Homology, Homotopy and Applications, vol.6(1), 2004, pp.167-173

HOMOTOPY LIE ALGEBRA OF CLASSIFYING SPACES FOR HYPERBOLIC COFORMAL 2-CONES

J.-B. GATSINZI

(communicated by Johannes Huebschmann)

Abstract

In this paper, we show that the rational homotopy Lie algebra of classifying spaces for certain types of hyperbolic coformal 2-cones is not nilpotent.

1. Introduction

A simply connected space X is called an $n\operatorname{-cone}$ if it is built up by a sequence of cofibrations

$$Y_k \xrightarrow{f} X_{k-1} \xrightarrow{j_k} X_k$$

with $X_0 = *$ and $X_n \simeq X$. One can further assume that $Y_k \simeq \Sigma^{k-1} W_k$ is a (k-1)-fold suspension of a connected space W_k [3]. In particular a 2-cone X is the cofibre of a map between two suspensions

$$\Sigma A \xrightarrow{J} \Sigma B \to X.$$
 (1)

Spaces under consideration are assumed to be 1-connected and of finite type, that is, $H^i(X; \mathbb{Q})$ is a finite-dimensional \mathbb{Q} -vector space. To every space X corresponds a free chain Lie algebra of the form $(\mathbb{L}(V), \delta)$ [2], called a Quillen model of X. It is an algebraic model of the rational homotopy type of X. In particular, one has an isomorphism of Lie algebras $H_*(\mathbb{L}(V), \delta) \cong \pi_*(\Omega X) \otimes \mathbb{Q}$. The model is called minimal if $\delta V \subset \mathbb{L}^{\geq 2}(V)$. A space X is called coformal if there is a map of differential Lie algebras $(\mathbb{L}(V), \delta) \to (\pi_*(\Omega X) \otimes \mathbb{Q}, 0)$ that induces an isomorphism in homology. Any continuous map $f: X \to Y$ has a Lie representative $\tilde{f}: (\mathbb{L}(W), \delta') \to (\mathbb{L}(V), \delta)$ between respective models of X and Y.

If X is a 2-cone as defined by (1) and $\tilde{f} : \mathbb{L}(W) \to \mathbb{L}(V)$ is a model of f, then a Quillen model of the cofibre X of f is obtained as the push out of the following diagram:

This work was supported by the Abdus Salam ICTP in cooperation with SIDA. Received November 14, 2003, revised April 21, 2004; published on May 3, 2004. 2000 Mathematics Subject Classification: Primary 55P62; Secondary 55M30. Key words and phrases: rational homotopy, coformal spaces, 2-cones, differential Ext. © 2004, J.-B. Gatsinzi. Permission to copy for private use granted. where $(\mathbb{L}(W \oplus sW), d)$ is acyclic. Moreover the differential on $\mathbb{L}(V \oplus sW)$ verifies $\delta sW \subset \mathbb{L}(V)$. Hence a 2-cone X has a Quillen model of the form $(\mathbb{L}(V_1 \oplus V_2), \delta)$ such that $\delta V_1 = 0$ and $\delta V_2 \subset \mathbb{L}(V_1)$.

A Sullivan model of a space X is a cochain algebra $(\wedge Z, d)$ that algebraically models the rational homotopy type of X. In particular, one has an isomorphism of graded algebras $H^*(\wedge Z, d) \cong H^*(X; \mathbb{Q})$. The model is called minimal if $dZ \subset \wedge^{\geq 2}Z$. In this case the vector spaces Z^n and $\operatorname{Hom}(\pi_n(X), \mathbb{Q})$ are isomorphic. If X has the rational homotopy type of a finite CW-complex, we say that X is elliptic if Z is finite dimensional, otherwise X is called hyperbolic.

2. Models of classifying spaces

Henceforth X will denote a simply connected finite CW-complex and \mathcal{L}_X its homotopy Lie algebra. Let *aut* X denote the space of free self homotopy equivalences of X, *aut*₁(X) the path component of *aut* X containing the identity map of X. The space *Baut*₁(X) classifies fibrations with fibre X over simply connected base spaces [4].

