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DICOVERING SPACES

LISBETH FAJSTRUP

(communicated by Gunnar Carlsson)

Abstract
For a local po-space X and a base point x0 ∈ X, we define

the universal dicovering space Π : X̃x0 → X. The image of
Π is the future ↑ x0 of x0 in X and X̃x0 is a local po-space
such that | →π 1 (X̃, [x0], x1)| = 1 for the constant dipath [x0] ∈
Π−1(x0) and x1 ∈ X̃x0 . Moreover, dipaths and dihomotopies
of dipaths (with a fixed starting point) in ↑ x0 lift uniquely to
X̃x0 . The fibers Π−1(x) are discrete, but the cardinality is not
constant. We define dicoverings P : X̂ → Xx0 and construct
a map φ : X̃x0 → X̂ covering the identity map. Dipaths and
dihomotopies in X̂ lift to X̃x0 , but we give an example where
φ is not continuous.

1. Introduction

Among the various models suggested for concurrency is the idea of a Higher
Dimensional Automaton, an HDA, introduced by V. Pratt in [7]. The geometric
analogue of this model is the geometric realization of a semi-cubical complex, [2],
which is a topological space with a local time direction, a local po-space (2.1).
Executions of a program are paths which increase with time, dipaths (2.5), and
equivalent executions are represented by dipaths, which are dihomotopic (2.7). To
study this and other geometric models, various tools from algebraic topology have
been used. E. Goubault in [3] uses combinatorial homology and J. Gunawardena
[5] uses methods from homotopy theory to prove a result in database theory. In
[2], we gave the first definitions of homotopy theory with a (time) direction, and
in [1], these methods were used to develop an algorithm for deadlock detection in
concurrent systems.

In general, the tools from algebraic topology are not immediately applicable in
this setting; for instance, two dipaths may be homotopic, but not dihomotopic.
Hence, the strategy is to adjust the tools to make them work in the directed case.
In this paper we study another part of the algebraic topology machinery, namely
coverings. We adjust the definitions of coverings to the directed case, i.e., we intro-
duce and study dicoverings. From the computer science point of view, a dicovering
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map between higher dimensional automata gives a bijection between dipaths, i.e.,
execution paths, and also between dihomotopies of dipaths, i.e., equivalences of ex-
ecutions. Hence, if an automaton is a dicovering of another automaton, they have
the same computational power. An example of a universal dicovering is the infinite
“delooping” of a loop, which is the usual covering of S1, except that it has a direc-
tion. But even without diloops, there could be non-dihomotopic dipaths and hence
non-trivial dicoverings:

Example 1.1. For two basic cases, the case of a loop in one process, and the case
where two concurrent processes share one object, it is not hard to see what the set
of all dipaths (from the minimal point) up to dihomotopy is. This has been studied
before for instance in [9] as a partially ordered set, but we want to give it a topology
as indicated in Fig. 1. In the first example, an edge followed by a loop followed by
an edge, the universal dicovering of the loop itself is a helix, with each turn of the
helix representing a turn of the loop below as in the non-directed case. There is only
one edge in the cover over the edge leading into the loop, since there is precisely one
dipath up to dihomotopy from the initial point to any point on that edge. There
are infinitely many edges covering the edge which leaves the loop; they represent
leaving the loop after 0, 1, 2, 3, . . . , n, . . . turns.

In the other example, the partial order on the subset of R2 is (x1, x2) 6 (y1, y2)
if xi 6 yi, and the topology is the usual topology. In this two-dimensional example,
there are no diloops. But the dipaths going “under” the hole and the dipaths go-
ing “over” the hole are not dihomotopic, and hence they lift to dipaths ending in
different layers in the covering. So there are two points in the fiber P−1(x) when x
is in the upper right hand corner of the square, but only one point over all other
points. The computer scientific interpretation of this example is, that two processes
want access to a common resource, which allows only one to access at a time. In
the model, one process runs along the x− axis and the other along the y−axis. An
execution is a dipath from the minimal point to the maximal point. The hole is the
points where both processes access the common resource, i.e., these points cannot
be part of an execution. The two different (non dihomotopic) dipaths correspond
to which process gets access to the resource first.

It is not a priori clear, what general properties one should require of a dicover-
ing. From the examples above, we know that one should not expect for instance a
constant fiber dimension, so we cannot define dicoverings by this property as in the
undirected case.

The approach in this paper is somewhat backwards compared to the usual defini-
tion of coverings. We first define (in Def. 3.2) what certainly has to be the universal
dicovering with respect to a point x0 ∈ X of a locally diconnected (2.9) local po-
space X by giving a topology and a local partial order on the set of dipaths with
initial point x0 up to dihomotopy. Then we prove that the universal dicovering
Π : X̃x0 → X has unique lifting of dipaths and of dihomotopies of dipaths with
fixed initial point in the future of x0 - given a lift of the initial point; and that
the fibers are discrete. Moreover, the restriction of Π to the local future of a point
x ∈ X̃x0 is a continuous bijection to the local future of Π(x).
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Figure 1: The universal dicovering in two cases. A process with a loop and two
concurrent processes having one shared object.
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The universal dicovering has trivial dihomotopy with respect to x0. We prove
that

→
π 1 (X̃x0 , [x0], x), where [x0] is the constant dipath at x0, has at most one

element for all x, but on the other hand, we provide an example, where X̃x0 has a
directed loop (which then does not contain [x0]). In particular, X̃x0 is not a (global)
po-space.

