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HOMOTOPY LIE ALGEBRA OF CLASSIFYING SPACES FOR
HYPERBOLIC COFORMAL 2-CONES
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Abstract
In this paper, we show that the rational homotopy Lie alge-

bra of classifying spaces for certain types of hyperbolic coformal
2-cones is not nilpotent.

1. Introduction

A simply connected space X is called an n-cone if it is built up by a sequence of
cofibrations

Yk
f→ Xk−1

jk→ Xk

with X0 = ∗ and Xn ' X. One can further assume that Yk ' Σk−1Wk is a (k− 1)-
fold suspension of a connected space Wk [3]. In particular a 2-cone X is the cofibre
of a map between two suspensions

ΣA
f→ ΣB → X. (1)

Spaces under consideration are assumed to be 1-connected and of finite type, that
is, Hi(X;Q) is a finite-dimensional Q-vector space. To every space X corresponds
a free chain Lie algebra of the form (L(V ), δ) [2], called a Quillen model of X. It
is an algebraic model of the rational homotopy type of X. In particular, one has
an isomorphism of Lie algebras H∗(L(V ), δ) ∼= π∗(ΩX) ⊗ Q. The model is called
minimal if δV ⊂ L>2(V ). A space X is called coformal if there is a map of differential
Lie algebras (L(V ), δ) → (π∗(ΩX)⊗Q, 0) that induces an isomorphism in homology.
Any continuous map f : X → Y has a Lie representative f̃ : (L(W ), δ′) → (L(V ), δ)
between respective models of X and Y .

If X is a 2-cone as defined by (1) and f̃ : L(W ) → L(V ) is a model of f , then
a Quillen model of the cofibre X of f is obtained as the push out of the following
diagram:

(L(W ), 0)
f̃ //

²²
ı

²²

(L(V ), 0)
²²

ı̄

²²
(L(W ⊕ sW ), d)

f̄ // (L(V ⊕ sW ), δ)
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where (L(W ⊕ sW ), d) is acyclic. Moreover the differential on L(V ⊕ sW ) verifies
δsW ⊂ L(V ). Hence a 2-cone X has a Quillen model of the form (L(V1 ⊕ V2), δ)
such that δV1 = 0 and δV2 ⊂ L(V1).

A Sullivan model of a space X is a cochain algebra (∧Z, d) that algebraically
models the rational homotopy type of X. In particular, one has an isomorphism of
graded algebras H∗(∧Z, d) ∼= H∗(X;Q). The model is called minimal if dZ ⊂ ∧>2Z.
In this case the vector spaces Zn and Hom(πn(X),Q) are isomorphic. If X has the
rational homotopy type of a finite CW-complex, we say that X is elliptic if Z is
finite dimensional, otherwise X is called hyperbolic.

2. Models of classifying spaces

Henceforth X will denote a simply connected finite CW-complex and LX its
homotopy Lie algebra. Let autX denote the space of free self homotopy equivalences
of X, aut1(X) the path component of autX containing the identity map of X. The
space Baut1(X) classifies fibrations with fibre X over simply connected base spaces
[4].

The Schlessinger-Stasheff model for Baut1(X) is defined as follows [12].
If (L(V ), δ) is a Quillen model of X, we define a differential Lie algebra DerL(V ) =
⊕k>1 Derk L(V ) where Derk L(V ) is the vector space of derivations of L(V ) which
increase the degree by k, with the restriction that Der1 L(V ) is the vector space of
derivations of degree 1 that commute with the differential δ.

Define the differential Lie algebra (sL(V ) ⊕∼ DerL(V ), D) as follows:

• The graded vector space sL(V ) ⊕∼ DerL(V ) is isomorphic to sL(V )⊕DerL(V ),

• If θ, γ ∈ DerL(V ) and sx, sy ∈ sL(V ), then [θ, γ] = θγ− (−1)|θ||γ|γθ, [θ, sx] =
(−1)|θ|sθ(x) and [sx, sy] = 0,

• The differential D is defined by Dθ = [δ, θ], D(sx) = −sδx + ad x, where ad x
is the inner derivation determined by x.