The Schlessinger-Stasheff model for $Baut_1(X)$ is defined as follows [12]. If $(\mathbb{L}(V), \delta)$ is a Quillen model of X, we define a differential Lie algebra $Der\mathbb{L}(V) = \bigoplus_{k \ge 1} Der_k \mathbb{L}(V)$ where $Der_k \mathbb{L}(V)$ is the vector space of derivations of $\mathbb{L}(V)$ which increase the degree by k, with the restriction that $Der_1 \mathbb{L}(V)$ is the vector space of derivations of degree 1 that commute with the differential δ .

Define the differential Lie algebra $(s\mathbb{L}(V) \oplus \text{Der }\mathbb{L}(V), D)$ as follows:

- The graded vector space $s\mathbb{L}(V) \oplus \operatorname{Der} \mathbb{L}(V)$ is isomorphic to $s\mathbb{L}(V)\oplus \operatorname{Der} \mathbb{L}(V)$,
- If $\theta, \gamma \in \text{Der } \mathbb{L}(V)$ and $sx, sy \in s\mathbb{L}(V)$, then $[\theta, \gamma] = \theta\gamma (-1)^{|\theta||\gamma|}\gamma\theta$, $[\theta, sx] = (-1)^{|\theta|}s\theta(x)$ and [sx, sy] = 0,
- The differential D is defined by $D\theta = [\delta, \theta], D(sx) = -s\delta x + adx$, where adx is the inner derivation determined by x.

From the Sullivan minimal model $(\wedge Z, d)$, Sullivan defines the graded differential Lie algebra (Der $\wedge Z, D$) as follows [13]. For k > 1, the vector space (Der $\wedge Z)_k$ consists of the derivations on $\wedge Z$ that decrease the degree by k and (Der $\wedge Z)_1$ is the vector space of derivations of degree 1 verifying $d\theta + \theta d = 0$. For $\theta, \gamma \in \text{Der } \wedge V$, the Lie bracket is defined by $[\theta, \gamma] = \theta \gamma - (-1)^{|\theta||\gamma|} \gamma \theta$ and the differential D is defined by $D\theta = [d, \theta]$.

We have the following result:

Theorem 1. [13, 12, 14] The differential Lie algebras $(\text{Der} \wedge Z, D)$ and $(s\mathbb{L}(V) \oplus \text{Der} \mathbb{L}(V), D)$ are models of the classifying space $Baut_1(X)$.

An indirect proof of the Schlessinger-Stasheff model is given in [8, Theorem 2].

3. The classifying space spectral sequence

Recall that if (L,δ) is a graded differential Lie algebra, then L becomes an UL module by the adjoint representation $ad: L \to \operatorname{Hom}(L,L)$. In the sequel all Lie

algebras are endowed with the above module structure.

Let $(\mathbb{L}(V), \delta)$ be a Quillen model of a finite CW-complex and (TV, d) its enveloping algebra. On the TV-module $TV \otimes (\mathbb{Q} \oplus sV)$, define a \mathbb{Q} -linear map

$$S: TV \otimes (\mathbb{Q} \oplus sV) \to TV \otimes (\mathbb{Q} \oplus sV)$$

as follows:

- $S(1 \otimes x) = 0$ for all $x \in \mathbb{Q} \oplus sV$,
- $S(v \otimes 1) = 1 \otimes sv$ for all $v \in V$,

• If $a \in TV$ and $x \in TV \otimes (\mathbb{Q} \oplus sV)$ with |x| > 0, then $S(a.x) = (-1)^{|a|} a.S(x)$. The differential on the *TV*-module $TV \otimes (\mathbb{Q} \oplus sV)$ is defined by

$$D(1 \otimes sv) = v \otimes 1 - S(dv \otimes 1)$$
 for $v \in V$ and $D(1 \otimes 1) = 0$.

It follows from [1] that $(TV \otimes (\mathbb{Q} \oplus sV), D)$ is acyclic, hence it is a semifree resolution of \mathbb{Q} as a (TV, d)-module [6, §6].