A dicovering with respect to x0 ∈ X is a dimap such that dipaths and dihomo-
topies of dipaths initiating in x0 lift uniquely given a lifting of the initial point.
This implies that dipaths and dihomotopies initiating in a point in the future of x0

lift. In the classical case, the path lifting property implies lifting of homotopies, but
the lifting property for dipaths does not imply lifting of non-directed paths, and in
particular not lifting of dihomotopies, which are non-directed in one coordinate.

The universal dicovering is universal in the following sense: If P : X̂ → X is a
dicovering with respect to x0, then there is a map φ : X̃x0 → X̂ which has unique
lifting of dipaths and dihomotopies of dipaths. In general, φ preserves the local
partial order, but we give an example where it is not continuous and hence it is not
a dicovering. We expect, but do not prove here, that the category of local po-spaces,
where φ is a dicovering, is quite large. In a subsequent paper, we will prove that
semi cubical complexes and hence HDA are in this category.

In future work, we hope to give a category of local po-spaces, which is large
enough to be interesting, but small enough not to contain the (admittedly) patho-
logical examples given her. The category of semi cubical complexes does not have
the pathological examples, but one could hope for an even larger category.

2. Preliminary Definitions

Definition 2.1. Let X be a topological space.

• A collection U(X) of pairs (U,6U ) with partially ordered open subsets U cov-
ering X is a local partial order on X if for every x ∈ X there is a nonempty
open neighbourhood W (x) ⊂ X with a partial order 6W (x) such that the re-
strictions of 6U and 6W (x) to U ∩W (x) coincide for all U ∈ U(X) with
x ∈ U , i.e.,

y 6U z ⇐⇒ y 6W (x) z for all U ∈ U(X) such that x ∈ U
and for all y, z ∈ W (x) ∩ U

(2.1)

• Two local partial orders on X are equivalent if their union is a local partial
order.

• A topological space X together with an equivalence class of local partial orders
is called a locally partially ordered space. If, moreover, X is Hausdorff and
there is a covering U such that for all (U,6U ) ∈ U the order 6U on U is a
closed relation ( (U,6U ) is a pospace ), then X together with an equivalence
class of coverings by po-spaces is a local pospace.

When X is a local po-space, a neighbourhood W (x) as in Def. 2.1, s.t. the partial
order on W (x) is closed, is called a po-neighbourhood of x.

We will consider (local) po-spaces and not the more general (locally) partially
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ordered spaces in this article. Most of the constructions make sense for the more
general category, and we leave it to the reader to make this generalisation.

Example 2.2. Let X = S1 = {eiθ ∈ C}, the unit circle. We want the local partial
order to be the usual order, i.e., by increasing θ. Let U1 = {eiθ|π/4 < θ < 7π/4}
and U2 = {eiθ| − 3π/4 < θ < 3π/4} ordered by increasing θ. Then the partial order
is closed and W1 = {eiθ| − π/4 < θ < 5π/4} and W2 = {eiθ|3π/4 < θ < 9π/4}
ordered by increasing θ give local po-neighborhoods of all points.

Remark 2.3. If W (x) is a po-neighborhood, then any subset of W (x), which is a
neighborhood of x is a po-neighborhood with the partial order induced from W (x).
Hence w.l.o.g. one can assume that W (x) ⊂ U for some U ∈ U(X) and hence that
the partial order on W (x) is induced from U . The po-neighborhoods satisfying this
extra condition are called small po-neighborhoods and they give a neighborhood
basis for the topology on X, since the intersection of two small po-neighborhoods is
again a small po-neighborhood. Moreover, the covering by small po-neighborhoods
defines the local partial order. In example 2.2, the po-neighborhoods are not small,
and W1 ∩W2 is not a po-neighborhood with a structure induced from W1 and W2,
since eiπ, e0 ∈ W1 ∩W2 but eiπ >W1 e0 while eiπ 6W2 e0; hence the partial orders
on W1 and W2 do not induce a common partial order on the intersection. It is not
hard to see, however, that there are small po-neighborhoods of each point.

Definition 2.4. Let (X,U) and (Y,V) be local po-spaces. A continuous map f :
X → Y is called a dimap (directed map) if for any x ∈ X there are po-neighbour-
hoods W (x) and W (f(x)) such that

x1 6W (x) x2 ⇒ f(x1) 6W (f(x)) f(x2)

whenever x1, x2 ∈ f−1(W (f(x))) ∩W (x).

Definition 2.5. Let X be a local po-space and let
→
I denote the unit interval [0, 1]

with the usual order.

• A dimap γ :
→
I→ X is called a dipath.

• If there is a dipath such that γ(0) = x and γ(1) = y then we write x ¹ y. If
γ(
→
I ) ⊆ U ⊆ X we write x ¹U y.

• If γ(1) = µ(0) the composition is

γ ∗ µ(t) =
{

γ(2t) 0 6 t 6 1/2
µ(2t− 1) 1/2 6 t 6 1

• For a subset U ⊆ X and x ∈ X the future of x in U is

↑U (x) = {y ∈ U |x ¹U y}
When U = X, we write ↑ x and omit the subscript X.

