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Abstract
May’s J-theory diagram is generalized to an equivariant set-

ting. To do this, equivariant orientation theory for equivariant
periodic ring spectra (such as KOG) is developed, and clas-
sifying spaces are constructed for this theory, thus extending
the work of Waner. Moreover, Spin bundles of dimension di-
visible by 8 are shown to have canonical KOG-orientations,
thus generalizing work of Atiyah, Bott, and Shapiro. Fiber-
wise completions for equivariant spherical fibrations are con-
structed, also on the level of classifying spaces. When G is an
odd order p-group, this allows for a classifying space formu-
lation of the equivariant Adams conjecture. It is also shown
that the classifying space for stable fibrations with fibers be-
ing sphere representations completed at p is a delooping of the
1-component of QG(S0)p̂. The “Adams-May square,” relating
generalized characteristic classes and Adams operations, is con-
structed and shown to be a pull-back after completing at p and
restricting to G-connected covers. As a corollary, the canoni-
cal map from the p-completion of Jk

G to the G-connected cover
of QG(S0)p̂ is shown to split after restricting to G-connected
covers.
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1. Introduction

Adams’ celebrated series of J(X) papers ([1],[2],[3],[4]) laid the foundation for
much of modern stable homotopy theory. These papers aimed at a firm compu-
tational understanding of the group J(X) of fiber homotopy equivalence classes
of virtual real vector bundles over a finite CW complex X. This understanding
led Adams to some of the earliest and most successful computations in the stable
homotopy groups of spheres.

At the outset of the series, Adams states and proves special cases of the conjecture
that now bears his name, later proven completely in ([10],[23],[26]). Together with
a study of certain generalized characteristic classes of vector bundles, this conjecture
allowed him to construct computable upper and lower bounds for the groups J(X).
These bounds, he was able to show, coincide, thus capturing J(X).

At the heart of this work, Adams constructs a commutative diagram, which we
will call the Adams square.

ΣkK̃SO(X)
Σke(k)(ψk−1)//

Σθk

²²

K̃SO(X)

Πρl

²²
K̃SO(X)⊗

Πψl/1 // ΠlK̃SO(X)⊗[ 1l ].

The diagram is obtained by taking a sum of individual diagrams for pairs (k, l).
Here, K̃SO(X) and K̃SO(X)⊗ are the groups of oriented virtual bundles on X, of
virtual dimension 0 and 1 respectively; the tensor symbol indicates that the group
structure is given by tensoring bundles rather than summing. The operations ψk

and ψl are the kth and lth Adams operations. The map ρl is a certain generalized
characteristic class, the “Adams-Bott cannibalistic class.” The map θk, which is
constructed by character-theoretic arguments, makes the diagram commute. Both
maps ρk and θk are exponential. As it turns out, the diagram is a weak pullback,
which is central to Adams’ demonstration that his bounds for J(X) coincide.

Adams carried out his work handicapped by the absence of a theory Sph(X) of
spherical fibrations, with a map from KO(X) having image J(X), as well as a theory
Sph(X;KO) of spherical fibrations with a KO-Thom class. Yet even in writing his
papers he foresaw the utility such theories would have ([3, §7]). When these theories
became available through the work of May [17] and others, many of Adams’ results
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could be put on a more conceptual and geometric level, with character-theoretic
constructions banished by simple fiber sequence arguments giving maps between
the classifying spaces of the relevant theories. This project was carried out by May
in [18]. In particular, May constructs the “J-theory” diagram:

Jk
π //

αk

²²

BO
ψk−1 //

γk

²²

BSpin

SF
τ //

εk

²²

SF/Spin

f

²²

q // BSpin
Bj //

ρk

²²

BSF

Jk
⊗

π // BO⊗
ψk/1 // BSpin⊗.

Here, rows are fiber sequences and all spaces are localized away from k. The spaces
BO, BSpin, and BSF classify real vector bundles, Spin bundles, and spherical
fibrations over a finite CW-complex. The space SF ' ΩBSF is the monoid of
degree 1 maps of spheres; its homotopy groups comprise the positive stems of the
stable homotopy groups of spheres. The map Bj represents the forgetful functor
from Spin bundles to spherical fibrations. The map ψk − 1 is determined by the
kth Adams operation and the additive Hopf space structure on BO, giving a map
BO → BO, which, it’s not hard to see, lifts to BSpin. The map ψk/1 is similarly
defined, but here the Hopf space structure is multiplicative. The Adams conjecture
gives a null-homotopy of Bj ◦(ψk−1), thus determining γk. The construction of ρk,
which represents the cannibalistic class, and f , whose composite with γk represents
θk, requires the introduction of a new space B(SF ; KO[ 1

k ]) which classifies spherical
fibrations with a KO[ 1k ]-Thom class, or orientation. Finally, the maps εk and αk

are induced maps of fibers.
Within this diagram, the square involving BO,BSpin, BO⊗, and BSpin⊗ is of

particular importance; we will refer to it as the Adams-May square. May proves
in [18] that with k suitably chosen, the Adams-May square becomes a pull-back
diagram in the homotopy category after localizing at a prime p. On the one hand,
this implies Adams’ result, that the Adams square is itself a weak pull-back. But
it is an especially remarkable result in its own right since pull-backs so rarely exist
in homotopy categories. Moreover, one can deduce from the result that the vertical
composite εk ◦ αk in the J-theory diagram gives a splitting of the p-localization of
SF , in which the homotopy groups of the factor Jk

p carry the image of the classical
J-homomorphism.

After May’s work was completed, Waner constructed a representable theory of
equivariant spherical fibrations ([29]), and tom Dieck and McClure obtained results
generalizing the nonequivariant Adams conjecture ([22, 27]), though the obvious
equivariant generalization of the Adams conjecture fails. With these results in hand,
we revisit the work of Adams and May in this paper to give some equivariant
generalizations of their results. Ideally, one might hope to do the following:

1) construct an equivariant J-theory diagram for a compact Lie group G.
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2) show that, with k suitably chosen, the associated equivariant Adams-May
square becomes a pull-back in the homotopy category at a prime p.

3) obtain a splitting of an equivariant generalization of SF , at each prime p.

As it stands, the above program is not possible. In fact, the equivariant Adams-
May square can never be a pull-back diagram when G is not a p-group by [22, 5.3].
However, for the sake of generality, we will begin by setting up some foundations
for later work with G being a compact Lie group. We will later restrict to finite
groups whose order is a power of an odd prime p. Moreover, we must also restrict
to the “G-connected cover” of the Adams-May square (see Definition 2.18), and our
results only apply to the completion of the Adams-May square at this prime p.

The primary challenges involved in our work are as follows:

1) In order to define cannibalistic classes, we need an equivariant theory of KO-
oriented spherical fibrations. Thus, we must consider equivariant orientation theory.
In the nonequivariant setting, an E-orientation of a fibration ξ with fiber Sn (where
E is a cohomology theory) is determined by a class µ ∈ En(Tξ), where Tξ is the
Thom space of the fibration ξ (obtained by collapsing out the section at infinity). If
ξ is an equivariant spherical fibration, then the fiber over a point x is SVx for some
Gx-representation Vx. But Vx may not be isomorphic to Vy if there is no Gx-fixed
path from x to y. Thus, it doesn’t make sense to try to find a class in EV

G (Tξ), since
there is no suitable choice for V .

2) The equivariant Adams conjecture is not what one might hope. To use this,
we need a good theory of equivariant fiberwise completions of spherical fibrations,
and some classifying-space level constructions.

3) The proof that the maps ρk, σk, ψk − 1 and ψk/1 form a pull-back square in
the homotopy category relies on techniques that do not apply equivariantly.

Our main results are as follows:

1) In 4.2, we define orientations for periodic cohomology theories, a concept which
we will make precise below (4.5). With the right definitions, it is not difficult to show
that equivariant Spin bundles have KOG-orientations (5.4).

2) In Section 7, we define a space BG(Ŝp) classifying equivariant fibrations whose
fibers are sphere representations completed at a prime p, and we define a map on
the classifying space level constructing fiberwise completions. It will follow from the
equivariant Adams conjecture that Bj ◦ (ψk − 1) is null-homotopic, when G is a
p-group, p odd.

3) With G a p-group, p odd, we construct the equivariant Adams-May square:

BG(O)p̂
ψk−1 //

σk

²²

BG(O)p̂

ρk

²²
BG(O)⊗p̂

ψk/1 // BG(O)⊗p̂.

We show in Corollary 10.16 that this square is a pull-back diagram in the homotopy
category, but only after passing to “G-connected covers.” Part of the argument for
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this involves showing that ρk and σk are homotopic, but we were only able to do
this after passing to G-connected covers, hence the restriction on the result. In the
nonequivariant case, there is no loss of generality, since the domains of ρk and σk

are both connected to begin with. In the equivariant case, it is not obvious that σk

and ρk will have the same effect on components of fixed-point spaces.
4) We also construct an equivariant J-theory diagram:

Jk
G

π //

τk

²²

BG(O)p̂
ψk−1 //

σk

²²

BG(O)p̂

ρk

²²
Jk

G⊗
π // BG(O)⊗p̂

ψk/1 // BG(O)⊗p̂.

The square on the right is the Adams-May square, and the rows are fiber squences.
The map τk is actually a composite εk ◦ αk, where the source of εk (target of αk)
is the component of the identity in Ω∞Ŝp, the zero space in the completion of the
equivariant sphere spectrum. In Theorem 10.17 we show that τk induces a weak
equivalence on G-connected covers, thus yielding a splitting of the G-connected
cover of Ω∞Ŝp. On the level of homotopy groups, the factor Jk

G sits inside Ω∞Ŝp as
the image of the equivariant J-homomorphism.

The organization of this paper is as follows. We begin in Sections 2 and 3 with
equivariant classifying spaces of bundles and fibrations. We review some of the con-
structions in [29], studying these by examining fixed points, which we can compare
with classical nonequivariant classifying spaces (2.8, 3.10). We also show how to
stabilize classifying spaces for equivariant Π-bundles, where Π is a structure group
such as O,SO, or Spin (2.15).

Our primary interest is spherical fibrations, to which we specialize in Section 4.
We generalize the theory of Thom classes to the equivariant setting, and we define
periodic ring G-spectra in 4.5, a class of ring spectra for which we can define and
classify stable equivariant oriented spherical fibrations (4.2 and 4.7). We also show
how to construct characteristic classes associated to maps of periodic-ring spectra
(4.12)

In Section 5, we consider equivariant KO-theory. We show that the equivari-
ant KO spectrum is a periodic ring spectrum (5.1), and we show that equivariant
Spin-bundles have canonical KO-Thom classes (5.4), as in the nonequivariant case.
We also investigate the relationship between equivariant K-theory and KO-theory,
proving a compatibility result relating their periodic structures (5.7).

In the next two sections, we turn to fiberwise completions of spherical fibrations.
We give a general construction in Section 6 for a map of classifying spaces associ-
ated to a “map of fibers” satisfying appropriate conditions. Fiberwise completion
is an example, as shown in Section 7. This material is inspired by an analogous
nonequivariant construction in [20], though our techniques differ substantially from
those used there.

With these foundations set, we turn in Section 9 to defining the maps between
the classifying spaces in the equivariant J-theory diagram. We give both a geometric
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interpretation and a classifying-space construction of the Adams-Bott characteristic
class ρk and its complex counterpart ρk

c . We exploit the construction of fiberwise
completions and the equivariant Adams conjecture to obtain an equivariant gener-
alization of the map γk in the J-theory diagram above. We use this to construct
the map σk, which makes the Adams-May square commute.

We come to the heart of the matter in Section 10, where we analyze the equiv-
ariant Adams-May square. Unfortunately, the map σk has no apparent geometric
significance, so it is difficult to get any computational hold of it. In the nonequiv-
ariant case, one can show that σk and ρk are homotopic. We generalize this fact
equivariantly, but our proof only shows that σk and ρk are homotopic when re-
stricted to the G-connected covers of their domains. We believe that, by choosing
γk appropriately, the resulting σk would be homotopic to ρk without restricting to
G-connected covers, but we have no proof of this. We then show that, after passing
to G-connected covers, the equivariant Adams-May square becomes a pull-back in
the homotopy category. Again, if we could choose σk to be actually homotopic to
ρk, we could eliminate the need to pass to G-connected covers. Finally, we use this
result to show that the G-connected cover of Ω∞Ŝp over the identity splits up to
homotopy, with one factor being Jk

G, the fiber of ψk−1. Here, Ŝp is the p-completion
of the equivariant sphere spectrum. This generalizes the nonequivariant result, since
the “connected cover” (i.e. component of the identity) in Ω∞Ŝp is the p-completion
of SF .

In the appendix, we prove several technical results. We show how to put weak
equivariant Hopf space structures on classifying spaces of stable bundles, fibrations,
or fibrations with Thom classes. We also identify the space ΩBG(Ŝp) as the homo-
topy units in Ω∞Ŝp. Lastly, we show that, as in the nonequivariant case, the map
ψk − 1 : BG(O) → BG(O) lifts to BG(Spin).

2. Classifying spaces for (G, A)-bundles

In this section, let A be a compact Lie group. A principal (G,A)-bundle is a
G-map p : E → B which is a principal A-bundle such that the action of each g ∈ G
is a map of A-bundles. That is, the actions of G and A commute. In 2.6, we define
BG(A), which, it is shown in [29], classifies (G,A)-bundles over G-CW-complexes.
We study this space by identifying its fixed point subspaces in Proposition 2.8. As
one application of this proposition, we show (2.10) that when A is abelian, and
ξ : P → B is a (G,A)-bundle such that ξx has trivial Gx-action for each x ∈ B,
then ξ is obtained by pulling back a bundle over X/G. This technical result will be
used in Section 10. We also use 2.8 to define maps of classifying spaces representing
Whitney sums and stabilization of bundles. Using this, we can construct spaces
classifying stable bundles, like BG(O) and BG(Spin), appearing in the equivariant
J-theory diagram. Finally, we study the “G-connected covers” (2.18) of some of our
classifying spaces. Results about these more easily studied G-connected covers will
often suffice to answer questions about the classifying spaces we’re interested in.

Definition 2.1. Let ΛH(A) be the set of all continuous homomorphisms λ : H → A,
where H is a closed subgroup of G. Let Λ(A) be the disjoint union of the sets ΛH(A)
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over all closed subgroups H 6 G.

Definition 2.2. Let CG(A) be the topological category with discrete object space
Λ(A). If ρ ∈ ΛH(A) and σ ∈ ΛK(A), a morphism θ : ρ → σ is a map of principal
(G,A)-bundles:

G×H Aρ
θ̄ //

²²

G×K Aσ

²²
G/H

θ̃ // G/K.

Here, Aρ and Aσ denote A with left H-action and left K-action induced by ρ and
σ. The map θ̃ is a G-map and θ̄ is a G× A-map. The morphism set is topologized
as the subspace of all maps from G×H Aρ to G×K Aσ.

Remark 2.3. If θ : ρ → σ is a map with θ̃(eH) = gK, then θ̄ determines and
is determined by an H-map Aρ → g∗Aσ, which we also designate θ̄, where g∗Aσ

denotes A with H-action given by h·a = σ(g−1hg)a. Thus, θ is determined by a pair
(g, θ̄). Now let kθ̄ denote the composite of θ̄ with the map g∗Aσ → (gk)∗Aσ given
by σ(k−1). Then the pairs (gk, θ̄) and (g, kθ̄) determine the same map θ. In fact,
we could identify the space of maps θ : ρ → σ as the space of equivalence classes of
pairs (g, θ̄), where (gk, θ̄) is equivalent to (g, kθ̄). Composition of equivalence classes
is then given by [g2, θ̄2] ◦ [g1, θ̄1] = [g1g2, g

∗
1 θ̄2 ◦ θ̄1].

In the following definition and hereafter, GU is the category of unbased G-spaces.

Definition 2.4. Let O : CG(A) → GU be the functor taking an object ρ in ΛH(A)
to the orbit G/H, and taking θ to θ̃.

Remark 2.5. In the following definition, we will use the categorical bar construction.
Given a topological category C, together with functors O : C → GU and F : Cop →
U, one can define a bar construction B(F, C,O), using the ideas in [17, §12]. It is
also possible to describe this as the classifying space of a single category. Given C,
O and F as above, there is an associated topological G-category CF

O (or CO when
F is trivial) with object space consisting of all triples (f, c, x), (or (c, x)) where c is
an object in C, f ∈ F (c) and x ∈ O(c). The group acts on the third coordinate of
these objects. A morphism from (f, c, x) to (f ′, c′, x′) is a map θ : c → c′ in C such
that O(θ)(x) = x′ and F (θ)(f ′) = f. The group acts trivially on morphism spaces.
The classifying space of CF

O is canonically isomorphic to B(F, C,O).

Definition 2.6. Let BG(A) be B(∗, CG(A),O).

We study BG(A) by passing to fixed points. Letting OH denote the composite of
O and the H-fixed point functor, it’s easy to check that

B(∗, CG(A),O)H ∼= B(∗, CG(A),OH).

Proposition 2.8 below gives a splitting of this space into a disjoint union of simpler
classifying spaces. We first need the following definition:
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Definition 2.7. Given H 6 G and a map ρ : H → A, let Aρ be the centralizer of
ρ, i.e.

{a ∈ A|ρ(h)a = aρ(h) for all h ∈ H}.
Now, we can view a topological monoid like Aρ, or a disjoint union of such

monoids, as a category with one object, or a disjoint union of such categories. The
following is Proposition 1.3 of [12].

Proposition 2.8. For each H 6 G, there is an inclusion of categories

i :
∐

ρ∈R+(H,A)

Aρ → CG(A)OH

where R+(H, A) is a set of representatives for the conjugacy classes of homomor-
phisms ρ : H → A. The functor i has a right adjoint, and therefore induces a
homotopy equivalence

Bi :
∐

ρ∈R+(H,A)

BAρ → BG(A)H

The functor i sends the unique object of Aρ to the object (ρ, eH) and sends
a ∈ Aρ to the map (1, βa) : ρ → ρ, where βa(g, p) = (g, ap).

As an application of the above proposition, suppose A is abelian and ξ is a (G,A)-
bundle over a G-space X such that all the fibers ξx have trivial Gx-action. We can
then show that ξ is the pull-back of an A-bundle over X/G. This will require the
following lemma.

Lemma 2.9. Suppose A is abelian. Then there is a fiber sequence

BA
i // BG(A) π // L

where BA has trivial G-action and each LH is homotopic to a discrete set, so that
in particular, ΩL is G-contractible. The map i classifies the universal bundle on BA
with trivial G-action.