Using the Schlessinger-Stasheff model of the classifying space, the author proved the following:

Theorem 2. [8] The differential graded vector spaces $Hom_{TV}(TV \otimes (\mathbb{Q} \oplus sV), \mathbb{L}(V))$ and $s\mathbb{L}(V) \oplus \text{Der }\mathbb{L}(V)$ are isomorphic. Moreover, for $n \ge 0$, the \mathbb{Q} -vector spaces $\text{Ext}^n_{TV}(\mathbb{Q},\mathbb{L}(V))$ and $\pi_{n+1}(\Omega B \operatorname{aut}_1 X) \otimes \mathbb{Q}$ are isomorphic.

In particular if X is a coformal space, one has an isomorphism $\pi_n(B \operatorname{aut}_1 X) \otimes \mathbb{Q} \cong \operatorname{Ext}^n_{U\mathcal{L}_X}(\mathbb{Q}, \mathcal{L}_X)$. Therefore $\pi_*(B \operatorname{aut}_1 X) \otimes \mathbb{Q}$ can be computed by the means of a projective resolution of \mathbb{Q} as an $U\mathcal{L}_X$ -module.

Consider the complex $\mathcal{P} = Hom_{TV}(TV \otimes (\mathbb{Q} \oplus sV), \mathbb{L}(V))$. Filter V as follows

$$F_0V = 0, \quad F_{p+1}V = \{x \in V : dx \in \mathbb{L}(F_pV)\}.$$

We will denote $V_p = F_p V / F_{p-1} V$. If $F_{n-1} V \neq F_n V = V$, following Lemaire [10] we say that V is of length n. We will restrict to spaces with a Quillen model of length n.

Define a filtration on $P = TV \otimes (\mathbb{Q} \oplus sV)$ as follows:

$$P_0 = TV \otimes \mathbb{Q}, \ P_1 = TV \otimes (\mathbb{Q} \oplus sV_1), \dots, P_n = TV \otimes (\mathbb{Q} \oplus sV_{\leq n}).$$

We filter the complex

$$\operatorname{Hom}_{TV}(TV \otimes (\mathbb{Q} \oplus sV), \mathbb{L}(V))$$

by

$$F_k = \{f : f(P_{k-1}) = 0\}$$

This yields a spectral sequence E_r such that $E_1^{p,q} = \operatorname{Hom}_{\mathbb{Q}}(sV_p, \mathcal{L}_X)$ for p > 1, $E_1^{0,q} = \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}, \mathcal{L}_X)$ and that converges to $\operatorname{Ext}_{TV}^*(\mathbb{Q}, \mathbb{L}(V))$. This sequence will be called the *classifying space spectral sequence* of X.

Now assume that X is coformal and let $A = U\mathcal{L}_X$. If $\mathbb{L}(V_1)/I$ is a minimal presentation of \mathcal{L}_X , then there is a quasi-isomorphism $(\mathbb{L}(V_1 \oplus V_2 \oplus \cdots \oplus V_n), \delta) \to \mathcal{L}_X$ which extends to $p : (TV, d) \xrightarrow{\simeq} (A, 0)$. The (E_1, d) term provides a resolution

$$\cdots \to A \otimes sV_n \to A \otimes sV_{n-1} \to \cdots \to A \otimes sV_1 \to A \to \mathbb{Q}$$

of \mathbb{Q} as an A-module. Here the differential is given by the composition

$$sV_n \xrightarrow{D} TV \otimes (\mathbb{Q} \oplus sV_{n-1}) \xrightarrow{p \otimes id} A \otimes (\mathbb{Q} \oplus sV_{n-1}).$$

The spectral sequence will therefore collapse at E_2 level. Moreover $\operatorname{Ext}^*_A(\mathbb{Q}, \mathcal{L}_X)$ is endowed with a Lie algebra structure verifying

$$[\operatorname{Ext}^{p,*}, \operatorname{Ext}^{q,*}] \subset \operatorname{Ext}^{p+q-1,*}.$$
(2)

The Lie bracket can be defined using the bijection between the Koszul complex $C^*(\mathcal{L}_X, \mathcal{L}_X)$ and derivations on the Sullivan model $C^*(\mathcal{L}_X, \mathbb{Q})$ of X [9, Proposition 4] (see also [7] for a direct definition of the Lie bracket on $C^*(\mathcal{L}_X, \mathcal{L}_X)$). Alternatively one may use the bijection

$$\operatorname{Hom}_{TV}(TV \otimes (\mathbb{Q} \oplus sV), \mathbb{L}(V)) \cong s\mathbb{L}(V) \oplus \operatorname{Der} \mathbb{L}(V)$$

to transfer a Lie algebra structure on $\operatorname{Hom}_{TV}(TV \otimes (\mathbb{Q} \oplus sV), \mathbb{L}(V))$ from $s\mathbb{L}(V) \oplus \operatorname{Der} \mathbb{L}(V)$.

