EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 22 June 2005. For the current production of this journal, please refer to http://intlpress.com/HHA/.


Ordinary and directed combinatorial homotopy, applied to image analysis and concurrency

Ordinary and directed combinatorial homotopy, applied to image analysis and concurrency

Marco Grandis

Combinatorial homotopical tools developed in previous works, and consisting essentially of intrinsic homotopy theories for simplicial complexes and directed simplicial complexes, can be applied to explore mathematical models representing images, or directed images, or concurrent processes. An {\it image}, represented by a metric space $X$, can be explored at a variable resolution $\ep > 0$, by equipping it with a structure $\te X$ of {\it simplicial complex} depending on $\ep $; this complex can be further analysed by {\it homotopy groups} $ \pi \ne (X) = \pi _n(\te X)$ and {\it homology groups} $ H \ne (X) = H _n(\te X). $ Loosely speaking, these objects detect singularities which can be captured by an $n$-dimensional grid, with edges bound by $\ep $; this works equally well for continuous or discrete regions of euclidean spaces. Similarly, {\it a directed image}, represented by an ``asymmetric metric space'', produces a family of {\it directed simplicial complexes} $ s_\ep X $ and can be explored by the {\it fundamental n-category} $ \uPi \ne (X) $ of the latter. The same {\it directed} tools can be applied to combinatorial models of concurrent automata, like Chu-spaces.


Homology, Homotopy and Applications, Vol. 5(2003), No. 2, pp. 211-231

http://www.rmi.acnet.ge/hha/volumes/2003/n2a7/v5n2a7.dvi (ps, dvi.gz, ps.gz, pdf)
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n2a7/v5n2a7.dvi (ps, dvi.gz, ps.gz, pdf)