Proof. To define L, we construct an OG-space L′ and use the Elmendorf construc-
tion C ([11]), which takes OG-spaces to G-spaces. Let L′(G/H) be the discrete set
of all conjugacy classes of homomorphisms H → A. Any G-map f : G/H → G/K
is determined by f(eH) = gK for some g satisfying g−1Hg ⊆ K. We define
L′(f) : L′(G/K) → L′(G/H) by L′(f)(α)(h) = α(g−1hg). This is independent
of the choice of g, since A is abelian. Let L = CL′. The trivial map G → A gives L
a G-fixed basepoint.

Now, we define π. Let Φ(BG(A)) be the OG-space associated to the G-space
BG(A). By 2.8, π0(Φ(BG(A))(G/H)) is the set of conjugacy classes of homomor-
phisms H → A. Thus, there is a functor of OG-spaces Φ(BG(A)) → L′, given
on the orbit G/H by discretization. This functor determines a map π : BG(A) '
CΦBG(A) → L.

The map π ◦ i : BA → L is adjoint to the composite Φ(BA) → Φ(BG(A)) →
L′, which is easily seen to be the trivial map. Thus, π ◦ i is null-homotopic. This
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determines a map from BA to the fiber of π. For any H 6 G, the sequence BA →
BG(A)H → LH is a split fiber sequence. Now, by the five lemma and the Whitehead
theorem, BA is the fiber of π. Moreover, since ΩLH is contractible for each H 6 G,
ΩL is itself G-contractible.

Corollary 2.10. Suppose A is abelian. If ξ is a (G,A)-bundle on a G-CW complex
X such that for each H 6 G and each x ∈ XH , the fiber ξx has trivial H-action,
then ξ is the pull-back of a nonequivariant A-bundle on X/G.

Proof. Suppose that ξ is classified by a G-map f : X → BG(A). Then it follows
from the hypothesis on ξ that the composite

ΦX
Φ(f) // ΦBG(A) // L′

is trivial, so that the map X ' CΦX → CL′ = L is null-homotopic. Therefore, by
Lemma 2.9, there is a unique lift f̃ : X → BA. Since the target has trivial G-action,
this determines and is determined by a nonequivariant map X/G → BA.

As another application of Proposition 2.8, we can construct maps classifying
products of bundles. Nonequivariantly, if ξ : P → B and ξ′ : P ′ → B′ are principal
A1 and A2-bundles, then ξ × ξ′ : P × P ′ → B × B′ is a principal A1 × A2-bundle.
Taking such products is represented on the classifying space level by the isomor-
phism BA1 × BA2

∼= B(A1 × A2). In contrast with the nonequivariant case, the
natural projection BG(A1 × A2) → BG(A1) × BG(A2) is not an isomorphism, but
we have the following lemma, which follows immediately from 2.8.

Lemma 2.11. The projection BG(A1 × A2) → BG(A1) × BG(A2) is a weak G-
equivalence.

Remark 2.12. By “weak G-equivalence,” we mean, as usual, an equivariant map
that induces a weak equivalence on all fixed point sets.

Since the source and target in Lemma 2.11 are of the homotopy type of G-CW
complexes, we can invert the equivalence and obtain a map that classifies taking
the product of (G, A1) and (G,A2)-bundles. We can use this fact to construct maps
of classifying spaces representing Whitney sums of vector bundles. To treat the
general case, let I be the category of finite dimensional complex inner product
spaces and isometries. We will sometimes think of a space V in I as a real inner
product space by forgetting the complex structure. As in [18], a group-valued I-
functor is a functor T from I to the category of topological groups, together with a
commutative, associative, and continuous natural transformation c : T ×T → T ◦⊕
satisfying two conditions:

1) if x ∈ TV and if 1 ∈ T{0} is the basepoint, then c(x, 1) = x in T (V ⊕{0}) = TV .
2) if V = V ′ ⊕ V ′′, then the map TV ′ → TV induced by the inclusion V ′ → V is a
homeomorphism onto a closed subset.

For example, the functor SU takes V to SU(V ), and O takes V to O(V ). There is
an evident natural transformation SU → O, taking a special unitary transformation
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to its underlying orthogonal transformation. In general, we let Π denote a group-
valued I-functor, with morphisms SU → Π → O of group-valued I-functors, such
that the composite SU → O is the canonical map. Interesting examples include
SU,U, SO, and O. In addition, the inclusion SU(V ) → SO(V ) lifts to a map i :
SU(V ) → Spin(V ) by elementary covering space theory, so that Spin is also an
example. Taking the Whitney sum of a (G, Π(V ))-bundle and a (G,Π(W ))-bundle
yields a (G, Π(V ⊕W ))-bundle; this operation is classified by the composite obtained
by inverting the equivalence below.

BG(Π(V ))×BG(Π(W )) BG(Π(V )×Π(W ))'oo c∗ // BG(Π(V ⊕W )).

Notation 2.13. We will let ΛΠ
H(V ) and ΛΠ(V ) denote ΛH(Π(V )) and Λ(Π(V )). If

λ ∈ ΛΠ
H(V ), let Vλ denote V with the corresponding H-action. If λi ∈ ΛΠ

H(Vi) for
i = 1, 2, then the sum c determines an element λ1 ⊕ λ2 in ΛΠ

H(V1 ⊕ V2).

We will now construct classifying spaces BG(Π) for stable (G, Π)-bundles. For
example, BG(O) classifies stable orthogonal G-bundles. Since we will be stabilizing
other classifying space constructions in later sections, we consider the following
generic construction.

Construction 2.14. Let V be the groupoid whose objects are finite dimensional
complex inner product spaces V equipped with an action ρ : G → SU(V ) of G, and
whose morphisms are equivariant isomorphisms. Let hV be the associated homotopy
category, and let hGT be the homotopy category of based G-spaces having the
homotopy type of G-CW complexes. We define an hV functor to be a functor A :
hV → hGT together with a commutative and associative natural transformation
c : A×A → A ◦ ⊕.

If ι : V → W is an equivariant isometry, then W ∼= V ⊕U for some U ∈ V. Using
the basepoint of A(U), the map c, and functoriality of A, we obtain a map

A(V ) → A(V )×A(U) → A(V ⊕ U) ∼= A(W ),

which we call A(ι). Since c is natural and associative, this construction extends A
to a functor on the category of representations V ∈ V and equivariant isometries.

We say that a sequence V = V1 ⊆ V2 ⊆ · · · of inclusions in V is complete
if ∪Vi forms a complete G-universe. A map V → W consists of a sequence of
equivariant isometries Vi → Wi compatible with the inclusions. We let A(V) denote
the homotopy colimit of the spaces A(Vi), with maps A(ι) : A(Vi) → A(Vi+1), where
ι is the inclusion of Vi in Vi+1. A map i : V→W induces a map i∗ : A(V) → A(W).
It is easy to check that i∗ is a G-equivalence, since V and W are complete. Given
any two complete sequences V andW, there are canonical and coherent equivalences
A(V) → A(W), since we can always form the sequence V⊕W = {Vi⊕Wi}, and we
then have equivalences from A(V) and A(W) to A(V⊕W).

The Whitney sum maps BG(Π(V )) × BG(Π(W )) → BG(Π(V ⊕ W )) make
BG(Π(−)) into an hV functor.

Definition 2.15. Let BG(Π) = BG(Π(V)) for some complete sequence V.
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For example, we could take Π to be Spin, SO, or O. Then the maps Spin →
SO → O induce maps BG(Spin) → BG(SO) → BG(O), or we could take Π to
be SU or U , and the inclusion induces a map BG(SU) → BG(U). We record the
following two lemmas for future applications.

Lemma 2.16. Suppose G is a finite group of odd order. Then for all H 6 G, the
group of components in BG(Spin)H , BG(SO)H , and BG(O)H are equal. Moreover,
the fiber of BG(SO) → BG(O) is the discrete space Z/2 with trivial G-action, and
the fiber of BG(Spin) → BG(SO) is K(Z/2, 1), again with trivial G-action.

Proof. By Definition 2.15, BG(Π) is the colimit of spaces BG(Π(Vi)), and by Propo-
sition 2.8, for H 6 G, BG(Π(Vi))H is the disjoint union of the spaces BΠ(Vi)ρ over
all ρ ∈ R+(H, Π(Vi)). The basepoint is in the component corresponding to the
canonical action ρ : G → Π(Vi).

To show the groups of components are equal, we show that any map ρ : H →
O(V ) lift uniquely to SO(V ) and Spin(V ). Indeed, since H has odd order, the
composite of any map ρ : H → O(V ) with the determinant must be trivial, so ρ
factors uniquely through SO(V ). Now let H̃ be the pull-back in the diagram below:

H̃ //

²²

Spin(V )

²²
H // SO(V ).

Then we have an extension

Z/2 → H̃ → H.

By Schur-Zassenhaus, such extensions split, and since Z/2 has no nontrivial auto-
morphisms, H̃ ∼= H × Z/2. This implies that ρ lifts to Spin(V ), and uniqueness
again follows since every map H → Z/2 is trivial.

The proof of the lemma will be completed by the following claim: if V ρ is non-
trivial, then there are short exact sequences of groups:

0 // SO(V )ρ // O(V )ρ det // Z/2 // 0,

0 // Z/2 // Spin(V )ρ π // SO(V )ρ // 0.

Indeed, the kernel of the determinant is clearly SO(V )ρ, and since any reflection
in V ρ is in O(V )ρ, the determinant is surjective, so the first sequence is exact. The
kernel of the projection Spin(V ) → SO(V ), generated by an element t, is contained
in the center of Spin(V ), and hence lies in Spin(V )ρ. So, we are left to show that
Spin(V )ρ → SO(V )ρ is surjective. Suppose s ∈ SO(V )ρ, so that ρ(h)s = sρ(h) for
any h ∈ H. Let s̃ be either of the two elements in Spin(V ) mapping to s. We claim
that s̃ is in Spin(V )ρ. The commutator [ρ(h), s̃] must be either the identity or t. If
it is t, then

ρ(h)s̃ = s̃ρ(h)t.
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Let l be the order of h in H. Then we have

s̃ = ρ(h)ls̃ = s̃ρ(h)ltl = s̃tl

whence tl = 1, so that l must be even, but H has odd order.

Lemma 2.17. There is a fiber sequence

BG(SU) → BG(U) → BG(S1),

where the first map is induced by the inclusion and the second map by the determi-
nant.

Proof. To construct the sequence, we take a colimit over Vi ∈ V of the sequences

BG(SU(Vi)) → BG(U(Vi)) → BG(S1).

Passing to fixed points and arguing as in 2.16, we see that this is a fiber sequence
whenever Vi has a trivial summand.

Finally, we need to study the “G-connected cover” of some of our classifying
spaces – these are the equivariant homotopy theorist’s best substitute for looking
at the basepoint component of a space.

Definition 2.18. A G-connected cover of a based G-space X is a map ι : X0 → X
such that for each H 6 G, ιH : XH

0 → XH is, up to homotopy, the inclusion of
the basepoint component. Sometimes, we just denote the G-connected cover by X0,
with the inclusion ι implied.

The G-connected cover of a based G-space X exists and is unique up to equiv-
ariant homotopy equivalence. It can be constructed abstractly using the Elmendorf
construction [11]. In our case, the G-connected covers of our classifying spaces can
often be constructed as colimits of fairly simple classifying spaces, and thus lend
themselves to easier analysis. Moreover, whenever we are interested in the loops on
a space, we can replace that space with its G-connected cover.

Suppose given a distinguished map ρ : G → A, endowing BG(A) with a G-
fixed basepoint. Let CG(A)0 be the full subcategory of CG(A) whose objects are
the restrictions of ρ to a subgroup H 6 G. The bar construction yields a subspace
BG(A)0 of BG(A).

Lemma 2.19. The inclusion BG(A)0 → BG(A) is a G-connected cover.

Proof. We have a commutative diagram

Aρ|H i0 //

²²

(CG(A)0)OH

²²∐
σ∈R+(H,A) Aσ i // (CG(A))OH ,

where i0 is defined as i was. Again, i0 has a right adjoint. Passing to classifying
spaces yields the lemma.
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To get a simpler model, note that the G-action g · a = ρ(g)aρ(g)−1 on A induces
a G-action on BA, with (BA)H = B(Aρ|H). The following lemma then shows that,
with this G-action, BA is another model for the G-connected cover of BG(A).

Lemma 2.20. There is a weak G-equivalence BF : BG(A)0 → BA, natural in A.

Proof. By Remark 2.5, we may view BG(A)0 as the classifying space of (CG(A)0)O,
and we may view BA as the classifying space of a G-category A with one object. A
morphism θ : (ρ|H,x) → (ρ|K, y) in (CG(A)0)O is a map of (G,A)-bundles:

G×H Aρ
θ̄ //

²²

G×K Aρ

²²
G/H

θ̃ // G/K,

such that θ̃(x) = y. Suppose θ̄(e, e) = (g, a). Since θ̄ is a G×A-map, ρ(g)a commutes
with elements ρ(h) for h ∈ H. Thus, ρ(x)ρ(g)aρ(x)−1 is a well-defined element of A,
depending only on the coset of x ∈ G/H. We let F (θ) be this map. This defines a
G-functor F : (CG(A)0)O → A, which then induces a G-map BF : BG(A)0 → BA.
But the functor

i0 : Aρ|H → (CG(A)0)OH = ((CG(A)0)O)H

is left inverse to FH , and Bi0 is a homotopy equivalence, so BF induces a weak
G-equivalence, as needed.

3. Classifying Spaces for Equivariant Fibrations

Given a nonequivariant, based space F , equivariant F -fibrations are defined and
classified in [29]. One constructs a category GF(F ) of admissible fibers, whose ob-
jects are sectioned G-maps p : P → Q, where Q is a G-orbit G/H and P is weakly
G-equivalent to G×H Fλ for some H-action λ on F . A GF(F )-space is then a sec-
tioned map ξ : P → B which restricts over each G-orbit in B to an object in GF(F ).
One defines GF(F )-quasifibrations and GF(F )-fibrations as GF(F )-spaces which
are G-quasifibrations ([29, 1.2.1]) or which satisfy the covering homotopy property
([29, 1.2.2]). In this section, we review and generalize the classifying space construc-
tions in [29]. In particular, we classify equivariant fibrations with “Y -structures,”
in preparation for our discussion of orientations. As in Section 2, we study fixed
point subspaces and G-connected covers of our classifying spaces.

The treatment of [29] is limited by the need to choose a single fiber F supporting
all the actions of subgroups of G. We will need to consider collections of equivariant
based spaces as candidates for fibers. Thus, we let a set of admissible fibers, or just
a set of fibers, be a set of spaces {Fλ} with left actions of closed subgroups Hλ of
G; such a set is denoted by the symbol F. In this paper, whenever Fλ is a fiber
in F, and g−1Kg 6 Hλ, we implicitly include the K-space g∗Fλ in F; this denotes
Fλ with K-action given by k · f = (g−1kg)f. We now give our amended version of
Definition 1.1.1 in [29].
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Definition 3.1. An equivariant category of fibers with distinguished set of fibers
F is a category GF(F), in which an object is a sectioned G-map p : P → Q over a
G-orbit Q, and a morphism is a section-preserving pair of G-maps (θ̃, θ̄) yielding a
commutative square:

P
θ̄ //

p

²²

P ′

p′

²²
Q

θ̃ // Q′.

In addition, GF(F) is required to satisfy the following properties:
1) For each Fλ ∈ F, the maps pλ : G×Hλ

Fλ → G/Hλ are in GF(F).
2) For each morphism (θ̃, θ̄) : p → p′ in GF(F), θ̄ restricts to a weak Gx-

equivalence: p−1(x) → p′−1(θ(x)) for each x ∈ Q.
3) If p : P → Q is an object in GF(F), and θ̃ : G/K → Q is a G-map, then there

is a morphism (θ̃, θ̄) : pµ → p for some Fµ ∈ F.

4) Observing that GF(F) is a topological category, the natural projections

πλµ : GF(F)(pλ, pµ) → G̃U(G/Hλ, G/Hµ)

(where G̃U(G/Hλ, G/Hµ) ⊂ GU(G/Hλ, G/Hµ) denotes the image of πλµ) are quasi-
fibrations such that if φ ∈ GF(F)(pµ, pν), then, in the commutative diagram

GF(F)(pλ, pµ)
φ̄∗ //

πλµ

²²

GF(F)(pλ, pν)

πλν

²²
GU(G/Hλ, G/Hµ)

φ̃∗ // GU(G/Hλ, G/Hν)

induced by φ, φ̄∗ restricts to a weak equivalence on each fiber.
(5) If p : P → Q is in GF(F), then so is p× 1t : P ×{t} → Q×{t} for each t ∈ I.

If Θ : p → q is in GF(F), then so is Θ× 1t : p× 1t → q × 1t for each t ∈ I.

Remark 3.2. As in Remark 2.3, if θ : pλ → pµ is a map with θ̃(eHλ) = gHµ, then
θ̄ is uniquely determined by an Hλ-map Fλ → g∗Fµ, and when θ̃ is understood, we
sometimes refer to this H-map as θ̄. Again, we identify the space of maps θ : pλ → pµ

as a space of equivalence classes [g, θ̄].

Notation 3.3. If ξ : P → B is a GF(F)-space, we let Tξ denote P/B, the quotient
of P by the section. We call this the Thom space of ξ.

In all our examples, the objects in GF(F) are the sectioned G-maps p : P → Q
such that there is a fiberwise equivariant weak equivalence θ : pλ → p for some
G-homeomorphism G/Hλ → Q and some Fλ ∈ F. Likewise, morphisms are the
pairs (θ̃, θ̄) satisfying condition (2) above. Then, conditions (1), (2), and (5) above
are immediate; conditions (3) and (4) follow in all our examples as in [29, 1.1.3].
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Equivariantly or not, classifying space constructions for fibrations yield universal
quasifibrations which need to be replaced by fibrations. For this purpose, there is
a functorial Γ-construction ([17, §3]), which can be applied equivariantly. Given ξ :
P → B, ΓP is the set of pairs (λ, p) where λ is a Moore path in B beginning at ξ(p)
for a point p ∈ P , and Γξ takes (λ, p) to the endpoint of λ. There are then “constant
path” maps η : P → ΓP over B and “path addition” maps µ : Γ(ΓP ) → ΓP . We can
characterize GF(F)-fibrations as those GF(F)-spaces with a GF(F)-lifting function
ξ : ΓP → P left inverse to η (cf. [29, 1.2.4]). There is an analogous Γ′-construction
when fibers are based ([17, §5]).