Definition 3. Let *L* be a Lie algebra. An element $x \in L$ is called locally nilpotent if for every $y \in L$, there is a positive integer *k* such that $(ad x)^k(y) = 0$. A subset $K \subset L$ is called locally nilpotent if each element of *K* is locally nilpotent.

We deduce from Equation (2) the following

Proposition 4. Let X be a coformal space of homotopy Lie algebra denoted \mathcal{L}_X . If X has a Quillen model $(\mathbb{L}(V), \delta)$, of length n, one has:

- 1. For $k \neq 1$, $\operatorname{Ext}_{A}^{k}(\mathbb{Q}, \mathcal{L}_{X})$ is locally nilpotent,
- 2. $\operatorname{Ext}^{1}_{A}(\mathbb{Q}, \mathcal{L}_{X})$ is a subalgebra of $\operatorname{Ext}_{A}(\mathbb{Q}, \mathcal{L}_{X})$,
- 3. If $\operatorname{Ext}_{A}^{0}(\mathbb{Q},\mathcal{L}_{X})=0$, then $\oplus_{i \geq i_{0}} \operatorname{Ext}_{A}^{i}(\mathbb{Q},\mathcal{L}_{X})$ is an ideal of $\operatorname{Ext}_{A}(\mathbb{Q},\mathcal{L}_{X})$, for $i_{0} \geq 1$.

We will now assume that X is a coformal 2-cone. Recall that X has a Quillen minimal model of the form $(\mathbb{L}(V_1 \oplus V_2), \delta)$, with $\delta V_1 = 0$ and $\delta V_2 \subset \mathbb{L}(V_1)$. Moreover $\pi_*(\Omega X) \otimes \mathbb{Q} = H_*(\mathbb{L}(V_1 \oplus V_2), \delta) = \mathbb{L}(V_1)/I$, where I is the ideal of $\mathbb{L}(V_1)$ generated by δV_2 .

Definition 5. Let $\mathbb{L}(V)$ be a free Lie algebra where $\{a, b, c, ...\}$ is a basis of V. Denote $\mathbb{L}^n(V)$ the subspace of $\mathbb{L}(V)$ consisting of Lie brackets of length n. Consider a basis $\{u_1, u_2, ...\}$ of $\mathbb{L}^n(V)$ where each u_i is a Lie monomial. If $x \in \{a, b, c, ...\}$, we define the length of u_i in the variable $x, l_x(u_i)$, as the number of occurrences of the letter x in u_i . If $u = \sum r_i u_i \in \mathbb{L}^n(V)$, define $l_x(u) = \min\{l_x(u_i)\}$ and if $v = \sum v_i$ where $v_i \in \mathbb{L}^i(V), l_x(v) = \min\{l_x(v_i)\}$.

It is straightforward that the above definition extends to the enveloping algebra T(V).

Theorem 6. Let X be a coformal 2-cone and $(\mathbb{L}(V_1 \oplus V_2), \delta)$ be its Quillen minimal model. Choose a basis $\{x_1, x_2, \ldots\}$ for V_1 and a basis $\{y_1, y_2, \ldots\}$ for V_2 . If for some $x_k \in \{x_1, x_2, \ldots\}$, $l_{x_k}(\delta y_j) \ge 2$ for all $y_j \in \{y_1, y_2, \ldots\}$, then $\operatorname{Ext}_A^{2,*}(\mathbb{Q}, \mathcal{L}_X)$ is infinite dimensional.