From the Sullivan minimal model (∧Z, d), Sullivan defines the graded differential
Lie algebra (Der∧Z, D) as follows [13]. For k > 1, the vector space (Der∧Z)k

consists of the derivations on ∧Z that decrease the degree by k and (Der∧Z)1 is
the vector space of derivations of degree 1 verifying dθ + θd = 0. For θ, γ ∈ Der∧V ,
the Lie bracket is defined by [θ, γ] = θγ − (−1)|θ||γ|γθ and the differential D is
defined by Dθ = [d, θ].

We have the following result:

Theorem 1. [13, 12, 14] The differential Lie algebras (Der∧Z,D) and
(sL(V ) ⊕∼ DerL(V ), D) are models of the classifying space B aut1(X).

An indirect proof of the Schlessinger-Stasheff model is given in [8, Theorem 2].

3. The classifying space spectral sequence

Recall that if (L,δ) is a graded differential Lie algebra, then L becomes an UL
module by the adjoint representation ad : L → Hom(L,L). In the sequel all Lie
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algebras are endowed with the above module structure.
Let (L(V ), δ) be a Quillen model of a finite CW-complex and (TV, d) its envelop-

ing algebra. On the TV -module TV ⊗ (Q⊕ sV ), define a Q-linear map

S : TV ⊗ (Q⊕ sV ) → TV ⊗ (Q⊕ sV )

as follows:
• S(1⊗ x) = 0 for all x ∈ Q⊕ sV ,
• S(v ⊗ 1) = 1⊗ sv for all v ∈ V ,
• If a ∈ TV and x ∈ TV ⊗ (Q⊕ sV ) with |x| > 0, then S(a.x) = (−1)|a|a.S(x).

The differential on the TV -module TV ⊗ (Q⊕ sV ) is defined by

D(1⊗ sv) = v ⊗ 1− S(dv ⊗ 1) for v ∈ V and D(1⊗ 1) = 0.

It follows from [1] that (TV ⊗(Q⊕sV ), D) is acyclic, hence it is a semifree resolution
of Q as a (TV, d)-module [6, §6].

Using the Schlessinger-Stasheff model of the classifying space, the author proved
the following:

Theorem 2. [8] The differential graded vector spaces HomTV (TV⊗(Q⊕sV ), L(V ))
and sL(V ) ⊕∼ DerL(V ) are isomorphic. Moreover, for n > 0, the Q-vector spaces
Extn

TV (Q,L(V )) and πn+1(ΩB aut1 X)⊗Q are isomorphic.

In particular if X is a coformal space, one has an isomorphism πn(B aut1 X)⊗Q ∼=
Extn

ULX
(Q,LX). Therefore π∗(B aut1 X) ⊗ Q can be computed by the means of a

projective resolution of Q as an ULX -module.
Consider the complex P = HomTV (TV ⊗ (Q⊕ sV ), L(V )). Filter V as follows

F0V = 0, Fp+1V = {x ∈ V : dx ∈ L(FpV )}.
We will denote Vp = FpV/Fp−1V . If Fn−1V 6= FnV = V , following Lemaire [10] we
say that V is of length n. We will restrict to spaces with a Quillen model of length n.

Define a filtration on P = TV ⊗ (Q⊕ sV ) as follows:

P0 = TV ⊗Q, P1 = TV ⊗ (Q⊕ sV1), . . . , Pn = TV ⊗ (Q⊕ sV6n).

We filter the complex

HomTV (TV ⊗ (Q⊕ sV ),L(V ))

by
Fk = {f : f(Pk−1) = 0}.

This yields a spectral sequence Er such that Ep,q
1 = HomQ(sVp,LX) for p > 1,

E0,q
1 = HomQ(Q,LX) and that converges to Ext∗TV (Q,L(V )). This sequence will be

called the classifying space spectral sequence of X.
Now assume that X is coformal and let A = ULX . If L(V1)/I is a minimal

presentation of LX , then there is a quasi-isomorphism (L(V1⊕V2⊕· · ·⊕Vn), δ) → LX

which extends to p : (TV, d) '−→ (A, 0). The (E1, d) term provides a resolution

· · · → A⊗ sVn → A⊗ sVn−1 → · · · → A⊗ sV1 → A → Q
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of Q as an A-module. Here the differential is given by the composition

sVn
D−→ TV ⊗ (Q⊕ sVn−1)

p⊗id−→ A⊗ (Q⊕ sVn−1).