Remark 2.6. We get a new local partial order {(U,¹U )|U ∈ U} on X. When con-
sidering dipaths and dihomotopies of dipaths, as in this paper, this is the important
part of the local partial order. Notice that
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• 6 may be closed and ¹ not closed: Let
◦
I2 ∪{(1/4, 0), (1/2, 0)} be the open unit

square and two extra points in R2 with the induced partial order (x1, x2) 6
(y1, y2) if x1 6 y1 and x2 6 y2 and with the induced topology. Then 6 is
closed, but ¹ is not: (1/4, 0) 6¹ (1/2, 0) but any pair of neighborhoods of
(1/4, 0) and (1/2, 0) contains points which are related.

• ¹ may be closed and 6 not closed: Let X = [0, 1] × [0, 1] ∪ [2, 3] × [0, 1] and
let the partial order and the topology be induced from the partial order on R2

except that (1/2, 1/2) 66 (5/2, 1/2). Then 6 is not closed, but ¹ is.

When γ is a dipath, the restriction γ :
→

[0, a]→ X can be linearly reparametrized
to a dipath γ|[0,a] :

→
I→ X, and we will do that without further mentioning.

Dihomotopies are only ordered along the paths:

Definition 2.7. For a local po-space X, a dimap H : I× →
I→ X is a dihomo-

topy from the dipath H0(t) = H(0, t) to the dipath H1(t) = H(1, t). An endpoint
preserving dihomotopy is a dihomotopy such that H(s, 0) = x0 and H(s, 1) = x1

for all s ∈ I. We define
→
π 1 (X,x0, x1), the equivalence classes of dipaths from

x0 to x1 modulo endpoint preserving dihomotopy. When U ⊆ X and x0 ∈ X we
define

→
π 1 (X, x0, U) =

⋃{→π 1 (X, x0, x1)|x1 ∈ U}. When U = X we denote this
→
π 1 (X, x0).

Example 2.8. Let X be a local po-space and let γ :
→
I→ X be a non-trivial diloop,

i.e., γ(0) = γ(1). Then γ is not dihomotopic through diloops to a constant dipath.
Suppose there was such a dihomotopy H : I× →

I→ X, H0(t) = γ(t), H1(t) = p,
Hs(0) = Hs(1), and suppose w.l.o.g. that Hs is trivial only for s = 1. Let Up

be a po-neighborhood of p. Then, since
→
I is compact, there is an ε such that

]1 − ε, 1]× →
I⊆ H−1(Up). Then H1−ε/2(t) is a non-trivial diloop in Up, but this

violates transitivity (or reflexivity) of the partial order on Up

Definition 2.9. Let X be a local po-space. Then X is locally diconnected if the
topology on X is generated by path-connected small po-neighbourhoods W ⊆ X such
that

1. For any pair of points x, y ∈ W the dihomotopy class
→
π 1 (W,x, y) has at most

one element.
2. x 6W y ⇔ x ¹W y.
3. W is diconvex: If U is a po-neighborhood, x, y ∈ U ∩ W and x 6U z 6U y

then z ∈ W .

Condition 2 could be replaced by requiring diconvexity with respect to ¹U and
that ¹U is closed. The important condition is 1, and for this to hold on intersections,
we need diconvexity with respect to ¹W . These sets actually give a basis:

Lemma 2.10. If U and V satisfy 2.9, then their intersection satisfies 2.9.

Proof. Let W = U ∩ V then W is a small po-neighborhood and the partial order
on W coincides with the orders on both U and V . Now let x, y ∈ W with x 6W y.
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Since x 6U y there is a dipath in U from x to y. If this dipath is not contained in W ,
there is a point z 6∈ W with x 6U z 6U y, but this contradicts the diconvexity of V ,
since x 6V y. Hence W satisfies condition 2) and this argument also proves that W
is diconvex. Moreover, for a proof of 1), suppose there are two dipaths from x to y.
Then they are dihomotopic in both U and V , and by diconvexity, this dihomotopy
is in W .

3. The Universal Dicoveringspace

Definition 3.1. Let X be locally diconnected, let U be the covering by all opens
satisfying 2.9 and let U ∈ U . We define an equivalence relation ∼U on

→
π 1 (x0, U):

[γ] ∼U [η] if there is a dimap H : I× →
I→ X such that H(0, t) = γ(t), H(1, t) =

η(t), H(s, 0) = x0 and H(s, 1) ∈ U for all s ∈ I

Notice that this is well defined on
→
π 1 (X, x0, U).

Definition 3.2. Let X be a locally diconnected local po-space, let U satisfy 2.9 and
let x0 ∈ X. The universal dicovering space X̃x0 of X with respect to x0 is the set
→
π 1 (X,x0). The topology on X̃x0 is generated by these subsets: For γ such that
γ(1) ∈ U , where U ∈ U , let

U[γ] = {[η] ∈→π 1 (X, x0, U)|[η] ∼U [γ]}
For an example of this topology, see Fig. 2

Lemma 3.3. The sets U[γ] generate a topology on X̃x0

Proof. We have to see that when [λ] ∈ U[γ] ∩ V[η] there is a W[α] such that [λ] ∈
W[α] ⊆ U[γ]∩V[η]. When U = V , this follows from the observation U[γ]∩U[η] 6= ∅ ⇔
U[γ] = U[η]. When U 6= V , let W = U∩V . Then λ(1) ∈ W and W[λ] ⊆ U[γ]∩V[η].