Proof. Note that for $i \neq k$ the element $(ad x_i)^n(x_k)$ is a nonzero homology class in $H_*(\mathbb{L}(V_1 \oplus V_2), \delta)$ as it contains only one occurrence of x_k . Take $y_t \in \{y_1, y_2, \ldots\}$ and $x_m \in \{x_1, x_2, \ldots\}$ with $m \neq k$. For each $n \geq 1$, define $f_n \in \text{Hom}_A(A \otimes sV_2, \mathcal{L}_X)$ by $f_n(sy_t) = (ad x_m)^n(x_k)$ and $f_n(sy_j) = 0$ for $j \neq t$. Obviously $f_n \in \text{Hom}_A(A \otimes sV_2, \mathcal{L}_X)$ is a cocycle. Suppose that f_n is a coboundary. There exists $g_n \in \text{Hom}_A(A \otimes sV_1, \mathcal{L}_X)$ such that $f_n(sy_t) = g_n(dsy_t)$. From the definition of the differential d, one has $dsy_t = \sum_i p_i sx_i$, where the p_i 's are polynomials in the variables x_1, x_2, \ldots . From the hypothesis on the differential dy_t one knows that $l_{x_k}(p_i) \geq 2$ for $i \neq k$ and $l_{x_k}(p_k) \geq 1$. By using the number of occurrences of the component of length 1 in x_k of $p_k g_n(sx_k)$. Therefore, in the monomial decomposition of $g_n(sx_k)$ (resp. p_k) there must exist $(ad x_m)^{n-s}(x_k)$ (resp. x_m^s). We obtain a contradiction with $l_{x_k}(p_k) \geq 1$.

The cocycles f_n create an infinite number of non zero classes (of distinct degrees) and the space $\operatorname{Ext}_A^{2,*}(\mathbb{Q}, \mathcal{L}_X)$ is infinite dimensional.

Corollary 7. If hypotheses of the above theorem are satisfied, then $cat(Baut_1(X)) = \infty$.

Proof. If $sx \in \operatorname{Ext}^{0,*} \subset \mathbb{L}(V_1)/I$ and $f \in \operatorname{Ext}^{2,*}$ then $[f, sx] = \pm sf(x)$. As elements of $\operatorname{Ext}^{2,*}$ vanish on V_1 , we deduce that $[\operatorname{Ext}^{2,*}, \operatorname{Ext}^{0,*}] = 0$. It follows from Theorem 6 that $J = \operatorname{Ext}^2_{U\mathcal{L}_X}(\mathbb{Q}, \mathcal{L}_X)$ is an infinite dimensional ideal of $\pi_*(\Omega B \operatorname{aut}_1(X))$. Moreover it follows from Equation (2) that J is abelian. We deduce that the category of $B \operatorname{aut}_1(X)$ is infinite [5, Theorem 12.2].

If X is an elliptic space of Sullivan minimal model $(\wedge Z, d)$ then $Der \wedge Z$ is a finite dimensional \mathbb{Q} -vector space. Hence the homotopy Lie algebra of $Baut_1(X)$ is finite dimensional, therefore $\pi_*(\Omega Baut_1(X)) \otimes \mathbb{Q}$ is nilpotent. In [11], P. Salvatore proved that if $X = S^{2n+1} \vee S^{2n+1}$, then $\pi_*(\Omega Baut_1(X)) \otimes \mathbb{Q}$ contains an element α that is not locally nilpotent. The proof consists in the construction of two outer derivations α and β of the free Lie algebra $\mathbb{L}(a, b)$, where |a| = |b| = 2n, such that $(ad \alpha)^i(\beta) \neq 0$, for every integer i > 0. The technique can be applied to any free Lie algebra with at least two generators. Therefore $\pi_*(\Omega Baut_1(X)) \otimes \mathbb{Q}$ contains an element α that is not locally nilpotent if X is a wedge of two spheres or more.

P. Salvatore asked if $\pi_*(\Omega B \operatorname{aut}_1(X)) \otimes \mathbb{Q}$ has always such a property for every hyperbolic space X. A positive answer to this question would provide another characterization of the elliptic-hyperbolic dichotomy [5].

For a product space we have the following

Proposition 8. If $X = Y \times Z$ is a product space such that the Lie algebra $\pi_*(\Omega B \operatorname{aut}_1(Y)) \otimes \mathbb{Q}$ is not nilpotent, then $\pi_*(\Omega B \operatorname{aut}_1(X)) \otimes \mathbb{Q}$ is not nilpotent.