The spectral sequence will therefore collapse at E2 level. Moreover Ext∗A(Q,LX) is
endowed with a Lie algebra structure verifying

[Extp,∗, Extq,∗] ⊂ Extp+q−1,∗ . (2)

The Lie bracket can be defined using the bijection between the Koszul complex
C∗(LX ,LX) and derivations on the Sullivan model C∗(LX ,Q) of X [9, Propo-
sition 4] (see also [7] for a direct definition of the Lie bracket on C∗(LX ,LX)).
Alternatively one may use the bijection

HomTV (TV ⊗ (Q⊕ sV ),L(V )) ∼= sL(V ) ⊕∼ DerL(V )

to transfer a Lie algebra structure on HomTV (TV ⊗ (Q ⊕ sV ),L(V )) from
sL(V ) ⊕∼ DerL(V ).

Definition 3. Let L be a Lie algebra. An element x ∈ L is called locally nilpotent
if for every y ∈ L, there is a positive integer k such that (ad x)k(y) = 0. A subset
K ⊂ L is called locally nilpotent if each element of K is locally nilpotent.

We deduce from Equation (2) the following

Proposition 4. Let X be a coformal space of homotopy Lie algebra denoted LX .
If X has a Quillen model (L(V ), δ), of length n, one has:

1. For k 6= 1, Extk
A(Q,LX) is locally nilpotent,

2. Ext1A(Q,LX) is a subalgebra of ExtA(Q,LX),
3. If Ext0A(Q,LX) = 0, then ⊕i>i0 Exti

A(Q,LX) is an ideal of ExtA(Q,LX), for
i0 > 1.

We will now assume that X is a coformal 2-cone. Recall that X has a Quillen
minimal model of the form (L(V1⊕V2), δ), with δV1 = 0 and δV2 ⊂ L(V1). Moreover
π∗(ΩX)⊗Q = H∗(L(V1⊕V2), δ) = L(V1)/I, where I is the ideal of L(V1) generated
by δV2.

Definition 5. Let L(V ) be a free Lie algebra where {a, b, c, . . . } is a basis of V .
Denote Ln(V ) the subspace of L(V ) consisting of Lie brackets of length n. Consider
a basis {u1, u2, . . . } of Ln(V ) where each ui is a Lie monomial. If x ∈ {a, b, c, . . . },
we define the length of ui in the variable x, lx(ui), as the number of occurrences
of the letter x in ui. If u =

∑
riui ∈ Ln(V ), define lx(u) = min{lx(ui)} and if

v =
∑

vi where vi ∈ Li(V ), lx(v) = min{lx(vi)}.
It is straightforward that the above definition extends to the enveloping algebra

T (V ).

Theorem 6. Let X be a coformal 2-cone and (L(V1⊕V2), δ) be its Quillen minimal
model. Choose a basis {x1, x2, . . . } for V1 and a basis {y1, y2, . . . } for V2. If for
some xk ∈ {x1, x2, . . . }, lxk

(δyj) > 2 for all yj ∈ {y1, y2, . . . }, then Ext2,∗
A (Q,LX)

is infinite dimensional.
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Proof. Note that for i 6= k the element (ad xi)n(xk) is a nonzero homology class in
H∗(L(V1 ⊕ V2), δ) as it contains only one occurrence of xk. Take yt ∈ {y1, y2, . . . }
and xm ∈ {x1, x2, . . . } with m 6= k. For each n > 1, define fn ∈ HomA(A ⊗
sV2,LX) by fn(syt) = (ad xm)n(xk) and fn(syj) = 0 for j 6= t. Obviously fn ∈
HomA(A ⊗ sV2,LX) is a cocycle. Suppose that fn is a coboundary. There exists
gn ∈ HomA(A ⊗ sV1,LX) such that fn(syt) = gn(dsyt). From the definition of
the differential d, one has dsyt =

∑
i pisxi, where the pi’s are polynomials in the

variables x1, x2, . . . . From the hypothesis on the differential dyt one knows that
lxk

(pi) > 2 for i 6= k and lxk
(pk) > 1. By using the number of occurrences of the

variable xk, one deduces from the previous equalities that (ad xm)n(xk) equals the
component of length 1 in xk of pkgn(sxk). Therefore, in the monomial decomposition
of gn(sxk) (resp. pk) there must exist (ad xm)n−s(xk) (resp. xs

m). We obtain a
contradiction with lxk

(pk) > 1.
The cocycles fn create an infinite number of non zero classes (of distinct degrees)

and the space Ext2,∗
A (Q,LX) is infinite dimensional.

