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OPERATIONS AND CO-OPERATIONS IN MORAVA E-THEORY

MARK HOVEY

(communicated by Andrew Baker)

Abstract
Let E = En denote the Morava E-theory spectrum, and

let Γ be the Morava stabilizer group of ring spectrum isomor-
phisms of E. We revisit the isomorphism π∗LK(n)(E ∧ E) ∼=
C(Γ, E∗) of graded formal Hopf algebroids, and its dual iso-
morphism E∗E ∼= E∗[[Γ]].

Introduction

Let p denote an integer prime, n denote a nonnegative integer, and let E denote
the Morava E-theory spectrum Ep,n. This is the Landweber exact ring spectrum
with

E∗ ∼= WFpn [[u1, . . . , un−1]][u, u−1],

where the degree of ui is 0 for all i and the degree of u is 2. There is an algebra
map BP∗ −→ E∗ that takes vi to uiu

pi−1 for i < n, takes vn to upn−1, and takes
vi to 0 for i > n. Morava E-theory is closely related to the Johnson-Wilson theory
E(n); in fact E is a finite free module over the localization LK(n)E(n) of E(n) with
respect to Morava K-theory K(n).

The Morava E-theory spectrum E is very important in algebraic topology. It is
local with respect to K(n), and plays a major role in the structure of the K(n)-local
homotopy category [HS99]. Let Γ denote the group of ring spectrum automorphisms
(in the stable homotopy category) of E. Then Γ is a version of the Morava stabilizer
group [Str00, Proposition 4], and the famous result of Hopkins-Miller [Rez98] says
that E is in fact an A∞-ring spectrum and that Γ is isomorphic to the group of
components of the space of A∞ self-maps of E.

It is then natural to compute the operations E∗E and co-operations E∗E of E.
Because E is K(n)-local, it is more natural to look at E∨

∗ E = π∗LK(n)(E∧E) rather
than the actual co-operations. This ring turns out to be the completion of E∗E at
the maximal ideal m. The answer has then been known to the experts for quite
some time; E∨

∗ E is isomorphic to C(Γ, E∗), the ring of continuous functions from
the profinite group Γ to E∗ with its m-adic topology, where m = (p, u1, . . . , un−1) is
the unique homogeneous maximal ideal. Also, E∗E is isomorphic to the completed
twisted group ring E∗[[Γ]].
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The first statement of this result seems to have been in an unpublished preprint of
Hopkins and Ravenel [HR89], building on a similar statement for K(n) in Morava’s
seminal paper [Mor85]. The first published proof of the co-operation result is due
to Baker in [Bak95]; see also [Bak89]. A very short treatment is given in [DH04,
Proposition 2.2], and a spectrum version of the isomorphism E∗E ∼= E∗[[Γ]] ap-
pears in Proposition 2.4 of [GHMR03]. To this author’s eye, at least, these proofs
are condensed and hard to follow. The general assumption is that Morava proved
the result for K(n) in [Mor85], and it is just a matter of getting efficiently from
what Morava states to the actual result, by lifting using Hensel’s lemma. Strickland
approaches the result from a new perspective in [Str00, Theorem 12], as does K.
Johnson in [Joh00]. But the calculation of E∨

∗ E is really a side issue in both pa-
pers, so also gets relatively short shrift. There is also an unpublished preprint of
Daniel Davis [Dav04], devoted to the theory of discrete Γ-spectra, that addresses
the computation of E∨

∗ E.
In this paper, the author has tried to present the calculation of E∨

∗ E in a fairly
self-contained and conceptual way. Essentially, he has written a proof that he himself
can understand, in the hope that this will also be useful to others. There are, after
all, a great many details to be worked out. The basic idea, following Morava, is
that E∨

∗ E and C(Γ, E∗) should represent the same functor on the category of rings.
However, it is not at all obvious that this is the case. The first reduction is to divide
by the maximal ideal m, and to eliminate the grading, reducing us to showing
that K0E and C(Γ,Fpn) represent the same functor. Even after identifying Γ as
a profinite topological group with an appropriate version of the Morava stabilizer
group, which itself requires some nontrivial theory of Landweber exact spectra and
profinite groups, this is still not clear. What is fairly simple to check is that K0E
and C(Γ,Fpn) have the same Fp-valued points, where Fp is the algebraic closure of
Fp. The we use the fact that both algebras are ind-étale over Fpn to complete the
proof.