Remark 3.4. In the non-directed situation, this is the usual definition of the topology
on the universal covering space: Let α be a path in U and let H : I × I → X be a
non-directed, endpoint preserving homotopy of γ ∗ α and η. Then H gives rise to a
homotopy H̃ = H ◦ F−1 of γ and η with H̃(1, s) = α(s) ∈ U and vice versa via the
(non-directed) bijection F : I × I/ ∼→ I × I where (1, y) ∼ (1, 1). See Fig. 3

F (x, y) =
{

((2− y)x, y) for x 6 1/2
(1 + (x− 1)y, 2y(1− x) + 2x− 1) for x > 1/2

and

F−1(z, w) =

{
( z
2−w , w) for z 6 1− w

2

(1
2 (w − 1 + 2z), 2(z−1)

w−3+2z ) for 1− w
2 6 z

Definition 3.5. The local partial order on X̃x0 is defined by [γ] 6U[λ] [η] if there is
a dipath µ in U such that [γ ∗ µ] = [η].

This is well defined since [γ1] = [γ2] ⇒ γ1(1) = γ2(1) and the dihomotopy from γ1

to γ2 extends to a dihomotopy of γ1∗µ and γ2∗µ and since [γ] ∈ U[λ] ⇒ [γ∗µ] ∈ U[λ].
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Figure 2: The topology on the universal covering.

F(x,y)

x=1/2
X

Y

Z

W

Figure 3: The bijection in Rem. 3.4
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Definition 3.6. Let X be a locally diconnected local po-space and let U be the
set of po-neighborhoods satisfying 2.9. Then X is locally relatively diconnected with
respect to x0 ∈ X if for any x ∈ X there is a U ∈ U such that for any pair
[γ], [µ] ∈→π 1 (x0, x), [γ] ∼U [µ] ⇔ [γ] = [µ].

This condition ensures that X̃x0 is Hausdorff and that the fibers are discrete. As
in the non-directed case, 2.9 and 3.6 are excluding Hawaiian earrings in different
situations:

Example 3.7. Let

H =
⋃

n∈IN

{(1/n, 0) + 1/n(cos(θ), sin(θ)) ∈ R2|θ ∈ [−π, π]}

be topologized as a subset of R2. This is a Hawaiian earring - a union of circles of
radius 1/n and center (1/n, 0). The partial order on each circle by increasing θ -
as in Ex. 2.2 is not a local partial order, since all neighborhoods of (0, 0) contain
circles. The partial order “from (0, 0) to (0, 2/n)”: (1/n, 0)+1/n(cos(θ1), sin(θ1)) 6
(1/n, 0) + 1/n(cos(θ2), sin(θ2)) if π > θ1 > θ2 > 0 or −π 6 θ1 6 θ2 6 0 is a local
partial order, but it does not satisfy 2.9. Neither does the reverse of this partial
order. Some Hawaiian earrings do satisfy 2.9, but not 3.6.

We define a Hawaiian truncated cone: Let

Cn =

{((1 + t
1− n

n
)(1 + cos(θ)), (1 + t

1− n

n
) sin(θ), t− 1) ∈ R3|0 6 t 6 1, θ ∈ [−π, π]}

Cn is a truncated cone defined by lines from the circle with center (1/n, 0, 0) and
radius 1/n to the circle of radius 1 and center (1, 0,−1), both parallel to the x −
y−plane. Then the Hawaiian truncated cone is CH =

⋃
n∈IN Cn with the topology

induced from R3. We define a partial order on each Cn in terms of the coordinates
(t, θ):

(t1, θ) 6 (t2, θ) if t1 6 t2 and (0, θ1) 6 (0, θ2) if 0 6 θ1 6 θ2 6 π or 0 > θ1 >
θ2 > −π. See Fig. 4.

There are two non dihomotopic dipaths in CH from (1, 0,−1) to (0, 0, 0) in CH.
We give them in terms of the (t, θ) ∈ [0, 1]× [−π, π] coordinates on a Cn:

γ1(u) =
{

(0, 2πu) for; 0 6 u 6 1
2

(2u− 1, π) for; u > 1
2

γ2(u) =
{

(0,−2πu) for; 0 6 u 6 1
2

(2u− 1,−π) for; u > 1
2

This is well defined, since the paths are on the intersection of all Cn in CH. These
dipaths are not dihomotopic with fixed endpoints, but for each neighborhood of
(0, 0, 0) there is a dihomotopy whose path of endpoints traverses one of the small
circles contained in this neighborhood. Given a neighborhood U of (0, 0, 0), there
is an n such that {(1/n, 0, 0) + 1/n(cos(θ), sin(θ), 0)|θ ∈ [π, π]} ∈ U . We give a
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X

Z

Y

(1,0,-1)

(0,0,0)

(1,0,-1)

(2/n,0,0)

Figure 4: A Hawaiian truncated cone and one of the Cn

dihomotopy from γ1 to γ2 with endpoints varying in U . Let (t, θ) be the coordinates
on Cn then H : I× →

I→ Cn is

H(s, u) =
{

(0, 2πu) for u 6 s
2

( 2u−s
2−s , πs) for u > s

2

This is a dihomotopy of γ1 and µ(u) = (u, 0), and symmetrically, γ2 is dihomotopic
to µ.

Hence CH is not locally relatively diconnected with respect to (1, 0,−1).
There are local po-spaces containing topological Hawaiian earrings, which are

neither violating 2.9 nor 3.6. An example is CH with another basepoint.