Proof. Let $(\land V, d)$ and $(\land W, d')$ be Sullivan models of Y and Z respectively. Therefore $(\land V \otimes \land W, d \otimes d')$ is a Sullivan model of X. It follows from [12] that

$$H_*(Der(\wedge V \otimes \wedge W)) \cong H_*(Der \wedge V) \otimes H^*(\wedge W) \oplus H^*(\wedge V) \otimes H_*(Der \wedge W).$$

Therefore $\pi_*(\Omega B \operatorname{aut}_1(Y)) \otimes \mathbb{Q}$ is a subalgebra of $\pi_*(\Omega B \operatorname{aut}_1(X)) \otimes \mathbb{Q}$.

In particular if Y is a wedge of at least two spheres, then the Lie algebra $\pi_*(\Omega B \operatorname{aut}_1(Y)) \otimes \mathbb{Q}$ is not nilpotent and so is $\pi_*(\Omega B \operatorname{aut}_1(X)) \otimes \mathbb{Q}$.

We can extend Salvatore's result to some certain types of coformal hyperbolic 2-cones.

Theorem 9. Under the hypotheses of Theorem 6, the rational homotopy Lie algebra of $B \operatorname{aut}_1(X)$ is not nilpotent.

Proof. For $i \neq k$, let $(ad x_k)^n(x_i)$ be a nonzero element of \mathcal{L}_X . Define $\alpha_n \in Ext^1_A(\mathbb{Q}, \mathcal{L}_X)$ by $\alpha_n(sx_i) = (ad x_k)^n(x_i)$ and zero on the other generators of \mathcal{L}_X . Take $w \in V_2$ and define $\beta_m \in Ext^2_A(\mathbb{Q}, \mathcal{L}_X)$ by $\beta_m(sw) = (ad x_k)^m(x_i)$ and zero elsewhere. A short computation shows that $[\alpha_n, \beta_m] = \pm \beta_{m+n}$. Hence $(ad \alpha_n)^l(\beta_m) \neq 0$ for all $l \geq 1$. Therefore $\pi_*(\Omega B aut_1(X)) \otimes \mathbb{Q}$ is not nilpotent. \Box

Example 10. Consider the space X for which the Quillen minimal model is $(\mathbb{L}(a, b, c), d)$ with da = db = 0 and dc = [b, [b, a]]. The space X satisfies the hypothesis of Theorem 6. Therefore $\operatorname{cat}(B \operatorname{aut}_1(X))$ is infinite. Moreover the homotopy Lie algebra of $B \operatorname{aut}_1(X) \otimes \mathbb{Q}$ is not nilpotent.

References

- J.F. Adams and P. Hilton, On the chain algebra of loop spaces, Comment. Math. Helv. 30 (1956), 305–330.
- [2] H.J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), 219-242.
- [3] O. Cornea, Strong LS category equals cone-length, Topology 34 (1995), 377– 381.
- [4] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187–197.
- Y. Félix, La Dichotomie Elliptique Hyperbolique en Homotopie Rationnelle, Astérisque 176, 1989.
- [6] Y. Félix, S. Halperin and J.-C. Thomas, *Rational Homotopy Theory*, Graduate Texts in Mathematics, Springer, New York, 2000.
- [7] D.B. Fuchs, Cohomology of Infinite Dimensional Lie Algebras, Consultants Bureau, New York, 1986.
- [8] J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), 281–289.
- J.-B. Gatsinzi, Products and Lusternik-Schnirelmann category of classifying spaces, Indag. Mathem. 9 (1998), 351–357.
- [10] J.-M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Math., vol. 422, Springer Verlag, Berlin, 1974.
- [11] P. Salvatore, Rational homotopy nilpotency of self-equivalences, Topology Appl. 77 (1997), 37–50.

- [12] M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type, preprint, 1982.
- [13] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269–331.
- [14] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math., vol. 1025, Springer Verlag, Berlin, 1983.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2004/n1a11/v6n1a11.(dvi,ps,pdf)

J.-B. Gatsinzi gatsinzj@mopipi.ub.bw

Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana