative diagram

Eb
τb //

Cb

$$
p∗bE

b ib // Cliff(p∗bE
b)

Ea

g̃ ∼=

OO

ib //

Ca

::
p∗aEa ib //

g̃∗ ∼=
OO

Cliff(p∗aEa)

g̃∗ ∼=
OO

where the vertical maps are the appropriate bundle isomorphisms induced by the
map g̃. Thus, the isomorphism g̃ transforms the Thom operator Ca of Ea into
the Thom operator Cb of Eb in a manner compatible with the isometric action of
g : M → M . The result now easily follows using Theorems 2.10 and 2.13 and the
equivariant properties of the functional calculus.

Definition 4.12. Let p : E → M be a Euclidean G-bundle. A connection ∇ on E
is called G-invariant if for each g ∈ G the bundle map g̃ : E → E determines an
affine Euclidean isomorphism (g̃, g) : (E,∇) → (E,∇). That is,

(T ∗g ⊗ g̃)∗ ◦ ∇ = ∇ ◦ g̃∗

for all g ∈ G. If E is equipped with a G-invariant connection, then we say that E is
an affine Euclidean G-bundle.

Averaging any connection on E with respect to a G-partition of unity yields

Lemma 4.13. If the action of G on M is proper, there exists a G-invariant con-
nection ∇ on any Euclidean G-bundle p : E → M .

Lemma 4.14. Let p : E → M be an affine Euclidean G-bundle with G-invariant
connection ∇. Let Ea ⊂ E be a finite rank subbundle. The map g̃! : Ea → g · Ea

(from Lemma 4.8) determines an affine Euclidean bundle isomorphism

(g̃!, g) : (Ea,∇a) → (g · Ea, g · ∇a)

where ∇a denotes the connection induced on Ea by ∇.
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Corollary 4.15. With the above hypotheses on (E,∇,M, G), we have that for each
finite rank subbundle Ea ⊂ E and each g ∈ G there is a commutative diagram

A(Eb)
(g̃!,g)∗
∼=

// A(g · Ea)

A(M)

Ψa

OO

g∗
∼=

// A(M)

g·Ψa

OO

where g · Ψa : A(M) → A(g · Ea) is the Thom map for the finite rank subbundle
g · Ea ⊂ E.

Lemma 4.16. With the above hypotheses on (E,∇, M, G), there is an induced
continuous action of G on the direct limit C?-algebra

A(E) = lim−→
a

A(Ea)

as Z2-graded C?-algebra automorphisms.

Moreover, the G-equivariant inclusion M ⊂ E as the zero finite rank subbundle
induces a G-equivariant Z2-graded ∗-homomorphism

Ψp : A(M) → A(E).

As discussed in the last section, we know that Ψp induces an isomorphism on K-
theory, but we want to show furthermore that Ψp induces an isomorphism in equiv-
ariant K-theory. The main result of this paper is as follows.

Theorem 4.17. Let G be a smooth, second countable, locally compact group and
M be a smooth isoreductive Riemannian G-manifold. If p : E → M is an affine
Euclidean G-bundle with fiber a countably infinite dimensional Euclidean space then
the inclusion of M ⊂ E as the zero finite rank subbundle induces an isomorphism
in equivariant K-theory:

ΨG
∗ : KG

∗ (A(M)) → KG
∗ (A(E)).

If the Euclidean space E is equipped with an orthogonal action of G, then we may
consider the trivial Euclidean G-bundle p : E → {0}, where M = {0} denotes the
isoreductive (but very non-proper!) one-point Riemannian G-manifold consisting of
the origin. Our theorem then reduces to the Bott periodicity theorem. The Thom
map Ψp = β is the “Bott map” in this case.

5. Proof of the Thom Isomorphism Theorem 4.17

Let G be a smooth, second countable, locally compact, Hausdorff group.