Proposition 3.8. Let X be a local po-space which is locally relatively diconnected
with respect to x0 ∈ X. Then X̃x0 is a local po-space.

Proof. X̃x0 is Hausdorff, since 3.6 is satisfied: Suppose [γ1] 6= [γ2].If γ1(1) 6= γ2(1)
there are disjoint neighborhoods Ui with γi(1) ∈ Ui for i = 1, 2 and then the Ui[γi]

are disjoint. If γ1(1) = γ2(1), let U be as in 3.6, then U[γ1] 6= U[γ2] and hence
U[γ1] ∩ U[γ2] = ∅.

We have to see that when U satisfies 3.6 and η(1) ∈ U , then U[η] is a po-space:
Suppose [γ1] 66U[η] [γ2]. If γ1(1) 6= γ2(1) there are disjoint neighborhoods of [γ1] and
[γ2] by the above argument.

Suppose now that γ1(1) = γ2(1) then [γ1] 6U[η] [γ2] ⇔ [γ1] = [γ2], since there are
no loops in U . Hence [γ1] 66U[η] [γ2] if and only if U[γ1] 6= U[γ2], i.e., U[γ1] ∩U[γ2] = ∅.

Proposition 3.9. Let X be a locally diconnected local po-space and x0 ∈ X. Define
Π : X̃x0 → X by Π([γ]) = γ(1). Then Π is a dimap.

Proof. Let U be a basic set in X. Then Π−1(U) = ∪{γ|γ(1)∈U}U[γ], i.e., a union
of basic sets, so Π is continuous. To see that the local partial order is preserved,
suppose [ηi] ∈ U[γ] and [η1] 6U[γ] [η2], then η1(1) 6U η2(1).
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Lemma 3.10. Let [γ] ∈ X̃x0 . Then Γ(t) = [γ|[0,t]] is a dipath in X̃x0 , and Π◦Γ(t) =
γ(t).

Proof. Let [γ[0,t0]] ∈ U[η]. Then the interval

] inf{t|γ([t, t0]) ⊂ U}, sup{t|γ([t0, t]) ⊂ U}[
is nonempty and contained in Γ−1(U[η]) so t0 is an inner point. Hence Γ−1(U[η]) is
open. Moreover, Γ is monotone as a map from this neighborhood of t0 to U[η].

Proposition 3.11. The universal dicovering Π : X̃x0 → X of a local po-space X
which is locally relatively diconnected w.r.t. x0 has the following properties:

1. The fibers Π−1(x) are discrete for any x ∈ X.
2. For any basic set U ⊆ X and x ∈ Π−1(U)

Π :↑Π−1(U) x →↑U Π(x) is a continuous bijection

3. Dipaths lift uniquely given a lift of the initial point:

{0} //
� _

²²

X̃x0

Π

²²→
I

γ //

∃!γ̃
>>|

|
|

|
X

Let γ :
→
I→ X and suppose y ∈ Π−1(γ(0)). Then there is a unique lift γ̃ :

→
I→

X̃x0 such that γ̃(0) = y and Π ◦ γ̃(t) = γ(t) for all t ∈→I .
4. Dihomotopies with fixed initial point lift uniquely given a lift of the initial point:

Let H : I× →
I→ X be a dimap and suppose H(I×{0}) = x, y ∈ Π−1(x). Then

there is a unique dimap H̃ : I× →
I→ X̃x0 such that Π ◦ H̃(s, t) = H(s, t) for

all (s, t) ∈ I× →
I and H̃(s, 0) = y

Proof. Proof of 1): Let [γi] ∈ Π−1(x). Since X is locally relatively diconnected with
respect to x0, there is a U s.t. U[γi] 6= U[γj ] ⇔ [γi] 6= [γj ] and hence U[γi] ∩U[γj ] = ∅.
And U[γi] ∩Π−1(x) = [γi].

Proof of 2): Let [η] ∈ U[γ]. Then ↑U[γ] [η] = {[η ∗ µ]|µ :
→
I→ U, µ(0) = η(1)}.

On the other hand ↑U Π([η]) =↑U η(1) = {x ∈ U |x ºU η(1)} = {x ∈ U |∃µ :
→
I→

U : µ(0) = η(1) µ(1) = x} = Π(↑U[γ] [η]). Hence Π :↑U[γ] [η] →↑U Π([η]) and
it is a surjection. If η ∗ µ1(1) = η ∗ µ2(1) then µ1 is dihomotopic to µ2 through a
dihomotopy in U , by condition 1) of 2.9 and thus [η ∗ µ1] = [η ∗ µ2], which proves
injectivity.

Proof of 3): Let y = [η]. Then η(1) = γ(0). The lift is γ̃(t) = [η ∗ γ|[0,1/2+t/2]].
This is a lift by Lem. 3.10. By 2), the lift is unique.

Proof of 4): Since dipaths lift uniquely, we only have to see that the map H̃ :
I× →

I→ X̃x0 defined by lifting the dipaths is continuous. For this it suffices to
see that it is continuous in the (non directed) I-direction. Suppose H̃(s0, t0) ∈ U[η].
Then, since H is continuous, there is an ε > 0 such that H(]s0−ε, s0+ε[×{t0}) ∈ U .
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Since H̃(s, t) ∈ U[η] if and only if [Hs(t)|[0,t0]] ∼U [η] and since [Hs(t)|[0,t0]] ∼U

[Hs0(t)|[0,t0]] for s ∈]s0−ε, s0+ε[ it follows that ]s0−ε, s0+ε[×{t0} ⊂ H̃−1(U[η]).