For these constructions to be useful, we need the category of fibers GF(F) to
satisfy the Γ′-completeness condition below. All our categories of fibers will satisfy
these conditions (cf. [29, 1.2.7]).

Definition 3.4. ([29, 1.2.6]) A category of fibers GF(F) is Γ′-complete in GT if
the following statements are true for GF(F) quasifiberings p : E → B with B and
E in GT:

(i) Γ′p is a GF(F) fibration with GF(F)-lifting function ξ;
(ii) η : E → Γ′E is a GF(F) map over B;
(iii) Γ′ takes GF(F) maps between quasifiberings to GF(F) maps.

As with bundles, GF(F)-fibrations are classifed by introducing a category whose
objects are fibrations over orbits.

Definitions 3.5. ([29, 2.2.2]) Given an equivariant category of fibers GF(F), let
A(F) denote the full subcategory of GF(F) consisting only of those objects of the
form pλ (3.1(i)). We will often write λ for the object pλ. The object set of A(F) is
discrete, and morphisms are topologized as subspaces of the usual function spaces.
Let O : A(F) → GU be the functor taking λ to the G-orbit G/Hλ and taking a map
θ : λ → µ to θ̃. Let BG(F) = B(∗,A(F), O).

With the obvious adjustments to accomodate our modifications in Definition
3.1, the proof of [29, 2.3.6] goes through to show that the space BG(F) classifies
GF(F)-fibrations over G-CW-complexes.
Remark 3.6. When the spaces Fλ are not compact, the space BG(F) may not be
of the homotopy type of a G-CW-complex, but since we are only interested in
classifying GF(F)-fibrations over G-CW-complexes, we can and will take a CW-
approximation as the classifying space for GF(F)-fibrations. We perform such re-
placements throughout implicitly.

We also need to generalize the definition of Y -structures in [17, §10] to an equiv-
ariant context. Let F be a set of fibers, and let Z be a G-space. A Z-orientation
functor Y on F is a contravariant functor Y : A(F) → U such that for each
Fλ ∈ F, Y (λ) is a subspace consisting of some of the components in FHλ

(Fλ, Z) =
FG(G+ ∧Hλ

Fλ, Z), and given a map θ : µ → λ, the map Y (θ) is induced by
restriction along Tθ∗.

Definitions 3.7. A Y -structure on a GF(F)-space ξ : P → B is a G-map µ : Tξ →
Z such that for any map θ : pλ → ξ of GF(F)-spaces, the composite

µ ◦ Tθ : G+ ∧Hλ
Fλ → Z
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is in Y (λ). A morphism between GF(F)-spaces ξ and ξ′ with Y -structures µ and µ′

is a map θ : ξ → ξ′ with µ′ ◦ Tθ ∼ µ.

To classify GF(F)-fibrations with Y -structure, we will need (Y, Z) to be admis-
sible, as defined below. This definition is adapted from [17, 10.2].

Definition 3.8. Suppose GF(F) is Γ′-complete in GT. A pair (Y, Z) is admissible if
the following statements hold for GF(F)-quasifibrations p : P → B with Y -structure
µ.

1) Γ′p : Γ′P → B admits a Y -structure Γ′µ : TΓ′P → Z.
2) η : P → Γ′P defines a GF(F)-map P → Γ′P over B such that η∗(Γ′µ) is

homotopic to µ.
3) Γ′ takes GF(F)-maps (p, µ) → (q, ν) to GF(F)-maps (Γ′p, Γ′µ) → (Γ′q, Γ′ν).

We can classify Y structures on GF(F)-fibrations. Let BG(F; Y ) denote the G-
space B(Y, A(F),O). The proof of the following proposition is easily adapted from
[17] and [29].

Proposition 3.9. Given a Z-orientation functor Y on F, the space BG(F;Y ) clas-
sifies GF(F) fibrations with Y -structure.

As with bundles, we can analyze the fixed-point spaces of these classifying spaces.
Just as we viewed a topological monoid Aρ as a subcategory of CG(A)OH in Propo-
sition 2.8, now, when Fλ ∈ F and H = Hλ, we let A(Fλ)Y ⊂ A(F)Y

OH be the
subcategory consisting of objects (y, λ, eH), with morphisms of the form (1, θ̄). We
write A(Fλ) for A(Fλ)∗. The proof of the following analogue of Proposition 2.8 is
an easy generalization of the argument in [12, 1.3].

Proposition 3.10. For each H 6 G, there is an inclusion of categories

i :
∐

λ∈R+
h (H,Λ)

A(Fλ)Y → A(F)Y
OH

where R+
h (H, Λ) is a set of representatives of equivalence classes of elements λ such

that Hλ = H, with ρ ∼ σ if Fρ 'H Fσ. The functor i has a right adjoint, and
therefore induces a homotopy equivalence

Bi :
∐

λ∈R+
h (H,Λ)

BA(Fλ)Y → BG(F; Y )H .

We use 3.10 to identify the fiber of the quasifibration q : BG(F; Y ) → BG(F)
which represents forgetting the Y -structure. We assume that F comes equipped
with a distinguished fiber Fρ with Hρ = G, giving BG(F) a G-fixed basepoint.

Since G ×H Fρ
∼= G/H × Fρ, any G-map G/H → G/K induces a map j(f) :

ρ|H → ρ|K in A(F). This yields a functor j : OG → A(F). If Y : A(F) → U is
a Z-orientation functor, let j∗Y : OG → U be the composite Y ◦ j, so j∗Y (G/H)
is a subspace consisting of some of the components in FH(Fρ, Z). The Elmendorf
Construction ([11]) yields a G-space C(j∗Y ) = B(j∗Y, OG,O), where O : OG → GU

is the inclusion. Now, j yields a map:

j∗ : C(j∗Y ) = B(j∗Y, OG,O) → B(Y, A(F),O) = BG(F;Y )
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Proposition 3.11. The map j∗ is the homotopy fiber of q.

Proof. It suffices by the Whitehead theorem to consider H-fixed points for each
H 6 G. We have a commutative diagram:

j∗Y (G/H) //

²²

B(A(Fρ|H)Y ) //

Bi

²²

B(A(Fρ|H))

Bi

²²
B(j∗Y, OG,OH)

jH
∗ // B(Y, A(F),OH)

qH

// B(∗,A(F), OH).

By 3.10, the right vertical maps is the inclusion of the basepoint component, and the
middle vertical map is the inclusion of the components in BG(F, Y )H mapping to the
basepoint component in BG(F)H . By [11], the left vertical map is an equivalence.
The top sequence is a quasifibration sequence by [17, 7.9], so that the inclusion of
j∗Y (G/H) is equivalent to the inclusion of the fiber. It follows that C(j∗Y )H is
equivalent to the fiber of qH .

Remark 3.12. Let ∗ be the restriction of ρ to the trivial subgroup. The space Y (∗) ⊆
F (Fρ, Z) has a G-action given by conjugation. If we let Φ(Y (∗))(G/H) = Y (∗)H ,
then there is an inclusion j∗Y → Φ(Y (∗)) induced by the inclusion of fixed points.
Applying C, this induces an inclusion Fib(q) → Y (∗).

From Proposition 3.10, we also obtain an analogue of Lemma 2.11, allowing us to
construct (3.14) maps on classifying spaces representing fiberwise smash products.
Suppose given sets of fibers Fi and Zi-orientation functors Y i on Fi for i = 1, 2.
Let A(F1 × F2) be the subcategory of A(F1)×A(F2) whose objects are those pairs
(λ, µ) for which Hλ = Hµ and whose morphisms are pairs (θ1, θ2) with θ̃1 = θ̃2.
Let O(λ, µ) be G/Hλ = G/Hµ, and let (Y 1 × Y 2)(λ, µ) = Y 1(λ) × Y 2(µ); these
define covariant and contravariant functors from A(F1 × F2) to GU and U. Let
BG(F1×F2; Y 1×Y 2) denote B(Y 1×Y 2, A(F1×F2),O). The following lemma and
its proof (using 3.10) are analogous to Lemma 2.11 and its proof.

Lemma 3.13. The projection

BG(F1 × F2;Y 1 × Y 2) → BG(F1; Y 1)×BG(F2; Y 2)

is a weak G-equivalence.

Construction 3.14. Suppose given a set of fibers F such that for each pair
(F 1

λ , F 2
µ) ∈ F1 × F2, with Hλ = H = Hµ, the H-space F 1

λ ∧ F 2
µ is a fiber in F.

Denote the corresponding object in A(F) by λ∧µ. Suppose also given a G-space Z
and a G-map ψ : Z1 ∧ Z2 → Z, along with a Z-orientation functor Y on F, such
that the composite

FH(F 1
λ , Z1)× FH(F 2

µ , Z2) ∧ // FH(F 1
λ ∧ F 2

µ , Z1 ∧ Z2)
ψ∗ // FH(F 1

λ ∧ F 2
µ , Z)

restricts to a map Y 1(λ) × Y 2(µ) → Y (λ ∧ µ). Suppose ξ1 : P 1 → B1 and ξ2 :
P 2 → B2 are GF(F1) and GF(F2)-fibrations with Y 1 and Y 2-structures µ : Tξ1 →
Z1 and µ2 : Tξ2 → Z2, and with sections σ1 : B1 → P 1 and σ2 : B2 → P 2.
Let ξ1 ∧ ξ2 represent the GF(F)-fibration over B1 × B2 whose total space is the



Homology, Homotopy and Applications, vol. 5(1), 2003 178

quotient P 1×P 2/ ∼, where we identify (σ1(b), p) to (σ1(b), σ2ξ2(p′)) and (p, σ2(b))
to (σ1ξ1(p), σ2(b)). This has a section induced by σ1 × σ2. Moreover, T (ξ1 ∧ ξ2) ∼=
Tξ1∧Tξ2, so that we have a Y -orientation µ1∧µ2 on ξ1∧ξ2 given by the composite

Tξ1 ∧ Tξ2
µ1∧µ2

// Z1 ∧ Z2
ψ // Z .

We call the pair (ξ1∧ξ2, µ1∧µ2) the fiberwise smash product of (ξ1, µ1) and (ξ2, µ2).
This is classified by the composite obtained by inverting the equivalence below:

BG(F1;Y 1)×BG(F2;Y 2) BG(F1 × F2; Y 1 × Y 2)'oo ψ∗ // BG(F; Y ).

Finally, we consider G-connected covers. A distinguished object Fρ ∈ F, with
Hρ = G, endows BG(F) with a G-fixed base point. Let A(F)0 denote the full sub-
category of A(F) having those objects of the form ρ|H for some H 6 G. The bar
construction yields a subspace BG(F)0 of BG(F). As in Lemma 2.19, we have

Lemma 3.15. The inclusion BG(F)0 → BG(F) is a G-connected cover.

Given a homomorphism ρ : G → A, A can be thought of as the group of A-linear
self-maps of A, with G acting by conjugation. In this spirit, let Ã(Fρ) be the monoid
under composition of the space of based self-maps of Fρ which are nonequivariant
equivalences, with G acting through conjugation. We then have a classifying space
B(Ã(Fρ)) with a G-action.

As in Lemma 2.20, there is a map BG(F)0 → B(Ã(Fρ)). To see this, regard Ã(Fρ)
as a category with one object, and let F : (A(F)0)O → Ã(Fρ) be the functor given
on the morphism

θ = (θ̃, θ̄) : (ρ|H,xH) → (ρ|K, yK)

by the formula
θ̄([x, x−1f ]) = [y, y−1F (θ)f ].

It is not difficult to verify that F is a well-defined G-functor, and therefore induces
a G-map

BF : BG(A(F))0 → B(Ã(Fρ)).

Unlike in the bundle case, BF is not always a weak equivalence, but we do have
the following analogue of 2.20.

Lemma 3.16. Suppose Ã(Fρ) is a grouplike G-space; that is, πH
0 (Ã(Fρ)) is a group

for each H 6 G. Then BF : BG(A(F))0 → B(Ã(Fρ)) is a weak G-equivalence.

Proof. By hypothesis, any H-equivariant map f : Fρ → Fρ in Ã(Fρ) is an H-
equivalence. We may therefore define a functor

LH : Ã(Fρ)H → (A(F)0)OH

taking the unique object to (ρ|H, eH) and taking α : Fρ → Fρ to (id, id×Hα). The
functor LH has a right adjoint RH , which sends a map

(θ̃, θ̄) : (ρ|H, xH) → (ρ|K, yK)
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to the H-map

Fρ
ν // G×H Fρ

θ̄ // G×K Fρ
µ // Fρ .

Here, ν is the H-map taking f to (x, x−1f), and µ is the action map of Fρ. Therefore,
BRH is an equivalence. But clearly QH ◦ RH is the identity, so that QH

∗ is an
equivalence, whence Q∗ is a weak G-equivalence.

4. Spherical fibrations and Thom Classes

In this section, we define E-orientations (or Thom classes) of equivariant spher-
ical fibrations, where E is a commutative, unital ring G-spectrum. When E is an
equivariant periodic ring spectrum, as defined in 4.5, we can define and classify
stable E-oriented spherical fibrations with a space BG(S; E). We will show in Sec-
tion 5 that the equivariant KO spectrum furnishes an example of an equivariant
periodic ring spectrum, and that equivariant Spin-bundles have KO-orientations.
This generalizes a classical nonequivariant result, and is critical for defining the
cannibalistic class ρk, as well as the map σk, in the J-theory diagram. We also
show in this section (4.12) how to construct a self-map of BG(S; E) associated to
a collection of self-maps of Ω∞E satisfying certain properties. We will need this in
Section 9 to define cannibalistic classes on the classifying space level.

Suppose that Π is a group-valued I-functor, and V is an object in I. Given
λ ∈ ΛΠ

H(V ), we denote the one-point compactification of the H-representation Vλ

by SVλ , and we denote the associated set of fibers by SV .

Remark 4.1. We can associate to a principal (G, Π(V ))-bundle ξ : P → B a GF(SV )-
fibration S(ξ) : S(P ) → B by letting S(P ) = P ×Π(V ) SV . This is represented by a
map Bj : BG(Π(V )) → BG(SV ) of classifying spaces.

Nonequivariantly, if ξ a spherical fibration with fiber Sn, then an E-orientation
of ξ is an element µ ∈ Ẽn(Tξ) restricting to a generator of the free E∗-module
Ẽ∗(Tξx) for each fiber ξx of ξ. There is a classifying space B(F ; E) for E-oriented
spherical fibrations ([18, III.2]).

Equivariantly, if ξ : P → B is a GF(SV )-fibration, then for each x ∈ BH , the
fiber Tξx of Tξ over x is equivalent to SVλ for some H-representation Vλ. Thus,
Ẽ∗

H(Tξx) is a free EH
∗ -module with a generator γ in ẼVλ

H (Tξx). Since Vλ and H
depend on x, it is too restrictive to define an E-orientation for ξ to be a class in
ẼVλ

H (Tξ). We will adopt the following definition:

Definition 4.2. An E-orientation of a GF(SV )-fibration ξ is an element µ ∈
Ẽ0

G(Tξ), which, for each x ∈ BH , restricts to a generator in Ẽ∗
H(Tξx). Such a gen-

erator will be a product of a generator γ ∈ Ẽ∗
H(Tξx) and a unit in E∗

H . If ξ : P → B
is a principal (G,Π(V ))-bundle, then an E-orientation of ξ is an E-orientation of
the associated GF(SV )-fibration S(ξ).

Remark 4.3. Note that if for some x ∈ BH , Tξx is equivalent to SVλ , then an
E-orientation for ξ cannot exist unless E−Vλ

H contains a unit.
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If µ is an E-orientation of ξ, then an easy Mayer-Vietoris argument shows that
Ẽ∗

G(Tξ) is a free EG(B)-module generated by µ.

In order to speak of stable E-oriented GF(S)-fibrations, we need a way to induce
an E-orientation of ΣV ξ : P × SV → B from an E-orientation of ξ : P → B, where
V comes equipped with a map ρ : G → Π(V ). This can be done when E is a periodic
ring G-spectrum, which we will define in 4.5. Equivariant KO-theory, with its Bott
classes, is the motivating example.

In the following definition, let I′ be an additive subcollection of I (e.g. those
spaces of dimension divisible by 8), let Π be a group-valued I-functor (e.g. Spin),
and let E = EG be a commutative unital ring G-spectrum, (e.g. KOG).

Definition 4.4. A collection of periodicity classes on E is a collection b of elements

bVλ ∈ Ẽ0
G(G+ ∧Hλ

SVλ) ∼= Ẽ0
Hλ

(SVλ),

for each V in I′ and λ ∈ ΛΠ(V ). When λ is understood, we write bV for bVλ . These
classes must satisfy the following two conditions.

1) The class bVλ generates Ẽ0
Hλ

(SVλ) as a free EHλ∗ -module.

2) If V,W ∈ I′,H 6 G,λ ∈ ΛΠ
H(V ), µ ∈ ΛΠ

H(W ), then the multiplication

ẼH(SVλ)⊗ ẼH(SWµ) → ẼH(SVλ ∧ SWµ) ∼= ẼH(SVλ⊕Wµ)

takes bVλ ⊗ bWµ to bVλ⊕Wµ .

We now define periodic ring G-spectra (see [18, II.3.11] for a nonequivariant
analogue).

Definition 4.5. A (unital) periodic ring G-spectrum (E, b) is a (unital) commuta-
tive ring G-spectrum E, equipped with a collection of periodicity maps b.

Now let Z = Ω∞E, where E is a periodic ring G-spectrum. We construct a Z-
orientation functor FV E so that an E-orientation on a GF(SV )-fibration can be
interpreted as an FV E-structure, and thus classified. First, notice that

π0(FHλ
(SVλ , Ω∞E)) ∼= Ẽ0

Hλ
(SVλ).

By condition (1) of 4.4, this is a free EHλ
0 -module.

Construction 4.6. Let FV E(λ) be the subspace of FHλ
(SVλ , Ω∞E) consisting of

all components of generators in Ẽ0
Hλ

(SVλ). A map θ : λ → µ in A(SV ) induces a
map

Tθ∗ : FG(G+ ∧Hµ SVµ ,Ω∞E) → FG(G+ ∧Hλ
SVλ , Ω∞E).

Since θ̄ is a G-equivalence, this map restricts to a map FV E(µ) → FV E(λ).

The proof that (FV E, Ω∞E) is admissible is formally identical to the proof in
[17, 10.6]. The following now follows from Proposition 3.9.

Proposition 4.7. The space BG(SV ;E) := BG(SV ; FV E) classifies E-oriented
GF(SV )-fibrations.
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Let µ : Ω∞E∧Ω∞E → Ω∞E be the multiplication map. Suppose λ ∈ ΛΠ
H(V ), µ ∈

ΛΠ
H(W ). By condition (2) of 4.4, the map

FH(SVλ ,Ω∞E)× FH(SWµ , Ω∞E)
µ∗◦∧ // FH(SVλ ∧ SWµ , Ω∞E)

restricts to a map

FV E(λ)× FW E(µ) → FV⊕W (λ ∧ µ).

Construction 3.14 yields maps representing fiberwise smash products

BG(SV ; E)×BG(SW ; E) → BG(SV⊕W ; E).

As with bundles, we can construct classifying spaces for equivariant stable E-
oriented spherical fibrations. Suppose V is a G-representation in V (see 2.14 above).
The action map ρ : G → Π(V ) endows A(SV ) with a distinguished object. More-
over, a choice of G-map SV → Ω∞E representing the class of bV determines a
distinguished point in FV E(ρ). We thus obtain a G-fixed basepoint for BG(SV ;E).
The fiberwise smash product maps above make BG(S(−); E) an hV-functor.

Definition 4.8. Let BG(S;E) = BG(SV;E) for some complete sequence V.

We now make a few remarks on the fiber of the map which represents forgetting
the orientation.

Remark 4.9. We can identify the fiber of the map q : BG(S; E) → BG(S) using 3.11.
If V ∈ V, then j∗FV E is the functor OG → U taking G/H to the components in
FH(SV , Ω∞E)H representing units in ẼH(SV ). Thus, the fiber of q is the colimit
of the spaces C(j∗FViE) for any complete sequence Vi. The map j∗FViE(G/H) →
j∗FVi+1E(G/H) associated to an inclusion Vi ⊆ Vi+1 is induced by taking H-fixed
points of the G-map

F (SVi , Ω∞E) → F (SVi ∧ SVi+1−Vi ,Ω∞E) ∼= F (SVi+1 , Ω∞E),

where the first map is induced from the periodicity class of Vi+1 − Vi and the
multiplication µ. This is an equivalence by periodicity (4.4). Therefore, the fiber of
q is C(j∗FViE) for any Vi. By Remark 3.12, since FV E(∗) consists of the homotopy
units of Ω∞E, which we denote Ω∞E×, there is a canonical inclusion ι : Fib(q) →
Ω∞E×.

Remark 4.10. The inclusion τ : Fib(q) → BG(S;E) has the following geometric
interpretation. If X is a G-space and α ∈ EG(X) restricts to a unit in EH(∗) for
every H-fixed point ∗ ∈ X, then we may represent α by a map α̃ : X → Fib(q).
If bV ∈ ẼG(SV ) is the periodicity class for V ∈ V, then we have an orientation
bV α ∈ ẼG(ΣV X+), of the trivial fibration over X with fiber SV . The map τ ◦ α̃ :
X → BG(S;E) represents the trivial fibration with orientation bV α.

We now show how a collection of self-maps Ψ of Ω∞E satisfying certain con-
ditions induces a map c(Ψ) from BG(S; E) to Ω∞E×. The map c(Ψ) is called the
cannibalistic class associated to Ψ. Let V′ be the full subcategory of V consisting of
representations whose underlying inner product spaces are in I′.
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Definition 4.11. A collection Ψ of self-maps ψV of Ω∞E, one for each V ∈ V′,
is called exponential if the induced map ψV ∗ : ẼG(SV ) → ẼG(SV ) takes bV to bV ,
and the following diagram commutes up to homotopy, where V and W are in V′.

Ω∞E ∧ Ω∞E
µ //

ψV ∧ψW

²²

Ω∞E

ψV⊕W

²²
Ω∞E ∧ Ω∞E

µ // Ω∞E.

Construction 4.12. Using the above diagram, it is easy to check that for any
V ∈ V′, ψV induces a natural transformation FV E → FV E, and hence a self-map
ψV ∗ of BG(SV ; E). The diagram and the condition that ψV ∗ preserve the periodicity
class together imply that these maps stabilize to give a self-map Ψ∗ of BG(S; E).

The space BG(S; E) has the structure of a weak grouplike G-Hopf space (see
Section 11), and therefore has a weak homotopy inverse map by 11.5, so that we
may apply Ψ∗ − 1 to BG(S; E). Since Ψ∗ only sees the orientation of a spherical
fibration, q◦(Ψ∗−1) is null-homotopic when restricted to finite skeleta of BG(S;E).
We may choose null-homotopies and construct a map c(Ψ) : BG(S;E) → Fib(q)
restricting on finite skeleta to a lift of Ψ∗ − 1. Recall from 4.9 that Fib(q) is a
subspace of Ω∞E×. We refer to the composite BG(S; E) → Fib(q) ⊆ Ω∞E× as
c(Ψ) as well, relying on context to resolve the ambiguity.

Remark 4.13. Using Remark 4.10, we obtain the following geometric interpretation
for c(Ψ). Suppose f : X → BG(S;E) classifies a stable E-oriented GF(S)-fibration,
represented by a GF(SW )-fibration ξ : P → X and a class µ ∈ ẼG(Tξ). The map
c(Ψ) ◦ f : X → Fib(q) ⊆ Ω∞E× classifies an element α ∈ EG(X) (restricting to a
unit in EH(∗) for each ∗ ∈ XH) such that for some V ∈ V′, bV ψW (µ) = (bV α)µ in
ẼG(ΣV Tξ). Since multiplication by bV is an equivalence, we have ψW (µ) = αµ in
ẼG(Tξ). That is, α = ψW (µ)/µ. (This is independent of W , since by exponentiality
ψV⊕W (bV µ)/bV µ = ψV (bV )ψW (µ)/bV µ = ψW (µ)/µ.) It follows from 4.10 that the
composite c(ψ) ◦ τ : Fib(q) → Fib(q) classifies ψ{0}/1, when we regard Fib(q) as a
subspace of Ω∞E×.

5. Equivariant real and complex K-theory

In this section, we show that the equivariant ring spectrum KO is periodic, and
that stable (G,Spin)-bundles have KO-orientations. As observed in the last section,
these constructions are needed to define cannibalistic classes. We then investigate
some relationships between KO-theory and complex K-theory, which will be com-
putationally useful, since complex K-theory is so much more well-behaved than
KO-theory. Throughout, let I′ be the collection of complex inner product spaces
V with complex dimension divisible by 4. More details on Clifford algebras can be
found in [7].

To any (real) inner product space V , there is an associated Clifford algebra CV ,
multiplicatively generated by a unit 1 and an orthonormal basis {e1, e2, · · · , en} of
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V , subject to the relations

e2
i = −1, eiej = −ejei i 6= j.

The Clifford algebra has a Z/2-grading, with subspaces C0
V and C1

V additively gen-
erated by even and odd products of generators respectively. The group Spin(V ) is a
subgroup of the units of C0

V , giving CV a Spin(V )-action (conjugation) compatible
with the algebra structure. Moreover, any CV -module inherits a Spin(V )-action
compatible with the module structure.

If {e1, e2, · · · , e8n} is an orthonormal basis of V ∈ I′, there is a central element
ω = e1e2 · · · e8n in C0

V , depending only on the orientation of the basis. Thus, to
each V ∈ I′ is associated a canonical choice of ω ∈ C0

V , since the underlying real
inner product space of V has a canonical orientation. One can show that there are
two irreducible graded CV -modules; ω acts by the scalar +1 on one of these and
−1 on the other. Let λV = λ0

V ⊕ λ1
V be the module on which ω acts as +1.

A graded CV -module gives rise to a Spin(V )-bundle over SV . In brief, let B(V )
and S(V ) be the unit ball and unit sphere in V . Then we have a map of Spin(V )-
equivariant bundles over B(V ), restricting to an isomorphism over S(V ):

B(V )× λ1
V → B(V )× λ0

V

(v, λ) ½ (v, v · λ).

By [7, §11], such data determines a class

bV ∈ KOSpin(V )(B(V ), S(V )) ∼= K̃OSpin(V )(SV ).

Given a homomorphism λ : H → Spin(V ), the restriction of bV under λ is the Bott
class bVλ ∈ K̃OH(SVλ).

Proposition 5.1. The maps bVλ form a collection of periodicity maps for KO.

Proof. The first condition of Definition 4.4 follows by equivariant Bott periodicity
(see [6, 6.1]). For condition (ii), suppose V and W are in I′. Let

c∗ : K̃OSpin(V⊕W )(SV⊕W ) → K̃OSpin(V )×Spin(W )(SV⊕W )

be induced by c : Spin(V ) × Spin(W ) → Spin(V ⊕ W ). It suffices to show that
c∗(bV⊕W ) = bV ·bW . The element bV⊕W is obtained from the CV⊕W module λV⊕W ,
while bV · bW is obtained from the graded tensor product λV ⊗̃λW , which may be
viewed as a CV⊕W module using the canonical isomorphism of algebras CV⊕W →
CV ⊗̃CW (cf. [7, §6, 10, 11]). By a dimension argument, λV ⊗̃λW is irreducible, and
since ω acts on it by the scalar +1, it is isomorphic as a CV⊕W module to λV⊕W .

We next show that Spin bundles have canonical KO-orientations. This is most
easily seen as a consequence of equivariant Bott periodicity. Let V ∈ I′. Asso-
ciated to the projection π : G × Spin(V ) → Spin(V ) is a Bott class bVπ in
K̃OG×Spin(V )(SVπ ). If ξ : P → B is a principal (G, Spin(V ))-bundle, then by
Bott periodicity [6, 6.1], multiplication by [bVπ ] induces an isomorphism

KOG×Spin(V )(P ) → K̃OG×Spin(V )(P+ ∧ SVπ ).
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But P has a free Spin(V )-action with quotient B, and P+ ∧ SVπ has a Spin(V )-
action, free away from the basepoint, with quotient Tξ. So, the above map induces
an isomorphism

Φξ : KOG(B) → K̃OG(Tξ),

natural in (G,Spin(V ))-bundles.

Definition 5.2. For any (G,Spin(V ))-bundle ξ : P → B, let µξ = Φξ(1).

To show that µξ is an orientation of ξ, we will need the following lemma.

Lemma 5.3. Φpλ(1) = [bVλ ].

Proof. Let λ′ : H → G × Spin(V ) be given by λ′(h) = (h, λ(h)). The element
[1]⊗ [bVπ ] is mapped under the two composites of the commutative diagram below
to the cited elements. We write Π(V ) for Spin(V ) in the following diagram.

KOG×Π(V )(G×H Π(V )λ)⊗ K̃OG×Π(V )(SVπ )

⊗
²²

(λ′)∗ // KOH(∗)⊗ K̃OH(SVλ)

⊗
²²

K̃OG×Π(V )((G×H Π(V )λ)+ ∧ SVπ )
(λ′)∗ // K̃OH(SVλ).

Proposition 5.4. µξ is a KO-orientation of ξ.

Proof. Any x ∈ BH determines an orbit inclusion x : G/H → B, and ξ restricts to
pλ over G/H, for some λ ∈ ΛSpin

H (V ). By naturality, µξ restricts to µpλ , which is
bVλ by Lemma 5.3. The result follows by Definitions 4.2 and 4.4(1).

Equivariant complex K-theory is also periodic. As in the nonequivariant setting,
it is often simplest to perform computations in K-theory, and then deduce results
in KO-theory. To this end, we will need a formal comparison between real and
complex Bott classes.

First, let us recall the construction of the complex Bott classes. Given a complex
inner product space V of complex dimension n, we have a U(V )-equivariant sequence
of bundles over B(V ), acyclic over S(V ):

B(V )× Λ0(V ) d0
// B(V )× Λ1(V )

d1 // · · · dn−1
// B(V )× Λn(V ).

Here Λi(V ) is the ith exterior power of V , and di(v, w) = (v, v∧w). Such a sequence
determines a class bV

c ∈ K̃U(V )(SV ) whose restriction under λ : H → U(V ) is the
complex Bott class bVλ

c , a generator of the free R(H)-module K̃H(SVλ) (see [6, §4]).
Just as real Bott classes yield KO-orientations for Spin bundles, so too complex

Bott classes endow unitary bundles with K-orientations. If V is a complex inner
product space, then there is a complex Bott class bVπ

c associated to the projection
π : G × U(V ) → U(V ). If ζ : P → B is a (G,U(V ))-bundle, then, as above,
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multiplication by bVπ
c induces an isomorphism Φζ

c : KG(B) → K̃G(Tζ). We define
µζ

c to be Φζ
c(1). Then µζ

c is a K-orientation of ζ.
Now suppose that V ∈ I′, meaning the complex dimension of V is divisible by 4.

We can associate to any λ : G → SU(V ) a complex Bott class bVλ
c and a real Bott

class bVλ , where we use λ to denote both compositions G → SU(V ) ⊆ U(V ) and
G → SU(V ) ⊆ Spin(V ). We aim to prove that the complexification of bVλ is bVλ

c .
We will need the following construction.

Construction 5.5. Within the group of units of the complex Clifford algebra
CV ⊗ C sits a subgroup Spinc(V ), isomorphic to Spin(V ) ×Z/2 U(1) (see [7]). Let
h : Spin(V ) → Spinc(V ) be the inclusion, and let l : U(V ) → SO(V )×U(1) be the
product of the standard inclusion and the determinant. Let

π : Spinc(V ) ∼= Spin(V )×Z/2 U(1) → SO(V )× U(1)

be the Z/2-covering given by π(f, z) = (σ(f), z2), where σ is the projection of
Spin(V ) on SO(V ). By elementary covering space theory, there is a map l̃ : U(V ) →
Spinc(V ) lifting l, and the following diagram commutes:

SU(V ) i //

²²

Spin(V )

h

²²
U(V ) l̃ // Spinc(V ).

Let c denote complexification. We now have a commutative diagram

K̃OSpinc(V )(SV ) l̃∗ //

c

((RRRRRRRRRRR

h∗

²²

K̃OU(V )(SV )
c

((QQQQQQQQQQ

²²

K̃Spinc(V )(SV ) l̃∗ //

h∗

²²

K̃U(V )(SV )

²²

K̃OSpin(V )(SV ) i∗ //

c

((RRRRRRRRRRR
K̃OSU(V )(SV )

c

((QQQQQQQQQQ

K̃Spin(V )(SV ) i∗ // K̃SU(V )(SV ).

Lemma 5.6. There exists an element β ∈ K̃Spinc(V )(SV ) satisfying h∗(β) = c(bV )
and l̃∗(β) = bV

c .

Proof. Let λc
V = λV ⊗ C. This can be considered as a CV ⊗ C-module or as the

complexification of a CV -module. As such, it has a Spin(V ) and a Spinc(V )-action,
compatible under the inclusion h. Consider the following map of trivial bundles over
B(V ), restricting to an isomorphism over S(V ):

B(V )× (λc
V )1 → B(V )× (λc

V )0
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(v, λ) ½ (v, v · λ).

This map can be viewed as a map of Spinc(V )-equivariant complex bundles, thus
determining a class β in K̃Spinc(V )(SV ). It can also be viewed as the complexification
of the map of Spin(V )-bundles determining the class bV , and thus determines the
class c(bV ) in K̃Spin(V )(SV ). Therefore, c(bV ) = h∗(β).

Next, there is an alternative construction for the complex Bott class bV
c , presented

in [7, §11]. Let Λ∗(V ) = ⊕n
j=0Λ

j(V ) be the exterior algebra of V , with Z/2 grading
given by Λ(V )0 = ⊕Λ2j(V ) and Λ(V )1 = ⊕Λ2j+1(V ) and with inner product
induced by that on V . For v ∈ V , let dv : Λ∗(V ) → Λ∗(V ) be given by dv(w) = v∧w,
and let δv be its adjoint. The maps

V ⊗R Λ∗(V ) → Λ∗(V )

v ⊗ w ½ (dv − δv)(w)

make Λ∗(V ) into a graded module over CV ⊗ C (see [7, 5.10]). Now consider the
following map of trivial complex bundles over B(V ), restricting to an isomorphism
over S(V ),

B(V )× Λ(V )1 → B(V )× Λ(V )0

(v, w) ½ (v, (dv − δv)(w)).

On the one hand, we may view this as a map of Spinc(V )-bundles. A dimension
count shows that Λ∗(V ) is irreducible, and it is easy to check that the element ω acts
by the scalar +1 ([7, 5.11]), so that Λ∗(V ) is isomorphic to λc

V as a graded (CV ⊗C)-
module. Thus, the map above determines the element β. On the other hand, by
restricting the Spinc(V )-action along l̃ to give a U(V )-action (which coincides with
the usual U(V )-action, by [7, §5]), we have a map of U(V )-equivariant bundles. This
map determines the class bV

c ∈ K̃U(V )(SV ) (see [7, §9, 11.6]). Therefore, l̃∗(β) = bV
c ,

as needed.

From this and an easy diagram chase, we have the following proposition.

Proposition 5.7. The complexification of bVλ is bVλ
c .

Corollary 5.8. Suppose V has complex dimension divisible by 4, and ζ is a
(G,SU(V ))-bundle with underlying (G,Spin(V ))-bundle rζ. Then cµrζ = µζ

c .

6. Change of Fiber

In Section 7, we will define a map k̂p : BG(S, E) → BG(Ŝp, Êp), which will, by
appeal to the classification theorem, give a construction for fiberwise completion of
E-oriented equivariant spherical fibrations. Some of the ideas behind this construc-
tion are inspired by [20], in which fiberwise completions of nonequivariant fibrations
are constructed. Moreover, we will need these fiberwise completions in Section 9,
since the equivariant Adams conjecture, in its most natural interpretation, involves
the fiberwise completion of equivariant spherical fibrations. But to prepare lay the
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groundwork for this construction, we work more generally in this section, and con-
struct maps of classifying spaces associated to general “change of fiber,” of which
completion is an example.

The general idea is as follows. Suppose that for each fiber F 1
λ in a set of fibers F1,

we have a fiber F 2
λ in another set of fibers F2, and an Hλ-map lλ : F 1

λ → F 2
λ . Suppose

also that the restriction map l∗λ : F (F 2
λ , F 2

µ) → F (F 1
λ , F 2

µ) is a weak Hλ-equivalence,
so that, in particular, any Hλ-map F 1

λ → F 1
µ gives rise to an Hλ-map F 2

λ → F 2
µ .

Then, we can define a category B(F12) together with functors Φi : B(F12) → A(Fi)
(i = 1, 2), so that Φ1 is a weak equivalence on all

morphism spaces and a bijection on objects. Taking classifying spaces and in-
verting the weak equivalence will then yield a map BA(F1) → BA(F2).