Definition 5.1. A G-C?-algebra A is called isoreductive if there is a a second
countable, locally compact, isoreductive metric G-space (M, d) and a nondegenerate
G-equivariant injection

θ : C0(M) → ZM(A)
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such that θ(C0(M))A is dense in A. If f ∈ C0(M) and a ∈ A we write fa = θ(f)a.
If A is Z2-graded then we assume that θ has grading degree zero, where C0(M) is
trivially graded. That is, A is a Z2-graded C0(M)-algebra (Definition A.5) such that
the structural homomorphism is G-equivariant.

If A is an isoreductive G-C?-algebra, and M is the isoreductive metric space
in the previous definition, then we will say that A is isoreductive over M . For a
discussion of the related notion of (ungraded) proper algebras, see [17].

Lemma 5.2. Let A be a Z2-graded G-C?-algebra. If A is isoreductive over M then
B⊗̂A is isoreductive over M for any Z2-graded G-C?-algebra B.

Example 5.3. Let M be a second countable, isoreductive Riemannian G-manifold.
The Z2-graded G-C?-algebra A(M) = S⊗̂C(M) is isoreductive over M , where S
has the trivial G-action.

Let E be a Euclidean space of countable dimension.

Proposition 5.4. Let p : E → M be an affine Euclidean G-bundle modelled on E.
The C?-algebra A(E) is isoreductive over M .

Proof. If Ea ⊂ E is a finite rank subbundle, then using the projection pa : Ea →
M , A(Ea) has a graded C0(M)-algebra structure. Moreover, if Ea ¹ Eb are finite
rank subbundles, the Thom map A(Ea) → A(Eb) from Theorem 2.13 is clearly
C0(M)-linear. It follows by an approximation argument that the direct limit

A(E) = lim−→
a

A(Ea)

has a graded C0(M)-algebra structure and the induced action of C0(M) is G-
equivariant.

If a C?-algebra A is isoreductive over M , then A is a C0(M)-algebra and can
thus be realized as the algebra of sections of an (upper-semicontinuous) C?-bundle
over M as follows [15, 26]. Given x ∈ M , the fiber over x is the quotient Ax = A/Ix

where Ix is the ideal Ix = C0(M\{x})A. For any a ∈ A, let a(x) denote the image
of a in the fibre Ax. There is then a faithful representation of A into the direct sum⊕

x∈M Ax given by a 7→ (a(x))x∈M .

Definition 5.5. (Compare Definition 2.1[15]) Let A be isoreductive over M . Let
Y be a locally compact subset of M . The restriction of A to Y is defined as

AY = C0(Y )·A = {b ∈ ⊕y∈Y Ay : b(y) = f(y)a(y) for some f ∈ C0(Y ) and a ∈ A}.
This definition makes sense for any C0(M)-algebra (without grading or G-action.)
The following is adapted from Lemma 2.2 [15].

Lemma 5.6. Let A be isoreductive over M . Let Y be a G-invariant locally compact
subset of M . Then AY is a G-C0(Y )-algebra. If U is a G-invariant open subset of
M , then AU is a G-invariant ideal in A = AM and can be identified with C0(U)A.
Moreover, there is an exact sequence

0 // AU
// A // AM\U // 0

of G-C?-algebras.
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Lemma 5.7. Let A be isoreductive over M . If U is a G-invariant open subset, then
there is a cyclic six term exact sequence

KG
0 (AU ) // KG

0 (A) // KG
0 (AM\U )

²²
KG

1 (AM\U )

OO

KG
1 (A)oo KG

1 (AU )oo

Proof. From the previous lemma, we have that

0 // AU
// A // AM\U // 0

is an exact sequence of G-C?-algebras. Thus, by the functorial properties of the full
crossed product, we have an induced short exact sequence

0 // AU oG // AoG // AM\U oG // 0

of crossed products. Now apply the K-theory six-term exact sequence [40].
The proof of the following result does not seem to be in the literature, but was

communicated to the author by D. Williams.