Theorem 3.12. Let X̃x0 be the universal cover of X, where X is locally relatively
diconnected w.r.t. x0. Then

→
π 1 (X̃x0 , [x0], [γ]) has precisely one element for any

[γ] ∈ X̃x0 , where [x0] ∈ X̃x0 is the constant path.

Proof. Let [γ] ∈ X̃x0 . We have to see, that there is precisely one dipath from [x0] to
[γ] up to dihomotopy. The lifting Γ of γ is a dipath from [x0] to [γ]. Suppose there is
another dipath Λ from [x0] to [γ] and let λ = Π ◦Λ. If λ was not dihomotopic to γ,
the endpoint [λ] of the unique lift, Λ, would be different from [γ]. Since λ lifts to a
dipath which has [γ] as its endpoint, λ is then dihomotopic to γ. Now dihomotopies
lift and hence Λ is dihomotopic to Γ.

Corollary 3.13. Let X be locally relatively diconnected w.r.t. x0 and let X̃x0 be
the universal cover of X. Then X̃x0 is locally relatively diconnected w.r.t. [x0]

Proof. Let U satisfy 2.9 and 3.6 on X w.r.t. x0. Then by Thm. 3.12, any U[η] will
satisfy 3.6 w.r.t. [x0].

For a proof that U[η] satisfies 2.9, 2) holds by definition. For 1) and 3), observe

that when φ :
→
I→ U is lifted to Φ :

→
I→ X̃x0 , then Φ :

→
I→ UΦ(0).

Now let [γ1], [γ2] ∈ U[η] and let Λi :
→
I→ U[η], i = 1, 2 have Λi(0) = [γ1] and

Λi(1) = [γ2]. Now Π ◦ Λi ∈→π 1 (U, γ1(1), γ2(1)), so they are dihomotopic in U . The
dihomotopy in U of Π ◦Λi lifts to a dihomotopy with initial point [γ1] and hence it
is a dihomotopy in U[η] = U[γ1]. Diconvexity of U[η] follows in the same way.

Corollary 3.14. Let X be a locally diconnected local po-space and suppose | →π 1

(X,x0, x)| 6 1 for all x ∈ X. Then Π : X̃x0 →↑ x0 is a continuous bijection.

Proof. Π is continuous and surjective by construction, and since |Π−1(x)| = | →π 1

(X,x0, x)| = 1 for x ∈↑ x0 it is also injective.

Example 3.15. There may be more than one element in
→
π 1 (X̃x0 , [γ1], [γ2]) when

[γ1] 6= [x0]: Let X = ∂I3\]0, 1[×]0, 1[×{1} be partially ordered and topologized
as a subspace of R3 (a box with the lid removed) and let x0 = (0, 0, 0). Then
Π : X̃x0 → X is a homeomorphism: It is a bijection by Cor. 3.14. To see that Π−1

is continuous, let U be a connected basic open subset of X and let γ(1) ∈ U . Then
any x ∈ U is in Π(U[γ]): Let µ : I → U be a path from γ(1) to x. Then we leave it

to the reader to see, that there is a dihomotopy H : I× →
I→ X with H0(t) = γ(t),

and H(s, 1) = µ(t). Hence the dipath H1(t) has x as endpoint and is in U[γ], so
U = Π(U[γ]).

Now let [γ1] represent
→
π 1 (X, x0, (0, 0, 1/2)) and let [γ2] represent

→
π 1 (X, x0, (1, 1, 1/2)). Then

µ1(t) =
{

(0, 2t, 1/2) for 0 6 t 6 1/2
(2t− 1, 1, 1/2) for 1/2 6 t 6 1
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t

s

Figure 5: Example 3.16

and

µ2(t) =
{

(2t, 0, 1/2) for 0 6 t 6 1/2
(1, 2t− 1, 1/2) for 1/2 6 t 6 1

are dipaths from [γ1] to [γ2] and they are not dihomotopic.

Example 3.16. There may even be non-trivial diloops in X̃x0 . Let X =
→
I ×I/ ∼

where (t, 0) ∼ (t, 1) for t ∈→I and (0, s) ∼ (0, 0) for s ∈ I. The partial order is the
product (t1, s) 6 (t2, s) if t1 6 t2 and moreover, (1, s1) 6 (1, s2) whenever s1 6 s2.
(There is a loop. See Fig. 5).

We claim that X̃(0,0) = X, i.e., that Π is a homeomorphism. For t < 1 there is only
one dipath (up to reparametrization) from (0, 0) to (t, s), so | →π 1 ((0, 0), (t, s))| = 1
We give the argument that

→
π 1 ((0, 0), (1, 0)) contains only one element- even though

there is a loop at (1, 0): Let γ(t) = (t, 0) = (t, 1) and let µ(t) = (2t, 0) for t 6 1/2
and µ(t) = (1, 2t− 1) for t > 1/2. Then

H(t, s) =
{

( 2t
2−s , 1− s) for t 6 1− s/2

(1, 2t− 1) for t > 1− s/2

is a dihomotopy between γ and µ. It is not hard to see how to modify this
dihomotopy to prove | →π 1 ((0, 0), (1, s))| = 1 for all other s. Hence Π is a continuous
bijection. Now let [γ] ∈ U[η], an open set in X̃x0 . The line l(t) from (0, 0) to Π([γ]) =
γ(1) is a representative of [γ]. Let W ⊂ U be a connected open neighborhood of γ(1),
then for any p ∈ W , let µ : I → W have µ(0) = γ(1) and µ(1) = p. The line from
(0, 0) to p is dihomotopic to γ through a linear dihomotopy H(t, s) = (tµ1(s), µ2(s))
and hence W ∈ Π(U[γ]). Thus Π is a dihomeomorphism and the diloop σ(t) = (1, t)
lifts to a diloop in X̃(0,0).

Example 3.17. In property 2 in Prop. 3.11, we cannot sharpen the statement
and claim that Π is a homeomorphism. It is not even true that there exists a
neighborhood U of all points such that Π :↑U[γ] [γ] →↑U γ(1) is a homeomorphism
This is because the topology on the covering space is defined by the dipaths and
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dihomotopies, and there may be topology on X which is not captured by this: Let
X = I×I with topology generated by the standard topology on R2 and the subsets

Ia = {(x, ax)|0 < x < a}
for any a > 0.

Let the partial order be : (x1, ax1) 6 (x2, ax2) if a > 0, and x1 6 x2, (0, y1) 6
(0, y2) if y1 6 y2. This is a po-space, and since the only dipaths are segments
of lines through (0, 0) it is easy to check that it is locally relatively diconnected
with respect to (0, 0). And X̃(0,0) is a disjoint wedge of halflines, since the only
dihomotopies are reparametrizations. For any neighborhood U of (0, 0) there is an
a such that {(x, ax)|0 6 x < 2a} ⊂↑U (0, 0). Now Π−1({(x, ax)|a < x < 2a}) is
open in X̃(0,0), but {(x, ax)|a < x < 2a} is not open in ↑U (0, 0).

4. Coverings.

It is not clear what the proper definition of a dicovering should be. One could
require the properties from Prop. 3.11, but we take the minimal requirements -
following [6] and just require lifting properties of dipaths and dihomotopies and
that the map is a dimap. We expect that this will imply the other properties in
sufficiently well-behaved categories of local po-spaces, for instance the geometric
realization of a semi-cubical complex, but this has to be seen.

Definition 4.1. Let Π : X̂ → X be a dimap of local po-spaces. Then Π is a
dicovering with respect to x0 ∈ X if for any y0 ∈ Π−1(x0):

1. For any dipath γ :
→
I→ X such that γ(0) = x0, there is a unique lift γ̂ :

→
I→ X̂,

such that Π ◦ γ̂ = γ and γ̂(0) = y0.

2. For any dihomotopy H : I× →
I→ X with H(s, 0) = x0 there is a unique lift

Ĥ : I× →
I→ X̂ s.t. Π ◦ Ĥ = H and Ĥ(s, 0) = y0.

When X =↑X x0, Π−1(x0) = x̂0 and X̂ =↑X̂ x̂0, the dicovering is a simple dicov-
ering

Remark 4.2. The lifting property for dihomotopies does not follow from the lifting
property for dipaths as it does in the non-directed case. Let X be the quotient
[0, 2]× →

I / ∼ and let X̂ = [0, 1]× →
I t]1, 2]× →

I / ∼, where (s, 0) ∼ (0, 0) for all s.
The identity map is not a dicovering w.r.t. (0, 0): Dipaths from (0, 0) lift uniquely,
but the dihomotopy H(s, t) = (2s, t) does not.

Lemma 4.3. Let Π : X̂ → X be a dicovering. Let γ :
→
I→ X, γ(0) ∈↑X x0 and let

y ∈ Π−1(γ(0))∩ ↑X̂ (Π−1(x0)). Then there is a dipath Γ :
→
I→ X̂ such that Γ(0) = y

and Π(Γ(t)) = γ(t) for all t ∈→I .

Proof. Choose a dipath µ from x̂0 ∈ Π−1(x0) to x̂. This is possible, since x̂ ∈↑X̂

(Π−1(x0)). Then Π ◦ µ ∗ γ lifts uniquely to a dipath with initial point x̂0, and this
gives the lift of γ.
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Corollary 4.4. With notation as above, let H : I× →
I→ X be a dihomotopy with

H(s, 0) ∈↑X x0. Then there is a unique lift Ĥ of H such that Ĥ(s, 0) = y.

Proof. The dipaths H(s0, t) lift uniquely by Lemma 4.3. This lift of dipaths com-
posed with µ (as in the above proof) gives a lifting of the dihomotopy H̄(s, t) =
Π ◦ µ(2t) for 0 6 t 6 1/2 and H̄(s, t) = H(s, 2t − 1) for 1/2 6 t 6 1. And since
dipaths initiating in x0 lift uniquely, this has to be the unique lift of H̄. Hence in
particular the restriction to t > 1/2 is continuous, so it is a lift of H.

Proposition 4.5. Let Π : X̂ → X be a simple dicovering w.r.t. x0 ∈ X. Then for
x ∈ X, |Π−1(x)| 6 | →π 1 (X,x0, x)|

Proof. Let y1 6= y2 ∈ Π−1(x) and let Γi :
→
I→ X̂ be dipaths with Γi(0) = x̂0 and

Γi(1) = yi. Then [Π ◦ Γ1] 6= [Π ◦ Γ2] ∈→π 1 (X,x0, x), since dihomotopies with fixed
endpoints lift to dihomotopies with fixed endpoints by continuity.