The objects in B(F12) will be cofibration cubes of based G-spaces. We proceed
therefore to a discussion of these, listing some of their useful properties.

Given a finite set S, let P(S) be the poset of subsets of S. An S-cube of based
spaces is a functor X : P(S) → T. If S = {1, 2, · · · , n}, then an S-cube is sometimes
called an n-cube. If Z is a based space, X ∧ Z is the S-cube obtained by smashing
each space X(U) with Z. A map of S-cubes is a natural transformation. Two maps
f, g : X → Y are homotopic if there is a map h : X ∧ I+ → Y restricting to f and g
on the endpoints of I. A map f : X → Y is a homotopy equivalence if there exists
a homotopy inverse g : Y → X, and a level equivalence if fU : X(U) → Y(U) is a
homotopy equivalence for each U ⊆ S.

A map f : X → Y of S-cubes can be thought of as an S ∪ {t}-cube (X → Y).
Namely, if t ∈ U , let (X → Y)(U) = Y(U −{t}); otherwise, let (X → Y)(U) = X(U).
The maps fU then determine the structure maps of X → Y.

The set of all maps f : X → Y, denoted FS(X, Y), is contained in the product
over all U ⊆ S of the spaces F (X(U), Y(U)), and inherits the subspace topology.

For U ⊂ T ⊂ S, denote the T − U -cube {V → X(V ∪ U) : V ⊂ T − U} by ∂T
UX.

This is a face of X. Denote ∂T
∅ X by ∂T X and ∂S

UX by ∂UX.
We say that X is a cofibration cube if for every T ⊂ S, the map

colim{X(U) : U ( T} → X(T )

is a cofibration. A map f : X → Y of cofibration S-cubes is a cofibration if (X → Y)
is a cofibration cube. It’s easy to check by induction that a cofibration satisfies the
obvious version of the homotopy lifting property. Lemma 6.1 below follows from the
standard adjunction, and Lemma 6.2 by induction on the size of the cubes.

Lemma 6.1. If f : X → Y is a cofibration, then for any S-cube Z, the restriction
map f∗ : FS(Y,Z) → FS(X, Z) is a fibration.

Lemma 6.2. A cofibration that is a level equivalence is a homotopy equivalence.

Now suppose S is ordered. A cofibration S-cube X is monotonic if each map
X(T ) → X(U) induced by an inclusion T ⊆ U with max(T ) = max(U) is a homo-
topy equivalence; here max(T ) is the largest element of T ⊆ S. We say X is strongly
monotonic if all maps X(T ) → X(U) induced by inclusions T ⊆ U are homotopy
equivalences. We observe that if s = max(S) and X is monotonic, then ∂{s}X is
strongly monotonic.
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Lemma 6.3. Suppose X and Y are cofibration S-cubes, with Y strongly monotonic.
The map FS(X, Y) → F (X(S), Y(S)) (f → fS) is a homotopy equivalence.

Proof. Let T = S − {s} for some s ∈ S. Let iX : ∂T X → ∂{s}X be the evident
cofibration of T -cubes, and similarly define iY. Observe that the following is a pull-
back diagram:

FS(X,Y)
ρ //

²²

FT (∂{s}X, ∂{s}Y)

i∗X
²²

FT (∂T X, ∂T Y)
iY∗

// FT (∂T X, ∂{s}Y).

By 6.1, i∗X is a fibration. By 6.2, iY∗ is a homotopy equivalence. So, the restriction
ρ is an equivalence, and the lemma follows by induction on the size of S.

Proposition 6.4. Suppose X and Y are cofibration S-cubes, with Y monotonic. Let
s = max(S), and let T = S − {s}. If the map

F (X(S), Y(S)) → F (X(T ),Y(S))

induced by X(T ) → X(S) is a weak equivalence, then the restriction map

FS(X, Y) → FT (∂T X, ∂T Y)

is a fibration and a weak equivalence.

Proof. Recycling notation from 6.3, consider the following commutative diagram:

FS(X,Y)

²²

// FT (∂{s}X, ∂{s}Y)

i∗X
²²

// F (X(S), Y(S))

²²
FT (∂T X, ∂T Y)

iY∗
// FT (∂T X, ∂{s}Y) // F (X(T ),Y(S)).

The left square is a pull-back square. The map i∗X is a fibration by 6.1. Using the
hypothesis and Lemma 6.3, we see that i∗X is also a weak equivalence, which yields
the proposition.

Remark 6.5. Let an S-cube of based G-spaces be a functor P(S) → GT for some
group G. The equivariant analogue of Proposition 6.4 follows by a similar proof.

We next turn to defining maps of fibers and orientation functors, and constructing
the associated maps of classifying spaces. We will give maps of the triples used in
defining the classifying spaces, and then apply the bar construction.

Definition 6.6. If F1 and F2 are sets of fibers indexed on Λ1 and Λ2, a map of
fibers l : F1 → F2 is a map of sets λ → λ′ (where Hλ = Hλ′ for each λ ∈ Λ1), along
with a set of equivariant maps, lλ : F 1

λ → F 2
λ′ . We will often suppress the prime

in the notation. If Y i is a Zi orientation functor on Fi (i = 1, 2), then a map of
orientation functors lZ : Y 1 → Y 2 is a map lZ : Z1 → Z2.
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For each λ ∈ Λ1, let F 12
λ be the reduced mapping cylinder of lλ, let F ∅λ be a

point, and let αλ : F 1
λ → F 12

λ and βλ : F 2
λ → F 12

λ be the evident cofibrations. Then
we have monotonic cofibration 2-cubes F12

λ of Hλ-spaces

F ∅λ
//

²²

F 1
λ

αλ

²²
F 2

λ βλ

// F 12
λ .

When g−1Kg 6 Hλ, we write g∗F12
λ for the cube of K-spaces obtained by applying

g∗ to each space in the cube. Likewise, let Z12 be the reduced mapping cylinder of
lZ , let Z∅ be a point, and let αZ : Z1 → Z12 and βZ : Z2 → Z12 be the evident
cofibrations. Then we have a monotonic cofibration 2-cube Z12 of G-spaces as above.

Let B(F12) be the category whose objects are the cofibration 2-cubes F12
λ , and

whose maps θ : F12
λ → F12

µ are equivalence classes [g, θ̄], where g−1Hλg 6 Hµ and
θ̄ : F12

λ → g∗F12
µ is a weak equivalence of cofibration 2-cubes of Hλ-spaces, and we

identify [gk, θ̄] with [g, kθ̄] for k ∈ Hµ (cf 2.3). Let Y 12(F12
λ ) be the space of all

maps of cofibration 2-cubes of Hλ-spaces θ : F12
λ → Z12 such that θ{1} ∈ Y 1(λ)

and θ{2} ∈ Y 2(λ). This determines a functor Y 12 : B(F12) → U. Finally, let O :
B(F12) → GU be the functor taking F12

λ to G/Hλ and taking a map (g, θ̄) to left
multiplication by g.

For i = 1, 2, we have functors Φi : B(F12) → A(Fi) taking the object F12
λ

to pi
λ, and taking a map [g, θ̄] to [g, θ̄{i}]. We also have natural transformations

χi : Y 12 → Y i ◦ Φi taking θ to θ{i}. Finally, note that O ◦ Φi = O. We want Φ1 to
give a weak equivalence on all morphism spaces, and χ1 to give a weak equivalence
on all objects in B(F12). For this, we need the following condition.

Definition 6.7. A map of fibers l is good if for any pair λ, µ ∈ Λ1 with Hλ = Hµ,
the restriction map l∗λ : F (F 2

λ , F 2
µ) → F (F 1

λ , F 2
µ) is a weak Hλ-equivalence. A map

of orientation functors lZ : Z1 → Z2 is good if, for any λ ∈ Λ1, the restriction map
l∗λ : F (F 2

λ , Z2) → F (F 1
λ , Z2) is a weak Hλ-equivalence and the map

[l∗λ]−1 ◦ [lZ∗] : [F 1
λ , Z1]∗Hλ

→ [F 2
λ , Z2]∗Hλ

takes the components of Y 1(λ) to components in Y 2(λ).

Lemma 6.8. If l and lZ are good, then Φ1 is a weak equivalence and fibration on
all morphism spaces, and χ1 is a weak equivalence for all objects in B(F12).

Proof. The following homotopy commutative diagram, in which all horizontal ar-
rows are equivalences by monotonicity and the right arrow is an equivalence by
hypothesis, implies that we may apply proposition 6.4 to attain the first statement.

F (F 12
λ , F 12

µ ) ' //

²²

F (F 2
λ , F 12

µ ) F (F 2
λ , F 2

µ)'oo

'
²²

F (F 1
λ , F 12

µ ) F (F 1
λ , F 2

µ).'
oo
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By the same argument, the space of maps from F12
λ to Z12 is weakly Hλ-equivalent

(by restriction) to the space of maps from F 1
λ to Z1. Since [l∗λ]−1 ◦ [lZ ] takes com-

ponents of Y 1(λ) to components in Y 2(λ), it follows that any map from F12
λ to Z12

restricting to a map in Y 1(λ) must itself be in Y 12(F12
λ ), so that Y 12(F12

λ ) restricts
by a weak Hλ-equivalence to Y 1(λ).

It follows that if l : F1 → F2 and lZ : Y 1 → Y 2 are good, then the map

(Φ1, χ1)∗ : B(Y 12,B(F12),O) → B(Y 1,A(F1), O)

is an equivalence.

Definition 6.9. The change of fiber map l∗ associated to a pair (l, lZ) as above is
the map obtained by inverting the equivalence in the diagram below:

B(Y 1,A(F1), O) B(Y 12, B(F12), O)
(Φ1,χ1)∗
'

oo (Φ2,χ2)∗ // B(Y 2,A(F2), O).

The next proposition shows functoriality of change of fiber.

Proposition 6.10. Suppose l : F1 → F2, k : F2 → F3 and k ◦ l : F1 → F3 are good
maps of fibers, and lZ : Y 1 → Y 2, kZ : Y 2 → Y 3, and kZ ◦ lZ : Y 1 → Y 3 are good
maps of orientiation functors. Then k∗ ◦ l∗ is homotopic to (k ◦ l)∗.

Proof. For each λ ∈ Λ1, let F 123
λ be the reduced mapping cylinder of the map

F 12
λ → F 3

λ , given by composing the projection F 12
λ → F 2

λ with kλ. The cofibrations
from F 1

λ and F 2
λ to F 12

λ induce cofibrations from F 13
λ and F 23

λ to F 123
λ . Now the

spaces FU
λ for U ⊆ {1, 2, 3} determine a monotonic cofibration 3-cube, F123

λ . We
define the cofibration cube Z123 similarly. Also, we define the category C(F123) and
the functors Y 123 : C(F123) → U in analogy with B(F12) and Y 12.

Restriction of 3-cubes to faces yields functors Φ12,Φ13, and Φ23 from C(F123)
to B(F12), B(F13), and B(F23) as well as natural transformations χ12, χ13, and χ23

from Y 123 to Y 12, Y 13, and Y 23. The argument used in Lemma 6.8 shows that
Φ12 is a weak equivalence and fibration on all morphism spaces, and χ12 is a weak
equivalence for all objects in B(F12). Now the result follows by chasing the following
commutative diagram

B(Y 13, B(F13), O)

'

¦¦ ¼¼

B(Y 123, C(F123), O)
'

uukkkkkkkkk
))SSSSSSSSS

'
OO

B(Y 12, B(F12), O)
'

vvllllllll
))SSSSSSSSS B(Y 23, B(F23), O)

'
uukkkkkkkkk

((RRRRRRRR

B(Y 1, A(F1), O) B(Y 2, A(F2), O) B(Y 3, A(F3), O).

We can use this result to show that change of fiber is homotopy invariant. In the
proposition below, if F1 is a set of fibers, then F1 ∧ I+ denotes the set {F 1

λ ∧ I+}.
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For t ∈ I, we have maps of fibers it : F1 → F1 ∧ I+. Similarly, if Y 1 is a Z1-
orientation functor on F1, then (Y 1 ∧ I+)(λ) denotes the space of all Hλ-maps
G : F 1

λ ∧ I+ → Z1 ∧ I+ such that G ◦ i0 is homotopic to i0 ◦ g for some Hλ-map
g : F 1

λ → Z1 in Y 1(λ). This determines a Z1 ∧ I+-orientation functor on F1 ∧ I+,
and we have good maps of orientation functors (iZ)t : Y 1 → Y 1 ∧ I+.

Proposition 6.11. Suppose that l : F1 ∧ I+ → F3 is a good map of fibers, and
lZ : Y 1 ∧ I+ → Y 3 is a good map of orientation functors. Then the change of fiber
maps associated to the pairs (l ◦ i0, lZ ◦ iZ0) and (l ◦ i1, lZ ◦ iZ1) are homotopic.

Proof. Let F2 = F1 ∧ I+ and let Y 2 = Y 1 ∧ I+. By functoriality (6.10), it suffices
to show that (i0)∗ is homotopic to (i1)∗. To see this, we construct a map

i∗ : B(Y 1, A(F1), O) → B(Y 2, A(F2),O)

which we claim is homotopic to (i0)∗ and (i1)∗. Let Φ : A(F1) → A(F2) be the
functor taking λ to λ′ and extending maps by the identity along the interval. Let
χ : Y 1 → Y 2 ◦ Φ be the natural transformation extending maps by the identity
along the interval. Let i∗ be induced by the pair (Φ, χ).

We show that the functors Φ2,Φ ◦ Φ1 : B(F12) → A(F2), which coincide on
objects, are homotopic on morphism spaces. A similar argument shows that the
natural transformations χ2 : Y 12 → Y 2 ◦Φ2 and χ ◦ χ1 : Y 12 → Y 2 ◦Φ ◦Φ1, whose
source and target coincide on objects, are homotopic on all such objects. Thus,
i∗ ∼ (i1)∗, and a similar argument shows i∗ ∼ (i0)∗.

Since F 2
λ = F 1

λ ∧ [0, 1]+, we have F 12
λ = F 12

λ ∧ [0, 2]+. Let µt(s) = (2− s)t+ s, let
νt(s) = (s− 1)(t− 1) + 1, and let ξ(s) = min(1, s). Given a map θ̄ : F12

λ → g∗F12
µ ,

we have maps

F 2
λ = F 1

λ ∧ [0, 1]+ → g∗F 1
µ ∧ [0, 1]+ = g∗F 2

µ

given by (id×ξ) ◦ θ̄{1,2} ◦ (id×µt) for 0 6 t 6 1 and θ̄{1} × νt for 1 6 t 6 2. This
gives the necessary homotopy

Φ2 ' Φ ◦ Φ1 : B(F12)(λ, µ) → A(F2)(λ, µ).

7. Fiberwise Completion

We now specialize the results of the previous section to completions. Recall from
[21] that a nilpotent space X is p-complete if πn(XH) is p-complete for all H 6 G,
n > 1, and that completion is a map γ from X to a p-complete space Y which is
initial (in the homotopy category) among all such maps. If F is a set of fibers such
that each Fλ is a nilpotent Hλ-space, we let F̂p be the set of fibers {F̂λp}.

When F = SV , the spaces SVλ are not all nilpotent Hλ-spaces, as they are not all
G-connected. We therefore let Λ̃Π

H(V ) ⊂ ΛΠ
H(V ) be the subset of all λ : H → Π(V )

such that Vλ has a trivial summand, and we let Λ̃Π(V ) be the union over all H 6 G
of the sets Λ̃Π

H(V ). Let S̃V denote the corresponding set of fibers. When λ ∈ Λ̃Π(V ),
all the fixed point spaces of SVλ are spheres of dimension at least 1 and hence
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nilpotent. Therefore, we can complete each fiber to obtain a set of fibers ŜV
p , and

hence a classifying space BG(ŜV
p ) for GF(ŜV

p )-fibrations.

Remark 7.1. The inclusion BG(S̃V ) → BG(SV ) is not in general an equivalence. For
example, πG

0 (BG(SV )) is the set of equivalence classes of elements in ΛΠ
G(V ), where

λ ∼ µ when SVλ 'G SVµ , while πG
0 (BG(S̃V )) is the corresponding set for elements

in Λ̃Π
G(V ). This distinction is lost after stabilization.

We can also complete a G-spectrum E, at any ideal I in the Burnside ring A(G)
(cf. [14]), but we will only be interested in the ideal generated by a prime p. For
a finite G-CW-complex X, the Êp-cohomology of X is the p-completion of the
E-cohomology of X; in general we will therefore let ẼG(X)p̂ denote the reduced
Êp-cohomology of any space X; this represents an abuse of notation only when X is
not finite. Moreover, the G-connected cover of Ω∞E, (Ω∞E)0, is p-complete, since
all its homotopy groups are complete. Since [X,Y ]G = [X, Y0]G for any G-connected
space X, it follows easily that the map k∗ : Ẽ∗

G(X̂p) → Ẽ∗
G(X) is an equivalence

whenever E is p-complete.
Completion at p preserves unital commutative ring spectra. The product struc-

ture, for example, is given by

Êp ∧ Êp
k // (Êp ∧ Êp)p̂ (E ∧ E)p̂

'oo µp̂ // Êp .

If E is periodic, then the image of the elements bVλ in ẼHλ
(SVλ)p̂, denoted b̂Vλ

p ,
determine a collection of periodicity classes for Êp.

Now suppose E is periodic, and let Z = Ω∞Êp. We can then construct a Z-
orientation functor FV Êp on ŜV

p . As in Construction 4.6, we let FV Êp(λ) be the sub-
space of FHλ

(ŜVλ
p , Ω∞Êp) consisting of all components of generators in Ẽ0

Hλ
(ŜVλ

p )p̂.
An Êp-orientation of a GF(ŜV

p )-fibration can be interpreted as an FV Êp-structure.
Then Êp-oriented GF(ŜV

p )-fibrations are classified by the space BG(ŜV
p , FV Êp), de-

noted BG(ŜV
p , Êp).

Lemma 7.2. The completion maps kλ : SVλ → ŜVλ
p determine a good map of fibers

k : S̃V → ŜV
p . Similarly, if E is a periodic ring G-spectrum, then the zeroth space of

the completion map, Ω∞E → Ω∞Êp, determines a good map of orientation functors
kE : FV E → FV Êp.

Proof. We show that when Hλ = Hµ, the maps

k∗λ : F (ŜVλ
p , ŜVµ

p ) → F (SVλ , ŜVµ
p )

yield weak H-equivalences. This follows by definition of completions, which implies
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that the indicated maps in the diagram below are bijections for any K 6 H.