Here is an outline of the paper. Following Strickland [Str00], we first define the
map

Φ: E∨
∗ E −→ C(Γ, E∗)

in Section 1. We also show that Γ is profinite and acts continuously on E∗. We then
prove, again following Strickland’s proof, that both E∨

∗ E and C(Γ, E∗) are pro-free
E∗-modules in Section 2. It follows that to prove Φ is an isomorphism, it suffices to
prove that the map

Ψ: K0E −→ C(Γ,Fpn)

is an isomorphism, where K = E/m is a variant on Morava K-theory. At this point,
our proof diverges from Strickland’s, as we now introduce the notion of ind-étale
algebras in Section 3. We prove that both K0E and C(Γ,Fpn) are ind-étale Fpn-
algebras. It follows that Ψ is an isomorphism if and only if AlgFpn (Ψ,Fp) is an
isomorphism, where Fp denotes the algebraic closure of Fp. We then prove that
AlgFpn (Ψ,Fp) is an isomorphism in Section 4, completing the proof that Φ is an
isomorphism. This requires identification of the group Γ, also done by Strickland
in [Str00] but with many details left out.
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Having completed the proof that Φ is an isomorphism in Theorem 4.11, we turn
to cohomology operations in Section 5. We define the twisted completed group ring
E∗[[Γ]] and show that the natural map

E∗[[Γ]] −→ E∗E

induced by the inclusion of Γ in E0E is an isomorphism. We turn to Hopf algebroid
structure in Section 6, defining the notion of a graded formal Hopf algebroid, show-
ing that both E∨

∗ E and C(Γ, E∗) carry such structure, and proving that Φ preserves
it. We close the paper with an appendix where we show that the topology on Γ is
entirely determined by its group structure. This is also proved in [Str00], but again
with details left out.

The author would like to thank Neil Strickland, whose paper [Str00] was the
inspiration for this one. It was also Strickland who first suggested the word “étale”
to the author, which turned out to be the key idea to making the proof more
conceptual. He would also like to thank Daniel Davis for his careful reading of the
paper and his encouragement.

1. The map Φ

In this section we define the map

Φ: E∨
∗ E −→ C(Γ, E∗),

and we show that Γ is a first countable profinite group. This will require use of
the natural topology, studied in [HS99, Section 11], on morphisms in the K(n)-
local category. This natural topology is not very complicated, however, and we
will summarize the properties of it that we need. Also, we will frequently use the
notation X∧̃Y to mean LK(n)(X ∧ Y ). With this notation, E∨

∗ X = π∗(E∧̃X).
Our construction of Φ will follow Strickland [Str00, Theorem 12]. As mentioned

above, there is a natural topology on [X,Y ], for X, Y K(n)-local spectra [HS99,
Section 11] (or objects in any algebraic stable homotopy category [HPS97, Sec-
tion 4.4]). Given any F that is small in the K(n)-local category (this means [F,−]
commutes with coproducts in the K(n)-local category), and any map h : F −→ X,
we define Uh to be the set of all f ∈ [X, Y ] with fh = 0. The Uf define a basis
of neighborhoods of 0 in [X, Y ], and then V ⊆ [X, Y ] is open if and only if for all
v ∈ V , there is an h such that v + Uh ⊆ V . Equivalently, V is open if and only if
for all v in V there is an h such that fh = vh implies f ∈ V .

This natural topology has a number of good properties. First of all, it is straight-
forward to check that the composition map

[X, Y ]× [Y,Z] −→ [X, Z]

is continuous (see [HPS97, Proposition 4.4.1(a)]). The smash product map

[X,Y ]× [Z,W ] −→ [X∧̃Z, Y ∧̃W ]

is also continuous [HS99, Proposition 11.3], but it is slightly harder to check this. In
good cases, the natural topology is the obvious one. For example, the natural topol-
ogy on E∗X and E∨

∗ X is the m-adic topology when K(n)∗X is finite-dimensional



Homology, Homotopy and Applications, vol. 6(1), 2004 204

(that is, when X is strongly dualizable in the K(n)-local category). This is proved
in [HS99, Proposition 11.9] for a different version of E, but the proof is the same
for our E.

There is a map
σ : Γ× E∨

∗ E −→ E∗

defined by letting σ(γ, a) be the composite

Sm a−→ E∧̃E
1e∧γ−−→ E∧̃E

µ−→ E.