Proposition 4.6. Let P : X̂x0 → X be a dicovering w.r.t. x0 ∈ X such that
P−1(x0) = x̂0, and suppose X is relatively diconnected w.r.t. x0. Then there is a
map φ : X̃x0 → X̂x0 covering the identity.

Proof. Let φ([γ]) = γ̂(1), where γ̂ is the unique lift of γ with initial point x̂0. This
is well defined, since if [λ] = [γ] ∈ X̃x0 , λ is dihomotopic to γ and λ(1) = γ(1). Now,
since dihomotopies with fixed endpoints lift to dihomotopies with fixed endpoints
(by continuity), it follows that λ̂(1) = γ̂(1).

The map φ is clearly locally increasing, but it is not continuous in general:

Example 4.7. We define a Hawaiian star for δ an irrational number:

S =
∞⋃

n=1

{(u cos(nπδ), u sin(nπδ))|[0 6 u 6 1
n
}

with the subspace topology from R2. The dicone on S is

CS =
∞⋃

n=1

{(tu cos(nπδ), tu sin(nπδ), t− 1)|(u, t) ∈ [0, 1/n]× →
I }

with topology induced from R3 and partial order in terms of the (u, t) coordinates:
(u, t1) 6 (u, t2) if t1 6 t2.

Let γn(t) = ( t
n cos(nπδ), t

n sin(nπδ), t − 1). Then γn is a dipath in CS. More-
over, the sequence [γn] in C̃S(0,0,−1) converges to γ, where γ(t) = (0, 0, t − 1):
Let U be a neighborhood of (0, 0, 0) in R3 and let B((0, 0, 0), r), be an open ball
contained in U . Then for n > 1/r, γn ∼U∩CS γ via the dihomotopy H(s, t) =
(s t

n cos(nπδ), s t
n sin(nπδ), t− 1), so [γn] ∈ U[γ]. And this is the convergence condi-

tion.
Now define ĈS to be CS with an extra open set:

V =
∞⋃

n=1

{(tu cos(nπδ), tu sin(nπδ), t− 1)|(u, t) ∈ [0,
1
2n

[× →
I }
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Let P : ĈS → CS be the identity map. This is a dicovering w.r.t. (0, 0,−1): It is
continuous, dipaths in CS are segments of lines from (0, 0,−1) and such lines are
also dipaths in ĈS. Similarly, dihomotopies in CS are still dihomotopies in ĈS, since
H−1(V ) is open whenever H is a dihomotopy.

Now φ([γn]) = γn(1) = ( 1
n cos(nπδ), 1

n sin(nπδ), 0) 6∈ V , so φ([γn]) does not
converge to φ(γ) = (0, 0, 0) and hence φ is not continuous.

Proposition 4.8. Let P : X̂x̂0 → Xx0 be a dicovering with P−1(x0) = x̂0. Then
φ : X̃x0 → X̂x̂0 has unique dipath lifting and unique dihomotopy lifting for dipaths
and dihomotopies with initial point x̂0.

Proof. Let µ : (
→
I , 0) → (X̂x̂0 , x̂0) Then P ◦ µ lifts uniquely to X̃x0 and it is not

hard to see, that this is a lift of µ. Suppose η is another lift. Then µ(t) = φ ◦ η(t) =
Π̂ ◦ η|[0,t](1). Hence µ is the unique lift of Π ◦ η, so P ◦ µ = Π ◦ η and we conclude
that η is the unique lift of P ◦ µ.

The same argument goes for dihomotopies.

From this we see that if φ is continuous, it is in fact a dicovering.

5. Concluding remarks.

We have given a definition of the universal covering of a local po-space with some
diconnectedness properties. This is very similar to the non-directed situation and
indeed, the basic ideas are the same.

From the various examples, it is clear that the category of local po-spaces, even
with the extra requirements in 2.9 and 3.6, is too large to give good covering prop-
erties.

For a good category, one should expect the projection map Π in the universal
dicovering and also the projections in a general dicovering to be a local dihomeo-
morphism on local futures, i.e., a more satisfying property 2 in 3.11. Moreover, we
would require that the map φ in 4.6 is continuous and hence a dicovering and that
φ is the universal dicovering. The geometric realization of a semi cubical complex
as in [2] should has some of these properties. This is because the local topology of
semi cubical complexes is a (union of) products of

→
I , and since dipaths lift. We will

study this in a follow up to [2].
There is another notion of dihomotopy which is used by M. Grandis ([4]). An

elementary dihomotopy is a dimap from
→
I ×

→
I , and the equivalence relation is the

symmetric transitive closure of this. The construction of the universal dicover and
in particular the definition of the topology can be copied almost verbatim to that
case. Some of the examples do not work in that setting. For semi cubical complexes,
this notion of dihomotopy and the one we use her, are equivalent; a fact which we
proved recently and did not yet publish. Hence the covering theory with the two
notions of dihomotopy is also the same in that category.

Another question is: What are the decktransformations? We already know that
the fiberdimension at a point x of a dicovering X̂x0 is less than

→
π 1 (X, x0, x), and
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other connections to the different fundamental categories defined in [8] should be
investigated.

More generally, one should give a good definition of difibrations and dicofibra-
tions.
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