[(Sn ∧ ŜVλ
p )p̂, Ŝ

Vµ
p ]K

∼= //

∼=
²²

[(Sn ∧ SVλ)p̂, Ŝ
Vµ
p ]K

∼=
²²

[Sn ∧ ŜVλ
p , Ŝ

Vµ
p ]K // [Sn ∧ SVλ , Ŝ

Vµ
p ]K .

By a similar argument, kE : FV E → FV Êp is a good map of orientation functors.

Using Definition 6.9, we have fiberwise completion maps

BG(S̃V ; E) → BG(ŜV
p ; Êp).

We next aim to construct a map for the fiberwise smash product of Êp-oriented
GF(ŜV

p ) and GF(ŜW
p )-fibrations.

Construction 7.3. Let ŜV
p ∧ ŜW

p = {ŜVλ
p ∧ Ŝ

Wµ
p : Hλ = Hµ}. We denote the corre-

sponding objects in A(ŜV
p ∧ ŜW

p ) by λ∧µ. The spaces in this set are not themselves
p-complete; their completions are the spaces Ŝ

Vλ⊕Wµ
p . Thus the restriction maps

[ŜVλ⊕Wµ
p , Ω∞Êp]Hλ

→ [ŜVλ
p ∧ ŜWµ

p , Ω∞Êp]Hλ

are bijections. Let (FV Êp ∧ FW Êp)(λ ∧ µ) consist of the components of the image
of FV⊕W Êp(λ ⊕ µ) under this bijection. Then, ŜV

p ∧ ŜW
p → ŜV⊕W

p is a good map
of fibers, and FV Êp ∧ FW Êp → FV⊕W Êp is a good map of orientation functors.
Definition 6.9 yields

k∗ : B(FV Êp ∧ FW Êp, A(ŜV
p ∧ ŜW

p ), O) → B(FV⊕W Êp, A(ŜV⊕W
p ), O).

Precomposing k∗ with the fiberwise smash product map of Construction 3.14 yields

BG(ŜV
p , Êp)×BG(ŜW

p , Êp) → BG(ŜV⊕W
p , Êp),

which we take as a construction on the classifying space level for the fiberwise smash
product of Êp-oriented GF(ŜV

p ) and GF(ŜW
p )-fibrations.

This construction also allows us to stabilize these fibrations. If V ∈ V (2.14), with
action map ρ : G → SU(V ), then the category A(ŜV

p ) has a distinguished object ρ

corresponding to the fiber ŜVρ
p . We can choose a distinguished point in FW Êp(ρ)

corresponding to the map b̂
Vρ
p . These determine a G-fixed basepoint for BG(ŜV

p ; Êp).

These basepoints and the maps above make BG(Ŝ(−)
p ; Êp) an hV-functor (cf. 2.14).

Definition 7.4. Let BG(Ŝp; Êp) = BG(ŜVp ; Êp) for some complete sequence V.

The next lemma shows that completions are compatible with fiberwise smash
products.
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Lemma 7.5. The following diagram commutes up to homotopy.

BG(SV ; E)×BG(SW ; E) //

²²

BG(ŜV
p ; Êp)×BG(ŜW

p ; Êp)

²²
B(FV Êp ∧ FW Êp, A(ŜV

p ∧ ŜW
p ),O)

k∗
²²

BG(SV⊕W ;E) // BG(ŜV⊕W
p ; Êp).

Proof. To simplify the argument, we will take all the orientation functors to be
trivial. The general argument follows similarly.

Let lV : SV → ŜV
p and lW : SW → ŜW

p be the completion maps. We also have
maps of fibers

SV⊕W
l // ŜV

p ∧ ŜW
p

k // ŜV⊕W
p .

Note that l is not necessarily a good map of fibers, but k and k ◦ l are (being
completions). We abbreviate the categories of cofibration 2-cubes by B(lV ),B(lW ),
etc. From the definitions, the claim quickly reduces to showing that the outer circuit
of the following diagram, from top left to bottom, commutes:

B(∗, A(SV × SW ), O)

²²

B(∗, B(lV × lW ), O)
'oo

²²

// B(∗, A(ŜV
p × ŜW

p ), O)

²²
B(∗, A(SV⊕W ), O)

(k◦l)∗ ))SSSSSSSSSSSSSSS
B(∗, B(l), O)

(Φ1)∗oo (Φ2)∗ // B(∗, A(ŜV
p ∧ ŜW

p ), O)

k∗uukkkkkkkkkkkkkk

B(∗, A(ŜV⊕W
p ), O).

Clearly, the top two squares commute. Moreover, while we cannot conclude that
(Φ1)∗ is a weak equivalence, the argument used in Proposition 6.10 still goes through
to show that the bottom triangle in the diagram above commutes. Since the top
left horizontal arrow is an equivalence, we are done.

It follows immediately that completion is compatible with stabilization.

Definition 7.6. Let

k̂p : BG(S; E) → BG(Ŝp; Êp)

be obtained by taking the colimit of the maps k∗ above.

Remark 7.7. Consider again the diagram of Lemma 7.5, taking all orientation func-
tors to be trivial. We could replace BG(ŜV

p ) in the upper right with BG(SV ), and we
could replace B(∗, A(ŜV

p ∧ ŜW
p ), O) with B(∗,A(SV ∧ ŜW

p ), O). The new diagram also
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commutes; the same proof applies. It follows that the map BG(SV ) → BG(Ŝp), rep-
resenting completion followed by stabilization, factors through the map BG(SV ) →
BG(SV ∧ ŜW

p ) representing fiberwise smash product with ŜW
p .

8. The homotopy units of the sphere

In this brief section, we show how to identify the space ΩBG(Ŝp) with the homo-
topy units in Ω∞Ŝp, when G is a p-group, p odd. This space will appear in section
10, when we analyze the equivariant J-theory diagram.

Recall from section 3 that if Fρ ∈ F is a distinguished fiber, then Ã(Fρ) is the
monoid of based self-maps of Fρ which are nonequivariant homotopy equivalences,
with G acting through conjugation. If every H-map Fρ → Fρ which is a nonequiv-
ariant equivalence is also an equivariant equivalence, then π0(Ã(Fρ)H) is a group for
all H 6 G, and by Lemma 3.16, B(Ã(Fρ)) is equivalent to the G-connected cover
of BG(A(F)). The following lemma, which easily applies to any subgoup H 6 G,
provides an example.

Lemma 8.1. If V ∈ V is sufficiently large, then every G-map ŜV
p → ŜV

p which is
a nonequivariant equivalence is also an equivariant equivalence.

Proof. When dim V G > 1, the monoid [ŜV
p , ŜV

p ]G is the p-completion of the group
[SV , SV ]G. When V is sufficiently large, [SV , SV ]G is the Burnside ring A(G). We
must therefore show that every element in A(G)p̂ mapping under the augmentation
to a unit in Ẑp is itself a unit. Since the augmentation splits, it is enough to show
that 1 + I(G)p̂ is a group under multiplication.

To see this, we claim that p is in every maximal ideal of A(G)p̂. If p were not in
M, then we could write 1 = ap + m for some a ∈ A(G)p̂ and m ∈ M − {0}. But
1− ap is a unit with inverse 1 + ap + (ap)2 + · · · , which is a contradiction.

Now, by [27, Ex. 1.9.4], some power of I(G) is contained in pA(G). It follows
that if x is in I(G)p̂, then some power of x is divisible by p, and hence in every
maximal ideal of A(G)p̂. Since maximal ideals are prime, x itself must be in every
maximal ideal, hence in the Jacobson radical. By [8, 1.9], 1 + x is invertible.

Together with Lemma 3.16, Lemma 8.1 implies the following corollary.

Corollary 8.2. For V ∈ V sufficiently large, ΩBG(ŜV
p ) is equivalent to the space of

self-maps ŜV
p which are nonequivariant equivalences, with G-acting by conjugation.

Note that ΩBG(SV ) is not equivariantly equivalent to the space of self-maps of
SV of degree ±1, though this does hold nonequivariantly.

Corollary 8.2 shows that ΩBG(ŜV
p ) is equivalent to Ã(ŜV

p ) for V sufficiently large.
Smashing with the identity on ŜW

p yields a map Ã(ŜV
p ) → Ã(ŜV

p ∧ ŜW
p ). We can

adapt the change of fiber construction to get a map Ã(ŜV
p ∧ ŜW

p ) → Ã((SV ∧
SW )p̂), so that change of fiber is compatible with the equivalence BF of 3.16. Thus,
ΩBG(Ŝp) is equivalent to colim Ã(ŜVi

p ) over a cofinal sequence Vi ∈ V.

Corollary 8.3. ΩBG(Ŝp) ' Ω∞Ŝ×p .
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Remark 8.4. From the above corollary, we can show that the G-connected cover of
BG(Ŝp) is itself p-complete. Indeed, the group of components in (Ω∞Ŝ×p )H is the
group of units in A(H)p̂. As in the proof of Lemma 8.1, the units in A(H)p̂ are
those elements mapping to units in Ẑp. Since the units in Ẑp are closed, it follows
that the units in A(H)p̂ are closed and hence complete. Moreover, all the higher
homotopy groups of Ω∞Ŝ×p are p-complete. Thus, πn(BG(Ŝp)H) is p-complete for
all H 6 G and all n > 1.

9. Maps between Classifying Spaces

In this section, we construct the maps between the classifying spaces of the
equivariant J-theory diagram. We begin with a geometric description of the Adams-
Bott cannibalistic class ρk and its complex analogue ρk

c . These are obtained by
applying Adams operations to Thom classes of Spin-bundles and inverting the
Thom isomorphism to get virtual bundles. We also show how to describe ρk on
the classifying space level. After this has been done, we use the equivariant Adams
conjecture of [27] to obtain an equivariant version of the map γk in the J-theory
diagram. From here, it becomes straightforward to define σk and the remaining
maps in the equivariant J-theory diagram. Throughout this section, we take G to
be a p-group, p odd, and k > 2 to be an odd integer prime to p.

Suppose ζ is a (G,U(V ))-bundle over B. Since K̃G(Tζ) is a free KG(B)-module,
we may define ρk

c (ζ) to be the element in KG(B) satisfying ψk(µζ) = ρk
c (ζ)µζ . The

operation ρk
c is natural and is exponential in the sense that ρk

c (ζ⊕ζ ′) = ρk
c (ζ)·ρk

c (ζ ′).
Also, ρk

c (ζ) = 1+ζ + · · ·+ζk−1 if ζ is a line bundle. By the splitting principle, these
three facts completely determine the behavior of ρk

c .
Similarly, if ξ is a (G,Spin(V ))-bundle over B, where V has real dimension

divisible by 8, then we may define ρk(ξ) to be the element in KOG(B) satisfying
ψk(µξ) = ρk(ξ)µξ. Again, ρk is natural and exponential. The following lemma now
follows from Corollary 5.8 and the fact that c is a ring homomorphism commuting
with the Adams operations.

Lemma 9.1. If V has complex dimension divisible by 4 and ζ is a (G,SU(V ))-
bundle, then ρk

c (ζ) = cρk(rζ).

We record the following corollary for future use.

Corollary 9.2. The Adams operation ψk commutes with ρk
c , and commutes with

ρk if we invert 2.

Proof. It’s easy to check that ρk
c and ψk commute on line bundles, so that by the

splitting principle, they commute in general. By lemma 9.1, ρk
c (ζ) = cρk(rζ), where

ζ is a (G,SU(V ))-bundle with underlying (G,Spin(V ))-bundle rζ. Since rc = 2
and ψk commutes with c, we have

2ψkρk(2ξ) = r(cψkρk(2ξ) = rψk(cρkr(cξ))

= r(cρkr)ψk(cξ) = rcρk(rcψkξ) = 2ρkψk(2ξ).

The middle equality follows from Lemma 9.1. If 2 is invertible, the result follows.
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We would like to define ρk
c and ρk on stable (G,SU) and (G,Spin)-bundles.

To do this, we formally think of a stable bundle as a difference ζ −V, or ξ −V.
Here ζ denotes a (G,SU(V ))-bundle, ξ denotes a (G,Spin(V ))-bundle, and V is
the trivial bundle B × V → B, where V ∈ V has complex dimension divisible by
4. Exponentiality forces us to define ρk

c (ζ −V) as ρk
c (ζ)/ρk

c (V) and ρk(ξ −V) as
ρk(ξ)/ρk(V), but to make sense of this, we need to be sure that ρk

c (V) and ρk(V)
are units.

Let θk
c (V ) and θk(V ) be the elements in R(G) and RO(G) satisfying

ψk(bV
c ) = θk

c (V ) · bV
c , ψk(bV ) = θk(V ) · bV .

Clearly, the orientations µV
c and µV are the products of the respective Bott classes

on SV and the identity, so that ρk
c (V) = θk

c (V ) and ρk(V) = θk(V ).
By Corollary 2.5 of [15], when k is prime to |G|, θk(V ) becomes a unit after

inverting k. We may therefore make the following definition.

Definition 9.3. Suppose ζ−V is a stable (G,SU)-bundle over a G-space B. Then
let ρk

c (ζ −V) be the element ρk
c (ζ)/θk

c (V ) in KG(B)[1/k].

We wish to extend this to the real case.

Lemma 9.4. Suppose V ∈ V has complex dimension divisible by 4, and k is prime
to |G|. Then the element θk(V ) maps to a unit in RO(G)[1/2k].

Proof. Let uc = θk
c (V ) and let u = θk(V ). Let r, c, and t be the homomorphisms

induced by forgetting complex structure, complexification, and complex conjuga-
tion. By Proposition 5.7, c(bV ) = bV

c . Since complexification commutes with Adams
operations, we then have cu = uc. Let v ∈ R(G)[1/k] be the inverse of uc. Then

c(u · rv) = c(u) · cr(v) = uc · (v + tv) = uc · v + uc · tv = (uc · v) + t(uc · v) = 2.

Applying r, we have 2(u · rv) = 4, so u · ( rv
2 ) = 1.

Example 9.5. If G acts on C[G]⊕4 by permuting generators, then the action map
G → U(C[G]⊕4) factors through SU(C[G]⊕4). Therefore, if V ∈ V is isomorphic to
C[G]⊕4, then θk(V ) is a unit in RO(G)[1/2k].

Corollary 9.6. For any V ∈ V of complex dimension divisible by 4, θk(V ) is a
unit in RO(G)[1/2k].

Proof. There is a W ∈ V such that V ⊕W is isomorphic to C[G]⊕4n, for some n.
The operation θk is exponential, so the corollary follows by Example 9.5.

We may now make the following definition.

Definition 9.7. Suppose ξ − V is a stable (G,Spin)-bundle over a G-space B.
Then let ρk(ξ −V) be the element ρk(ξ)/θk(V ) in KOG(B)[1/2k].

We may also construct the Adams-Bott cannibalistic class ρk on the level of classi-
fying spaces. For V ∈ V of complex dimension divisible by 4, let ψk

V : Ω∞KO[1/2k] →
Ω∞KO[1/2k] be represented by ψk

θk(V )
. This makes sense by 9.6. Lemma 9.8, together

with Construction 4.12, yields a map

c(Ψk) : BG(S;KO[1/2k]) → Fib(q) ⊆ Ω∞KO[1/2k]×.
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Lemma 9.8. The maps ψk
V form an exponential collection.

Proof. Clearly ψk
V (bV ) = bV . The diagram of Definition 4.11 commutes because ψk

is multiplicative, multiplication by θk(V ), θk(W ) and θk(V ⊕W ) are all equivalences,
and ψk = θk(V ) · ψk

V .

Now let ρk be the map c(Ψk)◦g, where g : BG(Spin) → BG(S;KO[ 1
2k ]) is induced

by the KO-orientation. Since BG(Spin) is nonequivariantly connected, ρk factors
through the base-point component, BG(O)⊗[1/2k] ⊆ Ω∞KO[1/2k]×. This factor-
ization represents the operation ρk described above, as one can see by considering
the geometric interpretation of c(Ψk) (4.13).

We can compose ρk with the map k̂p : Ω∞KO[1/2k]× → Ω∞KOp̂ induced by
completion. We then have a unique dotted arrow, which we also label ρk, making
the following diagram commute up to homotopy.

BG(Spin)
ρk

//

²²

Ω∞KO[1/2k]×
k̂p // Ω∞KOp̂

×

BG(O)p̂
ρk

// BG(O)⊗p̂.

⊆
OO

Remark 9.9. Using a construction similar to 4.12, one obtains a map c(ψk) :
BG(Ŝp; KOp̂) → Ω∞KOp̂

×, and we can choose the maps c(ψk) to be compatible
under completion. Thus, ρk can be described as the composite

BG(Spin)
g // BG(Ŝp; KOp̂)

c(ψk) // Ω∞KOp̂
× ,

or its factorization through BG(O)⊗p̂.

Now, we turn to the equivariant Adams conjecture. First, recall the nonequivari-
ant version of the Adams conjecture ([1, 1.2]).

Conjecture 9.10. If k is an integer, X is a finite CW-complex and y ∈ KR(X),
then there exists a non-negative integer e = e(k, y) such that ke(Ψk − 1)y maps to
zero in J(X).

Equivariantly, the Adams conjecture is significantly more subtle. The following,
which is Proposition 11.3.7 of [27], must certainly lie at the heart of any attempt
to generalize the Adams conjecture.

Proposition 9.11. Let G be a compact Lie group and let E → B be an orthogonal
G-vector bundle. Then there exist stable G-maps f : S(E) → S(ψkE) if k is odd
(S(E ⊕ E) → S(ψk(E ⊕ E)) if k is even) of fiber-degree dividing a power of k.

That is, for some inner product space V , the stable bundles E and ψkE can be
represented as (G, O(V ))-bundles, and there is a map f : S(E) → S(ψkE) between
the associated GF(SV )-fibrations of fiber-degree dividing a power of k.
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Remark 9.12. The reader may be familiar with a version of the equivariant Adams
Conjecture proven in [16]. In this version, it is shown that skn(ψk − 1)(µ) is fiber-
homotopy trivial for any µ ∈ KG(X), where s is the order of k mod |G|. This is in
some sense stronger than 9.11, but it is more restrictive in that it requires G to be
cyclic.

In the following corollary, we restore the convention that G is a p-group, p odd,
and k is an odd integer prime to p and greater than 1.

Corollary 9.13. Let ξ : E → B be an orthogonal G-vector bundle. Let V be a
G-representation in V with V G 6= 0. Let S(ξ) ∧ ŜV

p and S(ψkξ) ∧ ŜV
p denote the

fiberwise smash products of ξ and ψkξ with the trivial bundle B×ŜV
p . Then S(ξ)∧ŜV

p

and S(ψkξ) ∧ ŜV
p are fiberwise G-homotopy equivalent.

Proof. The proposition gives us a map f : S(ξ) → S(ψkξ). Since G is a p-group,
the fiber degree of fH must be prime to p for all H 6 G, as observed in [27,
11.4.3]. Since ŜV

p is p-local, and the suspension of any p-local space is p-local, the
H-fixed points of the fibers of S(ξ) ∧ ŜV

p and S(ψkξ) ∧ ŜV
p are p-local for any

H 6 G. Therefore, the map f ∧ 1 restricts on the H-fixed points of each fiber
to a homotopy equivalence, so that f ∧ 1 restricts on each fiber to an equivariant
homotopy equivalence. By the G-Dold Theorem (11.4), this implies that f ∧ 1 is a
fiberwise G-homotopy equivalence.

We wish to put this on the level of classifying spaces. The Adams operation ψk

induces a map BG(O) → BG(O), and since the Hopf space BG(O) has a homotopy
inverse, we have a map ψk− 1 : BG(O) → BG(O). We now show that this map lifts
to BG(Spin), as in the nonequivariant setting.

When |G| is odd, the fibers of the maps BG(Spin) → BG(SO) and BG(SO) →
BG(O) are F1 = K(Z/2, 1) and F2 = K(Z/2, 0), by Lemma 2.16. In either case, the
map Fi → Map(EG,Fi) is an equivariant equivalence, since the spectral sequence

H∗(G, π∗(Fi)) +3 π∗(FhG
i )

collapses at the E2-term, since |G| is odd, so the edge homomorphism is an equiva-
lence. (The same argument works for subgroups of G). This shows that the diagram
below is, equivariantly, a fiber square:

BG(Spin)

²²

// BG(O)

²²
Map(EG, BG(Spin)) // Map(EG, BG(O)).

Now, since the inclusion BO → BG(O) is a nonequivariant equivalence,
it follows that the map Map(EG,BO) → Map(EG, BG(O)) is an equivariant
equivalence. Since the nonequivariant map ψk − 1 : BO → BO lifts to BSpin,
it follows that the equivariant map ψk−1 : Map(EG, BG(O)) → Map(EG, BG(O))
must lift to Map(EG, BG(Spin)). Precomposing with the inclusion
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BG(O) → Map(EG,BG(Spin)), we have the left arrow in the diagram below, which
then determines the dotted arrow, lifting ψk − 1.

BG(O)

%%

((

ψk−1

**
BG(Spin)

²²

// BG(O)

²²
Map(EG, BG(Spin)) // Map(EG,BG(O)).

We can compose the map Bj : BG(Spin) → BG(S) (cf. 4.1) with the fiberwise
completion map k̂p of §7 to obtain a map Bĵp : BG(Spin) → BG(Ŝp). The above
corollary, together with Remark 7.7, then implies that the composite

BG(O)
ψk−1 // BG(Spin)

Bĵp // BG(Ŝp)

is equivariantly null-homotopic when restricted to any finite subcomplex of BG(O).
We claim that Bĵp ◦ (ψk − 1) is itself null-homotopic. The following lemma is key
to showing this.

Lemma 9.14. Suppose that X is a G-space which can be expressed as a union
∪Xi of finite G-CW complexes, and Y is a G-space whose G-connected cover is
p-complete. Then the map of pointed sets [X, Y ]G → lim[Xi, Y ]G has trivial fiber.

Proof. We have a lim1 exact sequence:

lim1[Xi, ΩY ]G
� � // [X, Y ]G // // lim[Xi, Y ]G.

By assumption, πH
n (ΩY ) is p-complete for all n > 0 and all H 6 G. By induction

up the skeletal filtration of Xi, exactness of p-completion, and the 5-lemma, the
group [Xi, ΩY ]G is p-complete for each i, and therefore compact. The lim1-term of
an inverse system of compact groups vanishes.

The G-connected cover of BG(Ŝp) is p-complete, since ΩBG(Ŝp) has p-complete
homotopy groups by Remark 8.4, so we have the corollary:

Corollary 9.15. The composite Bĵp ◦ (ψk − 1) is null-homotopic, so that there is
a lift γk : BG(O) → Fib(Bĵp) of ψk − 1.

We now use the KO-orientation of Spin bundles together with the map γk above
to define a map σk. Let ĝp : BG(Spin) → BG(Ŝp; KOp̂) be the composite k̂p ◦ g,
where k̂p is the fiberwise completion map of Section 7. In the diagram below, τ is
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the inclusion of fibers, and f is induced by ĝp.

Fib(Bĵp)
τ //

f

²²

BG(Spin)
Bĵp //

ĝp

²²

BG(Ŝp)

Fib(q) τ // BG(Ŝp;KOp̂)
q // BG(Ŝp).

By an easy adaption of Remark 4.9, we have a map ι : Fib(q) → Ω∞KOp̂
×.

Precomposing ι ◦ f with γk, one obtains a map from BG(O) to Ω∞KOp̂
×.

Since BG(O) is nonequivariantly connected and Ω∞KOp̂ is p-complete, we have
a unique dotted arrow σk making the following diagram homotopy commute.

BG(O)
γk

//

²²

Fib(Bĵp)
ι◦f // Ω∞KOp̂

×

BG(O)p̂
σk

// BG(O)⊗p̂

OO

Definition 9.16. Let σk be the dotted arrow in the diagram above.

10. The Adams-May square

Using the maps constructed in the previous section, we now have the homotopy
commuting Adams-May square:

BG(O)p̂
ψk−1 //

σk

²²

BG(O)p̂

ρk

²²
BG(O)⊗p̂

ψk/1 // BG(O)⊗p̂.

The bottom map is technically induced by the composite c(ψk) ◦ τ , which classifies
ψk/1 by Remark 4.13.

In this section, we analyze this square by showing that ρk and σk are homotopic,
at least after restricting to G-connected covers. (Since the basepoint of BG(O)⊗
represents the trivial virtual bundle of dimension 1, we denote the G-connected
cover of BG(O)⊗ as BG(O)⊗1.) We then show that the G-connected cover of the
Adams-May square is a pull-back in the homotopy category. The demonstration of
this fact relies heavily on the theory of p-adic γ-rings in [9]. Finally, we use our
result to obtain a splitting of the G-connected cover of Ω∞Ŝp, based at the identity.

We first outline the idea for why ρk and σk are homotopic on G-connected covers.
Since p is odd, 2 is a unit, so that by Corollary 9.2, ρk commutes with ψk. Thus,
if we were to replace σk by ρk in the Adams-May square, the square would still
commute. It would therefore be enough to show that ψk/1 is an equivalence, but
unfortunately, this is not the case. Nevertheless, we can show that ψk/1 becomes
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an equivalence after inverting p (10.3), so that ρk and σk become homotopic after
mapping to (BG(O)⊗1p̂) [1/p]. We can also show that the map

[BG(O)0p̂, BG(O)⊗1p̂]G → [BG(O)0p̂, (BG(O)⊗1p̂) [1/p]]G
is an injection (10.6), which proves the claim.

We need two lemmas to prepare for 10.3.

Lemma 10.1. For any r > 1, the map (krψk)− 1 : R(G) → R(G) is injective.

Proof. Suppose krψk(x) = x. For some l > 0, kl ≡ 1 mod p, so we have

x = (krψk)l(x) = krlψkl

(x) = krlx.

The first equality follows from iterating krψk(x) = x, the second since ψmψn = ψmn

and the third since ψk is periodic on R(G), with period |G| and ψ1 is the identity.
Since l, r > 1 and k > 2, krl > 1. Since R(G) is torsion free, this implies x = 0.

Lemma 10.2. For n > 1, the map below is injective.

ψk/1 : 1 + K̃G(Sn) → 1 + K̃G(Sn)

Proof. We have K̃G(Sn) ∼= K̃(Sn)⊗R(G). When n is odd, K̃(Sn) = 0, so there is
nothing to prove. On the other hand, K̃(S2r) is a free abelian group on a generator
κ, with κ2 = 0. Thus, the multiplicative structure on 1 + K̃G(Sn) is the same as
the additive. Moreover, ψk(κ) = krκ. Thus, ψk/1 acts on 1 + K̃G(S2r) ∼= R(G) by
krψk − 1, so we may appeal to Lemma 10.1.

Proposition 10.3. The map ψk/1 : (BG(O)⊗1p̂) [1/p] → (BG(O)⊗1p̂) [1/p] is a
weak G-equivalence.

Proof. Let c denote complexification. Since c commutes with Adams operations,
the following diagram commutes:

1 + K̃OG(Sn)
ψk/1 //

c

²²

1 + K̃OG(Sn)

c

²²
1 + K̃G(Sn)

ψk/1 // 1 + K̃G(Sn).

After inverting 2, c becomes an injection, so that by 10.2, the top map ψk/1 is an
injection, after inverting 2, and in particular, after tensoring with Q̂p. Thus, since
ψk/1 ⊗ Q̂p is a linear transformation between finite dimensional vector spaces of
the same dimension, it is an isomorphism. This holds just as well for any subgroup
H 6 G. Since (BG(O)⊗1p̂))[ 1p ] represents the theory 1 + K̃OG(−) ⊗ Q̂p, it follows
that ψk/1 induces a weak G-equivalence.

Our next aim is to show

[BG(O)0p̂, BG(O)⊗1p̂]G → [BG(O)0p̂, (BG(O)⊗1p̂) [1/p]]G
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is an injection. This follows immediately from the universal property of completions
if we can show that

[BG(O)0, BG(O)⊗1p̂]G → [BG(O)0, (BG(O)⊗1p̂) [1/p]]G
is an injection, which we show in Proposition 10.6 below. We will make use of results
from Section 2 to describe BG(O)0 as a colimit of spaces BO(V ), and then we will
employ the following results on the KO-theory of these spaces.

Suppose V is an orthogonal G-representation. Then G acts on O(V ) by conjuga-
tion, and hence on BO(V ). Let EO(V ) = B(∗, O(V ), O(V )). Note that O(V ) acts
freely on EO(V ), with quotient BO(V ). Moreover, the G-action and the O(V )-
action on EO(V ) induce an action of the semidirect product G o O(V ). Thus, by
[24, 2.1] we have

K̃G(BO(V )) ∼= K̃GoO(V )(EO(V )).

Lemma 10.4. If Λ 6 G o O(V ) is in the family F of subgroups subconjugate to
G, then the fixed-point space EO(V )Λ is contractible. Otherwise, EO(V )Λ is empty.
Thus EO(V ) is the classifying space of the family F.

Proof. If H 6 G, then EO(V )H = B(∗, O(V )H , O(V )H) ' ∗; if Λ = tHt−1, then
EO(V )Λ ∼= EO(V )H ' ∗. This proves one direction. Now, let H be the image in
G of a subgroup Λ 6 G o O(V ). Then EO(V )Λ = B(∗, O(V )H , O(V )Λ), where Λ
acts on O(V ) by the formula u · (g, s) = g−1ugs for u ∈ O(V ), (g, s) ∈ G o O(V ).
Therefore, for EO(V )Λ to be nonempty, O(V )Λ must be nonempty, so there must
exist u ∈ O(V ) such that g−1ugs = u for all (g, s) ∈ Λ. But then, (g, s) = u−1gu in
GoO(V ), so that Λ = u−1Hu.

Proposition 10.5. K̃OG(BO(V ))[1/2] has no torsion.

Proof. Since rc = 2, c : K̃OG(BO(V )) → K̃G(BO(V )) becomes injective after
inverting 2, so it suffices to show that K̃G(BO(V )) has no torsion. Let R = R(Go
O(V )) be the representation ring of G o O(V ). For each Λ subconjugate to G, let
IΛ = ker(R → R(Λ)), and let I = IG. By the generalization of the Atiyah-Segal
completion theorem to families (see [5] or [19, XIV.6.1]), K̃GoO(V )(EO(V )) is the
completion of R = R(GoO(V )) with respect to the products of powers of the ideals
IΛ. Since I 6 IΛ for all Λ subconjugate to G, this is RI .

Since G o O(V ) is a compact Lie group, R is Noetherian by [25, 3.3], so by [8,
10.14], RÎ is flat over R. Since R is torsion free, RÎ is torsion free.

Proposition 10.6. The map below is an injection

[BG(O)0, BG(O)⊗1p̂]G → [BG(O)0, (BG(O)⊗1p̂) [1/p]]G .

Proof. First, by Definition 2.15 and Lemmas 2.19 and 2.20, BG(O)0 can be realized
as a colimit of spaces BO(Vi), Vi ∈ V. Since the homotopy groups of BG(O)⊗1p̂ are
all p-complete, it now suffices by Lemma 9.14 to show that the map

[BO(V ), BG(O)⊗1p̂]G → [BO(V ), (BG(O)⊗1p̂) [1/p]]G
is injective. But this is just the map

K̃OG(BO(V ))⊗ Ẑp → K̃OG(BO(V ))⊗ Q̂p,
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which is an injection by 10.5, since p is odd.

We conclude:

Corollary 10.7. The maps ρk and σk from BG(O)p̂ to BG(O)⊗p̂ become homotopic
after restricting to the G-connected cover of BG(O)p̂.

Our next goal is to show that the G-connected cover of the equivariant Adams-
May square is a pull-back diagram in the homotopy category. We use the theory of λ-
rings and γ-rings, which we will use to obtain splittings of the theories corresponding
to the spaces in the square; the reader may consult [9] for further details. We are
especially interested in p-adic γ-rings, which exhibit a number of useful properties
that we explore. We show that, if G is a p-group, p odd, and IKG(X) denotes the
kernel of the augmentation KG(X) → Z, then IKG(X)p̂ is a p-adic γ-ring. We use
this to obtain information about IKOG(X)p̂. We show that this theory splits into
p − 1 summands, and that ψk − 1 and ψk/1 induce equivalences on all but one of
these summands, while ρk and σk induce equivalences on the other. The result will
then follow formally.

A λ-ring is a commutative unital ring R, equipped with maps λn : R → R, for
each n ∈ N, satisfying λ0(x) = 1, λ1(x) = x, and λn(x + y) =

∑n
r=0 λr(x)λn−r(y),

for all x, y ∈ R. For example, Z is a λ-ring with λn(m) =
(

n
m

)
for m > 0. The

λ-dimension of an element x ∈ R, if it exists, is the least n such that λm(x) = 0
whenever m > n. If X is a compact G-space, then the λ-ring structure on KG(X) is
obtained using exterior powers of bundles. In fact, KG(X) is a special λ-ring, mean-
ing the λ-operations satisfy a certain set of identities, which are in fact motivated
by the relations satisfied by exterior powers of vector spaces.

Since Adams operations ψk are defined in terms of exterior power operations, it
should be no surprise that they can be defined for any λ-ring R. If ξk

1 + · · · ξk
r =

νk(s1, · · · , sr), where si is the ith elementary symmetric function in the {ξj}, then
ψk(x) = νk(λ1(x), · · · , λk(x)). When R is special, the usual properties of Adams
operations hold.

Associated to the λ-operations is a collection of operations γn, given by γn(x) =
λn(x + n − 1). The γ-dimension of an element x is defined in analogy with λ-
dimension. Given a λ-homomorphism ε, called an augmentation, from a special
λ-ring R to Z, the kernel I of ε is preserved by the γ-operations, and is called a
special γ-ring. For example, the dimension of bundles determines an augmentation
KG(X) → Z, whose kernel, which we denote IKG(X), is a special γ-ring.

When I is a special γ-ring, let In denote the subgroup of I additively generated
by the products γn1(a1) · · · γnr (ar), with each ai ∈ I and

∑
ni > n. This defines

a filtration on I, called the γ-filtration. There is also a power filtration {In} and a
p-adic filtration {pnI} for I. When I has a finite number of generators, each of finite
γ-dimension, the power filtration and the γ-filtration determine the same topologies
on I. For example, this holds for IKG(X).

When I is finitely generated, and the topology determined by its γ-filtration is
finer than that of its p-adic filtration, then we say that Îp = I ⊗ Ẑp is a p-adic
γ-ring. For example, we show below (10.10) that IKG(X)p̂ is a p-adic γ-ring when
G is a p-group, p odd.
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When A = Îp is a p-adic γ-ring, the map Z+ × I → I given by (k, a) → ψk(a)
is p-adically continuous ([9, I.5.6]). We may then define operations ψα on A for all
α ∈ Ẑp. In particular, when α is a primitive (p − 1)st root of unity, we obtain an
operation T = ψα on A with T p−1 = 1. Thus, A splits as a sum of eigenspaces∑p−2

i=0 Ai, where Ai = ker(T − αi).
If I is the kernel of the augmentation R → Z, and A = Îp is a p-adic γ-ring,

then we can define a cannibalistic classes ρk : A → 1 + A, where 1 + A denotes
the multiplicative group of elements in R mapping to 1 in Z. Namely, letting γt(x)
denote the power series 1 + γ1(x)t + γ2(x)t2 + · · · , we define ρk(x) as the product
of the series γu/u−1(x), where u runs over all the kth roots of unity except 1. When
A = IKG(X)p̂, the map ρk agrees with the geometric construction given in Section
9. If k is a positive integer which is a topological generator of Ẑp, and p 6= 2, then
we have Proposition [9, III.4.4]:

Proposition 10.8. ρk : A0 → 1 + A0 is an isomorphism.

We need the following lemma to prove that IKG(X)p̂ is a p-adic γ-ring.

Lemma 10.9. Let G be a group of order pm, p an odd prime. Let ξ be a (G, U(1))-
bundle on a compact G-space X. Then, for w sufficiently large, ξpw

is equivalent
mod p to the trivial line bundle X × C.

Proof. Let ζ = ξpm

. Then for x ∈ XH , ζx = (ξx)pm

, which is a trivial line bundle,
since H 6 G has order dividing pm. Since U(1) is abelian, it follows from Proposition
2.10 that there is a nonequivariant U(1)-bundle on X/G whose restriction to X is
ζ. Let β : X/G → BU(1) be the classifying map for this bundle.

Now, since X is compact, and BU(1) = CP∞, the map β : X/G → CP∞ factors
through CPn−1 for some n. If [H] is the canonical line bundle on CP∞, then
([H] − 1)n is trivial on CPn−1, so that β∗(([H] − 1)n) is trivial, whence (ζ − 1)n

is trivial. So, if w is large enough, then (ζ − 1)pw−m

is zero in K̃(X), and ζpw−m

is
equivalent to the trivial line bundle modulo p. Thus, ξpw

is equivalent to the trivial
line bundle modulo p for w sufficiently large.

Proposition 10.10. If G is a p group, p 6= 2, then IKG(X)p̂ is a p-adic γ-ring.

Proof. Since the γ-filtration and the power filtration determine the same topology,
we must show that some power of IKG(X) lies in pIKG(X). Since IKG(X) is
finitely generated, it is enough to show that a sufficiently high power of any element
in IKG(X) is p-divisible. Any such element can be written ξ−ζ for complex G-vector
bundles ξ and ζ of the same dimension l.

By the splitting principle ([24, 3.9]), there is a space F (X) and a map ρ : F (X) →
X so that the induced map ρ∗ : KG(X) → KG(F (X)) is injective and ρ∗ξ breaks
into a sum of line bundles: L1 ⊕ L2 ⊕ · · · ⊕ Ll. Choose w according to Lemma 10.9
so that Lpw

i ≡ 1 mod p for i = 1, 2, · · · l. Then,

ρ∗(ξpw

) =
(⊕l

i=1Li

)pw

≡ ⊕l
i=1L

pw

i ≡ l mod p.

Since ρ∗ is injective, ξpw ≡ l mod p. By the same argument, ζpw ≡ l mod p for w
sufficiently large. Thus (ξ − ζ)pw ≡ 0 mod p for w sufficiently large.
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We are really after information about IKOG(X)p̂. We use the maps c and r
induced by complexification and forgetting complex structure. We then have the
following formal consequence of the continuity of the Adams operations on IKG(X).

Lemma 10.11. The Adams operations on IKOG(X)[1/2] are p-adically continu-
ous.

Proof. If x ∈ IKOG(X), then since rc = 2, we have

ψk+s(x)− ψk(x) =
1
2
rc(ψk+s(x)− ψk(x)) =

1
2
r(ψk+s(cx)− ψk(cx)).

Therefore, a given power of p will divide ψk+s(x)−ψk(x) if a sufficiently large power
of p divides s.

Therefore, the Adams operations extend to the p-adics on IKOG(X)p̂, and just
as above, IKOG(X)p̂ splits into p− 1 summands, the eigenspaces for T = ψα. We
denote these Bi(X) (or Bi), for 0 6 i 6 p− 2, and let B⊥

0 denote ⊕p−2
i=1 Bi.

Now choose k to be a positive integer, congruent to α mod p, which is a topological
generator of Ẑp. Since Adams operations commute, T = ψα commutes with ψk, so
that ψk induces a map Bi → Bi for each i. In Proposition 10.13 below, we show
that this map is an isomorphism for i 6= 0, so that ψk−1 induces an automorphism
of B⊥

0 . We need the following lemma.

Lemma 10.12. If ζ ∈ IKOG(X)p̂, then p divides (ψα − ψk)ps

(ζ) for s >> 0.

Proof. First, by definition of ψα, there is an integer l so that l ≡ k mod p and so
that ψα ≡ ψl mod p. For any w, there is an s so that lp

s ≡ kps

mod pw. So, by
continuity of Adams operations, we have

ψlp
s

(ζ) ≡ ψkps

(ζ) mod p

for s sufficiently large. Since Adams operations commute,

(ψl − ψk)ps

(ζ) ≡
[
(ψl)ps − (ψk)ps

]
(ζ) = [ψlp

s

(ζ)− ψkps

(ζ)] ≡ 0 mod p.

Proposition 10.13. ψk − 1 : Bi → Bi is an isomorphism for 1 6 i 6 p− 2.

Proof. If β ∈ Ẑp, let Uβ = β(ψα − ψk). By the Lemma 10.12, Un
β (x) is divisible by

p for n sufficiently large, so that the series 1+Uβ +U2
β + · · · converges in the p-adic

topology. Therefore, 1− Uβ induces an isomorphism on each Bi.
Now, since α is a primitive (p− 1)st root of unity and i 6= 0, αi − 1 reduces to a

unit in Z/p. Let β = (αi − 1)−1. Since ψα = αi on Ai, we have

ψk − 1 = (ψα − 1)− (ψα − ψk) = (αi − 1)− (ψα − ψk) = (αi − 1)(1− Uβ),

which yields the result.

In proposition 10.15 below, we will generalize 10.8 to show that ρk induces an
isomorphism from B0(X) to 1 + B0(X). First, we need the following lemma.
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Lemma 10.14. The inclusion IKSUG(X)p̂ → IKUG(X)p̂ induces an isomorphism
when restricted to the kernels of ψα − 1.

Proof. The fiber sequence of Lemma 2.17 induces a long exact sequence

· · · → KS1
G(ΣX) → IKSUG(X) → IKUG(X) → KS1

G(X),

where KS1
G(X) denotes the set of (G,S1)-bundles, or G-equivariant complex line

bundles, over X, with group structure given by tensor product of line bundles.
The map IKUG(X) → KS1

G(X) is induced by taking nth exterior powers of n-
dimensional line bundles, which extends to virtual bundles since taking the top
exterior powers converts sums to products; that is, λn+m(x + y) = λn(x)λm(y)
when x and y are n and m-dimensional respectively.

After p-completing the groups in the above sequence, the Adams operations
extend to the p-adics, yielding compatible actions of ψα for α ∈ Ẑp. In particular,
on KS1

G(X)p̂, ψk acts as multiplication by k, so that ψα acts as multiplication by
α. Thus, the kernel of ψα − 1 on KS1

G(X)p̂ is trivial. The result now follows from
the long exact sequence.

Proposition 10.15. ρk : B0(X) → 1 + B0(X) is an isomorphism.

Proof. Injectivity of ρk follows since 2 is a unit, c is injective and commutes with
ψα, and ρk

c (cx) = cρk(2x) (9.1). Now, if 1 + x ∈ 1 + B0, then 1 + cx ∈ 1 + A0 is
ρk

c (y) for some y ∈ A0, by 10.8. By 10.14, y can be represented by an element in
IKSUG(X)p̂, so that ρk

c (y) = cρkry, so that 1 + cx = cρk(ry). Since c is injective,
1 + x = ρk(ry), so that ρk is surjective.

Since a direct summand of an exact sequence is exact and Bi(−) takes prod-
ucts to products, Bi(−), considered as a functor on the homotopy category of
G-connected based G-CW-complexes, is representable by [19, p.134]. Thus, the
p-completion of the G-connected cover of BG(O) splits into a product WG×W⊥

G of
G-connected based G-CW-complexes, where WG represents B0 and W⊥

G represents
B⊥

0 = ⊕p−2
i=1 Bi.

Corollary 10.16. After passing to G-connected covers, the Adams-May square
becomes a pull-back square in the homotopy category.

Proof. All the maps in the square commute with ψα, and hence take WG to WG and
W⊥

G to W⊥
G . Moreover, ψk−1 and ψk/1 induce an equivalence on W⊥

G by Proposition
10.13, and ρk and σk induce an equivalence on WG by 10.7 and 10.15.

Now let Jk
G and Jk

G⊗ be the fibers of the maps ψk−1 and ψk/1 in the Adams-May
square. Note that the map ψk − 1 : BG(O) → BG(Spin) also has a fiber, which we
denote F (we will only need this space briefly). The maps αk

F and εk in the diagram
below are induced maps of fibers.
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F
π //

αk
F

²²

BG(O)
ψk−1 //

γk

²²

BG(Spin)

ΩBG(Ŝp)
τ //

εk

²²

Fib(Bjp̂)
q //

f

²²

BG(Spin)

ρk

²²
(Jk

G⊗) π // BG(O)⊗p̂
ψk/1 // BG(O)⊗p̂.

The completion map on BG(O) and the projection from BG(Spin) to BG(O) induce
a map F → Jk

G, which induces p-completion on all homotopy groups since the map
BG(Spin) → BG(O) is an equivalence away from 2. Moreover, by 8.3, the space
ΩBG(Ŝp) is equivalent to Ω∞Ŝ×p , so that all of its homotopy groups are p-complete.
Therefore the map αk

F above factors uniquely through a map αk from Jk
G to the

component of 1 in Ω∞Ŝp. Letting τk : Jk
G → Jk

G⊗ be the composite εk ◦αk, we have
completed the construction of the equivariant J-theory diagram.

Jk
G

π //

τk

²²

BG(O)p̂
ψk−1 //

σk

²²

BG(O)p̂

ρk

²²
Jk

G⊗
π // BG(O)⊗p̂

ψk/1 // BG(O)⊗p̂.

Theorem 10.17. The map τk induces a weak equivalence on G-connected covers,
and therefore yields a splitting of the G-connected cover of Ω∞Ŝp.

Proof. By Proposition 10.3, ψk/1 (and similarly ψk − 1) induces an equivalence
after inverting p, so that the homotopy groups of Jk

G and Jk
G⊗ are finite abelian p-

groups. Moreover, the homotopy groups of Jk
G and Jk

G⊗ are abstractly isomorphic.
Thus, it suffices to check that εk ◦αk induces an injection on all positive homotopy
groups.

Suppose γ ∈ πH
n (Jk

G) maps to zero under εk ◦ αk. Then γ maps to zero under
σk ◦ π and under (ψk − 1) ◦ π. By the pull-back property, γ maps to zero under
π and hence lifts to an element γ′ ∈ πH

n+1(BG(O)). Then ρk(γ′) maps to zero in
πH

n (Jk
G⊗), and hence lifts to πH

n+1(BG(O)⊗). By the pull-back property, γ′ is in the
image of (ψk − 1)∗ and hence γ = 0.

11. Appendix

In this Appendix, we consider further Construction 2.14. In particular, we show
that for an hV-functor A and a complete sequence V of representations in V, A(V)
has the structure of a weak G-Hopf space. By this we mean that there is a product
µ : A(V) × A(V) → A(V) and a unit η : ∗ → A(V) (given by the basepoint) such
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that the diagrams below are homotopic when their sources are restricted to finite
subcomplexes.

A(V)×A(V)×A(V)
µ×1//

1×µ

²²

A(V)×A(V)

µ

²²

A(V)× ∗1×η//

=

%%KKKKKKKKKK
A(V)×A(V)

µ

²²

∗ ×A(V)
=

yyssssssssss

η×1oo

A(V)×A(V)
µ // A(V) A(V)

.

In addition, we show that when π0(A(V)H) is a group for all H 6 G, then A(V)
has a weak homotopy inverse map χ, so that the diagram below commutes when
the source is restricted to finite subcomplexes:

A(V)
1×χ //

∗

&&MMMMMMMMMM
A(V)×A(V)

µ

²²
A(V).

We first define µ. The maps A(Vi)× A(Vi) → A(Vi ⊕ Vi) assemble to determine
a map A(⊕) : A(V)×A(V) → A(V⊕V), and the maps A(ι1) : A(Vi) → A(Vi ⊕ Vi)
induced by the inclusion of Vi as the first summand in Vi⊕Vi assemble to determine
an equivalence A(ι1) : A(V) → A(V⊕V). We let µ be the composite A(ι1)−1◦A(⊕).

Remark 11.1. Any equivariant isometry α : V → V is homotopic to the identity,
since we can break V up into a sum of irreducibles, and the space of equivariant
isomorphisms W → W is U(n) if W is a sum of n copies of an irreducible complex
G-representation. In particular, the transposition τ : V ⊕ V → V ⊕ V is homotopic
to the identity, so that A(τ) : A(V ⊕ V ) → A(V ⊕ V ) is homotopic to the identity.
It follows that A(ι1) is homotopic to A(ι2). We could therefore define µ equivalently
using ι2.

The following diagram commutes by associativity and naturality of c. It follows
that µ is homotopy associative when restricted to finite subcomplexes

A(V )×A(V )×A(V )
c×1 //

1×c

²²

A(V ⊕ V )×A(V )

c

²²

A(V )×A(V )
A(ι1)×1oo

c

²²
A(V )×A(V ⊕ V ) c // A(V ⊕ V ⊕ V ) A(V ⊕ V )

A(ι1,3)oo

A(V )×A(V ) c //

1×A(ι1)

OO

A(V ⊕ V )

A(ι1,2)

OO

A(V ).
A(ι1)oo

A(ι1)

OO

Here, ι1,2 and ι1,3 are the inclusions V ⊕V ⊆ V ⊕V ⊕V in the first two summands
and the first and third summand respectively.

A similar argument, together with Remark 11.1, shows that µ is homotopy unital
when restricted to finite complexes.
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To obtain the map χ, we need the equivariant Dold theorem (see [28, 1.11]), the
statement of which requires a bit of terminology.

Definition 11.2. A numerable G-cover C of B is a locally finite cover by invariant
sets such that for each U ∈ C there is a G-map λU : B → I with U = λ−1

U (0, 1].

Definition 11.3. A tube in a G-space X is a G-subspace of the form U ' G×H V
where V is some H-invariant subspace of U , and H is the isotropy subgroup of some
point v in V . The orbit Gv is called a central orbit of U .

The following is the equivariant generalization of Dold’s theorem.

Theorem 11.4. Suppose that B has a numerable G-cover C of open tubes which
deform equivariantly to specified central orbits and that g : p → q is a map of G-
fibrations over B which restricts to an equivariant homotopy equivalence on each
fiber. Then g is a fiberwise G-homotopy equivalence.

The nonequivariant proof that any CW complex has a numerable cover of open
sets (see, for example, [13, pp. 29, 249]) easily generalizes to show that any G-CW
complex satisfies the hypothesis in the equivariant Dold theorem. Moreover, all the
classifying spaces that we’ve constructed have the structure of G-CW complexes
(see Remark 3.6).

Corollary 11.5. Suppose X is a (weak) Hopf G-space with product µ : X×X → X
such that πH

0 (X) is a group for each H 6 G. Then X has a (weak) homotopy inverse
map.

Proof. Consider the following map of G-fibrations over X, in which π1 is projection
onto the first factor.

X ×X
π1×µ //

π1
##GG

GG
GG

GG
G X ×X

π1
{{ww

ww
ww

ww
w

X

The restriction of the above map of G-fibrations to the fiber over x ∈ XH is
the H-map given by y → µ(x, y). If x′ is in the component of the inverse of x in
π0(XH), then y → µ(x, y) is weakly inverse to the map y → µ(x′, y), and hence a
weak equivariant equivalence. Since X has the homotopy type of a G-CW complex,
any weak equivariant equivalence is an equivariant equivalence.

Thus, by the G-Dold theorem, there is a map π1× σ : X ×X → X ×X which is
inverse to π1× µ. The composite π2 ◦ (π1× σ) ◦ (id×∗) is a weak homotopy inverse
map.

References

[1] J.F. Adams. On the groups J(X)-I, Topology 2 (1963), 181–195.
[2] J.F. Adams. On the groups J(X)-II, Topology 3 (1965), 137–171.



Homology, Homotopy and Applications, vol. 5(1), 2003 211

[3] J.F. Adams. On the groups J(X)-III, Topology 3 (1965), 193–222.

[4] J.F. Adams. On the groups J(X)-IV, Topology 5 (1966), 21–71.

[5] J.F. Adams, J.P. Haeberly, S. Jackowski, J.P. May. A generalization of the
Atiyah-Segal Completion Theorem, Topology 27 (1988), no.1, 1–6.

[6] M.F. Atiyah. Bott Periodicity and the index of elliptic operators, Quart. J.
of Math (Oxford) 19 (1968), 113–139.

[7] M.F. Atiyah, R. Bott, and A. Shapiro. Clifford Modules, Topology, 3 Suppl.
1 (1964) 3–38.

[8] M.F. Atiyah, I.G. Macdonald. Introduction to Commutative Algebra,
Addison-Wesley, 1969.

[9] M.F. Atiyah, D.O. Tall. Group Representations, λ-Rings and the J-homo-
morphism, Topology, 8 (1969) 253–297.

[10] J.C. Becker and D.H. Gottlieb. The transfer map and fiber bundles, Topology
14 (1975), 1–14.

[11] A.D. Elmendorf. Systems of fixed point sets, Trans. Amer. Math. Soc. 277
(1983), no. 1, 275–284.

[12] Z. Fiedorowicz, H. Hauschild, and J.P. May. Equivariant Algebraic K-theory,
Lecture Notes in Math., vol. 967, 23–80. Springer-Verlag, Berlin and New
York.

[13] R. Fritsch, R.A. Piccinini. Cellular Structures in Topology, Cambridge studies
in Advanced Mathematics 19. Cambridge University Press.

[14] J.P.C. Greenlees and J.P. May. Completions of G-spectra at ideals of the
Burnside ring, Adams Memorial Symposium on Algebraic Topology, 2, 145-
178. London Math. Soc. Lecture Note Ser. 176. 1992.

[15] K. Hirata and A. Kono. On the Bott Cannibalistic Classes, Publ. RIMS,
Kyoto Univ. 18 (1982), 1187–1191.

[16] H. Hauschild and S. Waner. The Equivariant Dold Theorem Mod k, Ill. Journ.
of Math. 27 (1983), no. 1, 52–66.

[17] J. P. May. Classifying spaces and fibrations, Memoirs Amer. Math. Soc. No.
155, 1975.

[18] J.P. May. E∞-ring spaces and E∞-ring spectra, Lecture Notes in Math., vol.
577. Springer-Verlag, Berlin and New York, 1977.

[19] J.P. May. Equivariant Homotopy and Cohomology Theory, CBMS Regional
Conference Series in Mathematics, Number 91.

[20] J.P. May. Fibrewise Localization and Completion, Trans. Amer. Math. Soc.
258, No.1 (1980) 127–146.

[21] J. P. May. Equivariant Completion, Bull. London Math. Soc. 14 (1982), 231–
237.

[22] J. E. McClure. On the Groups JOGX. I, Math. Z. 183 (1983) 229–253.

[23] D. Quillen. The Adams conjecture, Topology 10 (1971), 67–80.



Homology, Homotopy and Applications, vol. 5(1), 2003 212

[24] G. Segal. Equivariant K-theory, Publications Mathematiques I.H.E.S. No. 34
(1987) 129–151.

[25] G. Segal. The Representation Ring of a compact Lie group, Publications
Mathematiques I.H.E.S. No. 34 (1987) 113–128.

[26] D. Sullivan. Genetics of homotopy theory and the Adams conjecture, Annals
Math. 100 (1974), 1–79.

[27] T. tom Dieck. Transformation Groups and Representation Theory, Lecture
Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979.

[28] S. Waner. Equivariant Fibrations and Transfer, Trans. Amer. Math. Soc. 258,
No. 2 (1980) 369–384.

[29] S. Waner. Equivariant Classifying spaces and fibrations, Trans. Amer. Math.
Soc. 258, No. 2 (1980) 385–405.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n1a8/v5n1a8.(dvi,ps,pdf)

Christopher French cpfrench@math.uiuc.edu

Department of Mathematics
University of Illinois at Urbana
Urbana, IL 61801