Now E∨
∗ E, E∗, and Γ ⊆ [E, E] are sets of maps in the K(n)-local category, so they

have a natural topology as described above. The map σ is built from composition
maps and the map

[E, E] −→ [E∧̃E, E∧̃E]

that takes γ to 1∧̃γ. By the remarks above on the natural topology, we see that σ
is continuous. Its adjoint is therefore a map

Φ: E∨
∗ E −→ C(Γ, E∗),

where continuity is determined by the natural topologies. It is a straightforward
diagram chase to verify that Φ is a map of E∗-modules. Using the fact that Γ
consists of ring spectrum automorphisms, one can also check by a diagram chase
that Φ is a map of E∗-algebras.

We will of course need to determine the topological group Γ. For the moment,
however, we content ourselves with some basic structural results.

Proposition 1.1. The set [E, E] is a first countable compact Hausdorff topological
ring in the natural topology, and the topology is defined by a set of open left ideals.
Furthermore, the action of [E, E] on [X, E] is continuous for all K(n)-local spectra
X.

Proof. The group [X, Y ] is always a topological group in the natural topology. Since
the multiplication in [E, E] is given by composition, it is continuous, and so [E,E]
is a topological ring. The same argument shows that the action of [E,E] on [X,E]
is continuous. Now suppose F is small in the K(n)-local category. The prototypical
F would be LnV (n− 1), if it existed. This spectrum would have

E∗(LnV (n− 1)) ∼= E∗/m,

which is obviously finite in each degree. One of the main themes of [HS99] is
that every small object in the K(n)-local category behaves as if it were built from
finitely many copies of the putative spectrum LnV (n− 1). In particular, the argu-
ment of [HS99, Theorem 8.6] shows that E∗F is finite in each degree. Then [HS99,
Proposition 11.5] implies that [E, E] is profinite, and hence compact Hausdorff. To
see that [E, E] is first countable, note that there are only countably many (isomor-
phism classes of) small objects in the K(n)-local category by the results of [HS99,
Section 8]. Given a small object F , we have just seen that [F,E] is finite. Hence there
are only countably many basic neighborhoods Uh of 0, so [E, E] is first countable.
It is clear that the Uh are left ideals.
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Corollary 1.2. The group Γ is a first countable Hausdorff topological group whose
topology is defined by a set of open subgroups. Furthermore, the action of Γ on E∗
is continuous when E∗ is given the m-adic topology.

Proof. In general, if A is a topological ring defined by a set of open left ideals, then
A× is a topological group defined by a set of open subgroups. Indeed, if U is an
open left ideal in A, then one can check that V = (e+U)∩A× is an open subgroup
in A×. If {Ui} defines the topology on A, then the corresponding set {Vi} defines
the subspace topology on A×. It is clear that the multiplication map is continuous;
to see that the inverse map is continuous, note that (x(x−1V x))−1 = x−1V . Our
group Γ is a subgroup of [E,E]×, so is also a first countable Hausdorff topological
group whose topology is defined by a set of open subgroups.

Proposition 1.1 shows that the action of Γ on E∗ is continuous when E∗ is given
the natural topology, and we have seen already that the natural topology on E∗ is
the m-adic topology.

We want to conclude that Γ is profinite. For this, we need to know that Γ is com-
pact, according to [DdSMS99, Definition 1.1]. Since [E, E] is compact, it suffices
to show that Γ is closed in [E, E].

Lemma 1.3. Suppose A is a compact Hausdorff topological ring. Then A× is closed
in A.

Proof. Note that A× = B ∩ C, where B is the set of all elements with a right
inverse and C is the set of all elements with a left inverse. We will show that B is
closed; a similar proof shows that C is closed as well. Let µ : A×A −→ A denote the
multiplication map, and let D denote µ−1(1), which is closed since A is Hausdorff.
Then B = π1D, but π1 is a map from the compact space A × A to the Hausdorff
space A, so is a closed mapping.

Theorem 1.4. The group Γ is a first countable profinite group.

Proof. In view of Corollary 1.2 and Lemma 1.3, it suffices to show that the set S of
ring spectrum maps in [E, E] is closed. Note that S = S1 ∩ S2, where S1 is the set
of maps compatible with the multiplication µ and S2 is the set of maps compatible
with the unit η. Certainly S2 is closed, since it is the inverse image of η under the
continuous composition

[E, E] −→ [S, E]× [E,E] ◦−→ [S,E].