Lemma 5.8. Let A be a G-C?-algebra. Suppose that I and J are G-invariant ideals.
Then I oG and J oG are ideals in AoG. Let I ∩ J denote the intersection ideal.
Then,

(I oG) ∩ (J oG) = (I ∩ J)oG. (7)

Proof. First recall that I o G = Cc(G, I) where the latter is viewed as an ideal
of Cc(G,A) ⊂ AoG. Since

Cc(G, I) ∩ Cc(G, J) ⊂ Cc(G, I ∩ J),

we certainly have

(I oG) ∩ (J oG) ⊂ (I ∩ J)oG.

On the other hand, (I ∩ J)oG is the closure of

span{ f ⊗ c : f ∈ Cc(G) and c ∈ I ∩ J },
where f⊗c is the shorthand for the function g 7→ f(g)c. By the Cohen factorization
theorem [10] or an approximation argument, we can assume that c = ab with a ∈ I
and b ∈ J . Now if { ei } is an approximate unit in Cc(G), then

(ei ⊗ a)(f ⊗ b) = ei ∗ f ⊗ c

converges to f ⊗ c in (I ∩ J)oG. It follows that we get equality in (7).
The following is an equivariant Mayer-Vietoris theorem.

Lemma 5.9. Let A be isoreductive over M . If U and V are G-invariant open
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subsets of M , there is an exact sequence

KG
0 (AU∩V ) // KG

0 (AU )⊕KG
0 (AV ) // KG

0 (AU∪V )

²²
KG

1 (AU∪V )

OO

KG
1 (AU )⊕KG

1 (AV )oo KG
1 (AU∩V )oo

of equivariant K-theory groups.

Proof. Since U and G are G-invariant open sets, it follows that AU , AV , and AU∩V

are G-invariant ideals in AU∪V . We also have the G-equivariant identifications
{

AU + AV = AU∪V

AU ∩AV = AU∩V .

It follows, using the previous lemma, that
{

AU oG + AV oG = (AU + AV )oG = AU∪V oG

(AU oG) ∩ (AV oG) = (AU ∩AV )oG = AU∩V oG.

The result now follows from Definition 4.4 and Exercise 4.10.21 [20].

Lemma 5.10. Let A be isoreductive over M . Suppose M =
⋃

i∈I Ui where {Ui}i∈I

is an increasing directed system of G-invariant open subsets of M . That is, Ui ⊆ Uj

if i < j . Then we have isomorphisms

A ∼= lim−→
i∈I

AUi

KG
∗ (A) ∼= lim−→

i∈I

KG
∗ (AUi).

Proof. The first direct limit isomorphism follows by an easy approximation argu-
ment. The K-theory isomorphism follows from the first and the fact that the AUi

are G-invariant ideals, which implies that there is a direct limit isomorphism

AoG ∼= lim−→
i

AUi oG

of (full) crossed product C?-algebras. Now use the fact that K-theory is continuous,
i.e., commutes with direct limits.

If U ⊂ M is open, then for any finite rank subbundle Ea ⊂ E we have that
Ea|U ⊂ Ea as an open subset and Ea|U ⊂ E|U as a finite rank subbundle. Moreover,
if Ea ¹ Eb ¹ Ec then we have that Ea|U ¹ Eb|U ¹ Ec|U . Thus, we are led to make
the following definition.

Definition 5.11. Let p : E → M be an affine Euclidean G-bundle. For any (G-
invariant) open subset i : U ↪→ M we define the C?-algebra

A(E|U ) =def lim−→
a

A(Ea|U )

where the direct limit is taken over all finite rank subbundles Ea ⊂ E. Note that we
give the restricted bundle E|U = i∗(E) the connection ∇U = i∗(∇).
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Lemma 5.12. Let M be an isoreductive Riemannian G-manifold. Let E → M be
an affine Euclidean G-bundle modelled on E. If U is an open subset of M , there are
isomorphisms

A(M)U
∼= A(U)

A(E)U
∼= A(E|U ).

If U is G-invariant, these isomorphisms are G-equivariant.

Proof. The first isomorphism follows from the definitions and the fact that C(M)U

= C0(U)C(M) = C(U). Given any finite rank subbundle Ea ⊂ E, it is easy to
see that all elements in A(Ea|U ) are in A(E)U . This implies that the direct limit
A(E|U ) ⊆ A(E)U . For the reverse, it follows that A(E)U

∼= lim−→ A(Ea)U , but

A(Ea)U ⊂ A(Ea|U ) and so A(E)U
∼= A(E|U ) as desired.

Before we can begin the proof, we need the following definition [34]. Let H be
a closed subgroup of G and let B be an H-C?-algebra. Note that if f : G → B
satisfies f(gh) = h−1(f(g)) for all g ∈ G and h ∈ H, then the function g 7→ ‖f(g)‖
is constant on cosets g ·H and thus determines a well-defined function ‖f(·H)‖ on
the quotient space G/H

Definition 5.13. Let H be a closed subgroup of G and let B be an H-C?-algebra.
The induced C?-algebra IndG

HB is defined as formula

IndG
HB = {f ∈ Cb(G,B) : f(gh) = h−1(f(g)) & ‖f(·H)‖ ∈ C0(G/H)}.

The group G acts on IndG
HB by left translation: (gf)(g) = f(g−1g). A Z2-grading

on B induces a Z2-grading on IndG
HB in the obvious way.

For example, if U is an H-space then IndG
HC0(U) ∼= C0(G×H U).

Lemma 5.14. Let H be a closed subgroup of G. If B is an H-C?-algebra, there are
canonical isomorphisms

KH
∗ (B) ∼= KG

∗ (IndG
HB).

Proof. By Green’s Symmetric Imprimitivity Theorem [32], IndG
HBoG and BoH

are strongly Morita equivalent. Hence, they have the same K-theory and so:

KH
∗ (B) = K∗(B oH) ∼= K∗(IndG

HB oG) = KG
∗ (IndG

HB).

Proposition 5.15. Let A be isoreductive over M . For any x ∈ M , let U be an
H-slice through x as in Definition (4.1). There is a G-equivariant isomorphism

IndG
HAU

∼= AGU .

Hence, KH
∗ (AU ) ∼= KG

∗ (AGU ).

Proof. Since U is H-invariant, it follows that the ideal AU is an H-C?-algebra and
has a C0(U)-algebra structure. Similarly, AGU is a G-C0(GU)-algebra and isore-
ductive over GU . Thus, by Proposition 2.1 [26], there is a canonical continuous
G-equivariant map (with dense range)

Res : Prim AGU → GU
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where

Res(J) = x ⇐⇒ AGUIxAGU = C0(GU\{x})A = AGU\{x} ⊂ J

where Ix = {f ∈ C0(M) : f(x) = 0}. Since U is an H-slice, there is a G-equivariant
homeomorphism

φ : GU → G×H U.

Let p : G×H U → G/H be the G-map induced by the projection G×U → G. Thus,
we have a canonical continuous G-equivariant map

σ = p ◦ φ ◦ Res : Prim AGU → G/H.

Let I be the ideal

I =
⋂
{J ∈ Prim AGU : σ(J) = eH}.

Note that (p ◦ φ)−1(eH) = U. One can then check that I = AGU\U . By a theorem
of Echterhoff [13, 14], there is a G-equivariant isomorphism

Φ : AGU → IndG
HAGU/I.

Since (p ◦ φ)−1(eH) = U , U is a closed subset of GU . By Lemma 5.6:

AGU/I = AGU/AGU\U ∼= AU .

Thus, there is an induced isomorphism of crossed products

ΦG : AGU oG → IndG
HAU oG

and the result follows.
Let E be a Euclidean space of countably infinite dimension (with orthogonal

G-action.)

Proposition 5.16. Let E = M × E → M be a trivial affine Euclidean G-bundle
modelled on E (with the trivial G-connection). There is a G-equivariant isomorphism

A(E) ∼= A(E)⊗̂C(M)

of Z2-graded G-C?-algebras. Under this isomorphism, the Thom map has the form

Ψ = β⊗̂ idC(M) : S⊗̂C(M) → A(E)⊗̂C(M)

where β : S = A(0) → A(E) is the Bott map of Lemma 3.12. Thus, the induced
map ΨG

∗ : KG
∗ (A(M)) → KG

∗ (A(E)) is an isomorphism on equivariant K-theory.

Proof. Let {Vα} be the collection of all finite dimensional subspaces of E ordered
by subspace inclusion. Then Fα = M × Vα defines a directed system {Fα} of finite
rank Euclidean subbundles such that E =

⋃
α Fα. By Proposition 2.16 we have that

A(Fα) ∼= A(Vα)⊗̂C(M).

Moreover, if α < β then the Thom map has the form

Ψαβ = βαβ⊗̂ idC(M) : A(Vα)⊗̂C(M) → A(Vβ)⊗̂C(M).
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This implies that we have a ∗-homomorphism

θ : A(E)⊗̂C(M) = lim−→
α

A(Fα) → A(E).

Given any finite rank subbundle Ea ⊂ E, there is a β such that Ea ¹ F β . This
implies that the directed subsystem {Fα} is cofinal with respect to the directed
system FB(E) = {Ea}. By Lemma L.1.5 [40], there is a ∗-homomorphism

A(E) → lim−→
α

A(Fα) ∼= A(E)⊗̂C(M)

which provides the inverse to θ. If Ea ¹ F β then for any g ∈ G, we have that
g · Ea ¹ g · F β = M × g · Vβ = M × V δ and so these isomorphisms are G-
equivariant. Using the equivariant asymptotic morphism calculations in Sections
4, 5 and Appendix C of [19] we easily obtain (by tensoring with idC(M)) the last
statement.

Proof of Theorem 4.17. Using Definition 4.1, Mayer-Vietoris and Five Lemma
arguments, direct limits, and transfinite induction, it suffices to show that the Thom
map induces an isomorphism for W = GU , where U is an H-slice for some closed
subgroup H of G. Since U is H-equivariantly contractible, we may also assume that
the restricted bundle E|U ∼= U × E is a trivial affine Euclidean H-bundle (with the
trivial H-invariant connection.) By Proposition 5.16,

ΨH
∗ : KH

∗ (A(U)) → KH
∗ (A(E|U ))

is an isomorphism of abelian groups. Now, by Lemma 5.14 and Proposition 5.15, it
follows for W = GU that

KG
∗ (A(W )) ∼= KG

∗ (IndG
HA(U))

∼= KH
∗ (A(U)) ∼= KH

∗ (A(E|U ))
∼= KG

∗ (IndG
HA(E|U )) ∼= KG

∗ (A(E|W ))

and we are finished.

Appendix A. Z2-Gradings and Unbounded Multipliers

In this appendix we collect definitions and results on graded C?-algebras, tensor
products, and unbounded multipliers needed in the text. Although some of these
results may be found elsewhere [5, 8, 19, 38] we include them for completeness
and to fix notation.

A.1. Graded C?-algebras
Recall that a C?-algebra A is Z2-graded if it is equipped with a ∗-automorphism

γ ∈ Aut(A) such that γ2 = idA. See Blackadar [8] for the basic theory and properties
of graded C?-algebras.

Important examples for us are:

• The algebra S = C0(R) of continuous functions on R, vanishing at infinity,
graded according to even and odd functions: γ(f)(x) = f(−x).
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• The complex Clifford algebra Cliff(V ) of a finite dimensional Euclidean vector
space V which is the unital C?-algebra generated by a real subspace V of self-
adjoint elements such that v2 = ‖v‖2 for all v ∈ V . The grading automorphism
is induced by the map γ : V → V given by γ(v) = −v.

• Any C?-algebra can be given the trivial grading γ = idA. The C?-algebra C
of complex numbers is always assumed to be trivially graded.

The graded commutator of two homogeneous elements a, b ∈ A is defined as

[a, b] = ab− (−1)deg(a) deg(b)ba.

We shall say that two elements of A commute if their graded commutator is zero.

A.2. Unbounded Multipliers
Let A be a C?-algebra. Recall that a multiplier of A is a right A-module map

T : A → A for which there exists an ‘adjoint’ right A-module map T ∗ : A → A such
that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ A,

where the angle brackets denote the pairing

〈x, y〉 = x∗y.

Such multipliers form a ∗-algebra under composition, which is denoted M(A). The
operator norm of each multiplier T is finite (by the Closed Graph Theorem), and
with this norm M(A) becomes a C?-algebra. It contains A as an essential ideal. If
A has a Z2-grading, then M(A) has an induced Z2-grading by the formula

deg(Tx) ≡ deg(T ) + deg(x) (mod2)

for all T ∈ M(A) and x ∈ A. See the book [28] for more details.
We wish to consider some “unbounded” multipliers of A.

Definition A.1. (Compare [5, 11, 19].) An unbounded self-adjoint multiplier of
a graded C?-algebra A is an A-linear map D : A → A from a dense, right Z2-graded
A-submodule A ⊂ A into A such that

(i) 〈Dx, y〉 = 〈x,Dy〉, for all x, y ∈ A; and
(ii) the operators D ± iI : A → A are isomorphisms.
(iii) deg(Dx) ≡ deg(x) + 1 (mod2), for all x ∈ A.

That is, D has grading-degree one with respect to the gradings.

Remark A.2. The adjective ‘unbounded’ is conventional, but for brevity we shall
often drop this term. Note that if A = A then the above definition produces a bounded
operator.

A.3. Essentially Self-Adjoint Multipliers
If A is a graded, right A-submodule of A and if D : A → A satisfies

(i) 〈Dx, y〉 = 〈x,Dy〉, for all x, y ∈ A;
(ii) deg(Dx) ≡ deg(x) + 1 (mod2), for all x ∈ A;
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(iii) the operators D ± iI have dense range;

then the closure D̄ of D (in the sense of unbounded operator theory) is a self-adjoint
multiplier. We shall call D essentially self-adjoint and for simplicity we shall usually
use the same symbol D for the closure D̄.

Here are some examples.
• Denote by X the operator of “multiplication by x” on R, so that if f is a
function on R then Xf(x) = xf(x) for all x ∈ R. Then X is an unbounded self-
adjoint multiplier of S = C0(R), whose domain is the set of all functions f ∈ S such
that Xf ∈ S.
• Let V be a Euclidean vector space and let C(V ) = C0(V, CliffCV ) be the C?-
algebra of continuous functions from V into the complexified Clifford algebra of
V , with the induced grading. Denote by CV : V → CliffC(V ) the function which
assigns to v ∈ V the value v ∈ CliffC(V ). This defines an unbounded essentially
self-adjoint multiplier of C(V ) that is very useful in the formulation of equivariant
Bott periodicity for infinite dimensional Euclidean spaces [19].

A.4. Functional Calculus
If D is an unbounded (essentially) self-adjoint multiplier of A then the resolvent

operators (D± iI)−1 : A → A determine bounded multipliers of A. If Cb(R) denotes
the C?-algebra of bounded continuous functions on R then there is a unique ∗-
homomorphism (called the functional calculus of D)

Cb(R) → M(A)
f 7→ f(D),

mapping the resolvent functions (x ± i)−1 to (D ± iI)−1. Compare [11]. This has
the property that if g(x) = xf(x) then g(D) = Df(D). It also follows from the
grading condition (iii) that the above ∗-homomorphism is grading preserving, if we
grade Cb(R) by even and odd functions.

A.5. Graded Tensor Products
We shall denote by A⊗̂B the maximal graded tensor product of graded C?-

algebras. It has the characteristic property that a pair of graded ∗-homomorphisms
A → C and B → C, whose images commute with one another, induces a morphism

A⊗̂B → C.

In the instances we shall consider, this maximal tensor product is also equal to the
minimal tensor product, defined with the help of representations of A and B on
graded Hilbert spaces, since one of the factors will always be nuclear.

If B is evenly graded, in the sense that there is a self-adjoint unitary ε in M(B)
(the multiplier algebra of B) such that for all b ∈ B,

γ(b) = εbε,

then A⊗̂B is isomorphic to the maximal tensor product of ungraded C?-algebras,
A⊗B, via the map

a⊗̂b 7→ a⊗ εdeg(a)b.
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This applies, for example, to B = K(H), where H is a graded Hilbert space.

A.6. Tensor products and multipliers
Suppose that D is an (essentially) self-adjoint multiplier of A. Then the operator

D⊗̂1, with domain the algebraic tensor product (over C) A⊗̂algB, is an essentially
self-adjoint multiplier of A⊗̂B. Note that the functional calculus for D⊗̂1 is given
by f(D⊗̂1) = f(D)⊗̂1.

The following is stated in [19] (see also [5]), but the proof, which is due to N.
Higson, is included below.

Lemma A.3. Let C and D be essentially self-adjoint multipliers of A and B.
Then C⊗̂1+1⊗̂D is an essentially self-adjoint multiplier of A⊗̂B, with domain the
algebraic tensor product of the domains of C and D.

Proof. Let us introduce for each N > 0 the bounded multiplier

DN = D(1 + N−2D2)−1/2

(and define CN similarly). Note that as N →∞ the function

xN = x(1 + N−2x2)−1/2

converges, uniformly on compact sets, to the identity function x 7→ x. So for N large
we expect DN to approximate D somehow. In fact if φ is a compactly supported
function then DNφ(D) → Dφ(D) in norm.

Let us make a further observation: for every y ∈ A⊗̂B there is some compactly
supported φ so that

y ≈ φ(C)⊗̂φ(D)y

(in other words given ε > 0 we can find φ so that the two sides are within ε in
norm).

Now given y choose φ as above then choose N so that DNφ(D) ≈ Dφ(D). By
simple C?-algebra theory the bounded multiplier CN ⊗̂1 + 1⊗̂DN is essentially self-
adjoint in the sense of 1.4. So there is some x ∈ A⊗̂algB with

y ≈ (iI + CN ⊗̂1 + 1⊗̂DN )x.

But then

y ≈ φ(C)⊗̂φ(D)y ≈ φ(C)⊗̂φ(D)(iI + CN ⊗̂1 + 1⊗̂DN )x

= (iI + CN ⊗̂1 + 1⊗̂DN )φ(C)⊗̂φ(D)x

≈ (iI + C⊗̂1 + 1⊗̂D)φ(C)⊗̂φ(D)x,

so that y is in the closure of the range of (iI + C⊗̂1 + 1⊗̂D) as required.

Corollary A.4. If C and D are essentially self-adjoint multipliers of A and B,
then

exp(−(C⊗̂1 + 1⊗̂D)2) = exp(−C2)⊗̂ exp(−D2).
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A.7. Graded C0(M)-algebras
Let M be a locally compact space. We assume that C0(M) has the trivial grading.

Definition A.5. A C?-algebra A is called a Z2-graded C0(M)-algebra if A is
Z2-graded and there is a ∗-homomorphism C0(M) → ZM(A) of degree zero which
is nondegenerate in the sense that C0(M)A is dense in A.

We now introduce a new tensor product, which is a graded version of the balanced
tensor product considered by others [9, 15, 34].

Definition A.6. Let A and B be graded C0(M)-algebras. We define the balanced
(graded) tensor product A⊗̂M B to be the quotient of A⊗̂B by the Z2-graded ideal
JM generated by

{(f · a)⊗̂b− a⊗̂(f · b)|f ∈ C0(M), a ∈ A, and b ∈ B}.
There is then a short exact sequence

0 // JM
// A⊗̂B

q
M // A⊗̂

M
B // 0

of Z2-graded C?-algebras.

There is an isomorphism C0(M)⊗̂MA ∼= A given by the map f⊗̂a 7→ f · a.
This tensor product has the universal property that if φ : A → C and ψ : B → C

are graded C0(M)-linear ∗-homomorphisms with the property that their ranges
graded commute, then there is a unique graded ∗-homomorphism

φ⊗̂
M

ψ : A⊗̂
M

B → M(C) : a⊗̂Mb 7→ φ(a)ψ(b)

where a⊗̂M b denotes the image of a⊗̂b in A⊗̂M B.

Proposition A.7. Let M be a Riemannian manifold. If E and F are finite rank
Euclidean bundles on M , then there is a Z2-graded C0(M)-algebra isomorphism

C0(M, Cliff(E ⊕ F )) ∼= C0(M, Cliff(E))⊗̂
M

C0(M, Cliff(F )).

Proof. There is an Z2-graded isomorphism of Clifford algebra bundles

Cliff(E ⊕ F ) ∼= Cliff(E)⊗̂Cliff(F )

which follows by Proposition 1.5 [21]. The result now follows by applying the same
argument as used in Proposition 2.6 [16] and the universal property of the balanced
tensor product.

Definition A.8. Let p : E → M be a continuous map of locally compact spaces. If
A is a Z2-graded C0(M)-algebra, then we define the pullback C?-algebra p∗A by
the formula

p∗A = C0(E)⊗̂MA

where C0(E) is given a C0(M)-algebra structure via p∗ : C0(M) → Cb(E) ∼=
M(C0(E)). Note that since C0(M) is trivially graded, this is the same definition
as given in [15, 34].
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The relationship to pullback vector bundles is contained in the next result.

Proposition A.9. Let E be a smooth finite rank Euclidean bundle on the Rieman-
nian manifold M . If p : N → M is a smooth map of Riemannian manifolds, there
is an isomorphism

p∗C0(M, Cliff(E)) ∼= C0(N, Cliff(p∗E))

of Z2-graded C?-algebras.

Proof. By universality, there is a pullback isomorphism of Clifford bundles
Cliff(p∗E) ∼= p∗Cliff(E). The result now follows from Proposition 2.12 [16].

A.8. Pushing Forward Multipliers
Suppose we are given a ∗-homomorphism φ : A′ → M(A) with the property that

A′A is dense in A. Then there is an induced ∗- homomorphism M(A′) → M(A)
extending this, characterized by T (a′a) = T (a′)a. See [28]. Similarly, an essentially
self-adjoint multiplier D′ of A′, with domain A′ ⊂ A′, determines an essentially
self-adjoint operator on A, which we shall denote D here, by the formula

D(a′a) = (D′a′)a (where a′ ∈ A′ and a ∈ A).

Its domain is A′A. The functional calculus maps for the two operators D′ and D
(or, to be more precise, for the closures of D′ and D) are related by the following
commutative diagram:

Cb(R)
f 7→f(D′)−−−−−−→ M(A′)

=

y
y

Cb(R) −−−−−→
f 7→f(D)

M(A)

.
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(1995), 81–92.

[10] P. Cohen, Factorization in group algebras, Duke Math. J 26 (1959), 199–205.
[11] A. Connes, An Analogue of the Thom Isomorphism for Crossed Products of

a C∗-Algebra by an Action of R, Adv. in Math. 31 (1981), no. 1, 31–55.
[12] , Noncommutative geometry, Academic Press, 1994.
[13] S. Echterhoff, On Induced Covariant Systems, Proc. Amer. Math. Soc. 108

(1990), no. 3, 703–706.
[14] , Errata to “On Induced Covariant Systems”, Proc. Amer. Math. Soc.

116 (1992), no. 2, 581.
[15] S. Echterhoff and D. P. Williams, Crossed Products by C0(X)-actions, J.

Funct. Anal. 158 (1998), 113–151.
[16] J. M. Gracia-Bond́ıa, J. C. Varilly, and H. Figueroa, Elements of Noncom-
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