Corollary 7. If hypotheses of the above theorem are satisfied, then cat(B aut1(X)) =
∞.

Proof. If sx ∈ Ext0,∗ ⊂ L(V1)/I and f ∈ Ext2,∗ then [f, sx] = ±sf(x). As elements
of Ext2,∗ vanish on V1, we deduce that [Ext2,∗, Ext0,∗] = 0. It follows from Theo-
rem 6 that J = Ext2ULX

(Q,LX) is an infinite dimensional ideal of π∗(ΩB aut1(X)).
Moreover it follows from Equation (2) that J is abelian. We deduce that the category
of B aut1(X) is infinite [5, Theorem 12.2].

If X is an elliptic space of Sullivan minimal model (∧Z, d) then Der ∧ Z is a
finite dimensional Q-vector space. Hence the homotopy Lie algebra of B aut1(X) is
finite dimensional, therefore π∗(ΩB aut1(X))⊗Q is nilpotent. In [11], P. Salvatore
proved that if X = S2n+1 ∨ S2n+1, then π∗(ΩB aut1(X))⊗Q contains an element
α that is not locally nilpotent. The proof consists in the construction of two outer
derivations α and β of the free Lie algebra L(a, b), where |a| = |b| = 2n, such that
(adα)i(β) 6= 0, for every integer i > 0. The technique can be applied to any free
Lie algebra with at least two generators. Therefore π∗(ΩB aut1(X)) ⊗ Q contains
an element α that is not locally nilpotent if X is a wedge of two spheres or more.

P. Salvatore asked if π∗(ΩB aut1(X)) ⊗ Q has always such a property for ev-
ery hyperbolic space X. A positive answer to this question would provide another
characterization of the elliptic-hyperbolic dichotomy [5].

For a product space we have the following

Proposition 8. If X = Y × Z is a product space such that the Lie algebra
π∗(ΩB aut1(Y ))⊗Q is not nilpotent, then π∗(ΩB aut1(X))⊗Q is not nilpotent.

Proof. Let (∧V, d) and (∧W,d′) be Sullivan models of Y and Z respectively. There-
fore (∧V ⊗ ∧W,d⊗ d′) is a Sullivan model of X. It follows from [12] that

H∗(Der(∧V ⊗ ∧W ))∼=H∗(Der ∧ V )⊗H∗(∧W )⊕H∗(∧V )⊗H∗(Der ∧W ).

Therefore π∗(ΩB aut1(Y ))⊗Q is a subalgebra of π∗(ΩB aut1(X))⊗Q.
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In particular if Y is a wedge of at least two spheres, then the Lie algebra
π∗(ΩB aut1(Y ))⊗Q is not nilpotent and so is π∗(ΩB aut1(X))⊗Q.

We can extend Salvatore’s result to some certain types of coformal hyperbolic
2-cones.

Theorem 9. Under the hypotheses of Theorem 6, the rational homotopy Lie algebra
of B aut1(X) is not nilpotent.

Proof. For i 6= k, let (ad xk)n(xi) be a nonzero element of LX . Define αn ∈
Ext1A(Q,LX) by αn(sxi) = (ad xk)n(xi) and zero on the other generators of LX .
Take w ∈ V2 and define βm ∈ Ext2A(Q,LX) by βm(sw) = (ad xk)m(xi) and zero else-
where. A short computation shows that [αn, βm] = ±βm+n. Hence (adαn)l(βm) 6= 0
for all l > 1. Therefore π∗(ΩB aut1(X))⊗Q is not nilpotent.

Example 10. Consider the space X for which the Quillen minimal model is
(L(a, b, c), d) with da = db = 0 and dc = [b, [b, a]]. The space X satisfies the hypoth-
esis of Theorem 6. Therefore cat(B aut1(X)) is infinite. Moreover the homotopy Lie
algebra of B aut1(X)⊗Q is not nilpotent.
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