Here the first map sends f to (η, f), and the second map is composition. On the
other hand, S1 is the equalizer of the maps

[E,E]
µ∗−→ [E ∧ E, E]

and
[E,E] ∆−→ [E, E]× [E, E] ∧−→ [E ∧ E, E ∧ E]

µ∗−→ [E ∧ E, E].

The maps µ∗ and µ∗ are continuous since they are just composition, and the map
∧ is continuous as well ([HS99, Proposition 11.3]). Proposition 11.5 of [HS99] tells
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us that [E ∧ E,E] is Hausdorff, and the equalizer of two continuous maps into a
Hausdorff space is always closed.

2. Pro-free modules

In this section, we show that both E∨
∗ E and C(Γ, E∗) are pro-free E∗-modules.

This allows us to conclude that Φ is an isomorphism if and only if the induced map

Ψ: K0E −→ C(Γ,Fpn)

is an isomorphism. This section will use the results on pro-free modules from [HS99,
Appendix A]. That appendix is completely algebraic and does not depend on the
body of [HS99].

Recall that, if R is a complete local ring, an R-module is called pro-free if it is
the completion of a free module. Our particular ring E∗ is graded, so when we take
the completion of a graded module we must do so in the graded sense. However, all
our E∗-modules will be evenly graded, and since E∗ has a unit in degree 2, there
is an equivalence of categories between evenly graded E∗-modules and E0-modules.
This equivalence takes an evenly graded E∗-module M to M0, and an E0-module
N to N [u, u−1], with N in degree 0.

We need to show that the E∗-modules we deal with are pro-free. For this, we
recall the spectrum K = E/m. This spectrum can be made into a ring spectrum
by using, for example, the theory of bordism with singularities or its modern re-
placement [EKMM97, Chapter V]. It is in fact a field spectrum, and is additively
isomorphic to a wedge of suspensions of K(n). Note that K∗ ∼= Fpn [u, u−1].

The following lemma is very useful.

Lemma 2.1. If K∗X is concentrated in even degrees, then E∗X and E∨
∗ X are pro-

free E∗-modules. Furthermore, in this case K∗X ∼= (E∨
∗ X)/m and K∗X ∼= E∗X/m.

Proof. This lemma is proven, for a slightly different spectrum E, in Propositions 2.5
and 8.4(f) of [HS99]. Let G(k) denote the theory E/(p, u1, . . . , uk−1). There is an
obvious exact sequence relating G(k) to G(k + 1). Using these exact sequences, one
can work back from K = G(n) to E = G(0). In so doing, one sees that G(k)∨∗X is
evenly graded and that G(k + 1)∨∗ (X) ∼= G(k)∨∗ (X)/uk. Hence K∗X ∼= (E∨

∗ X)/m.
It also follows that (p, u1, . . . , un−1) is a regular sequence on E∨

∗ X. Theorem A.9
of [HS99] then guarantees that E∨

∗ X is pro-free. The same method works for E∗X
as well.

Proposition 2.2. The E∗-module E∨
∗ E is pro-free and concentrated in even di-

mensions.

Proof. By Lemma 2.1, it suffices to check that K∗E is concentrated in even degrees.
Landweber exactness of E implies that K∗E ∼= K∗BP ⊗BP∗ E∗, but the Atiyah-
Hirzebruch spectral sequence implies that K∗BP ∼= K∗[t1, t2, . . . ] with |ti| = 2(pi−
1) as in [Rav86, Lemma 4.1.7].

To show that C(Γ, E∗) is pro-free will require more work. We begin by analyzing
C(G, R) when G is profinite and R is discrete.
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Lemma 2.3. Suppose G = lim G/U is a profinite group and R is a discrete com-
mutative ring. Then the natural map of rings ρ : colimU F (G/U,R) −→ C(G,R) is
an isomorphism, where U runs through the open normal subgroups of G,

This lemma works when R is graded as well.

Proof. The map ρ sends a map G/U −→ R to the composite G −→ G/U −→ R.
Since the reduction maps are surjective, ρ is injective. Now suppose f : G −→ R
is continuous. For each x ∈ G, choose an open normal subgroup Nx such that
f(xNx) = f(x). The xNx form an open cover of G, so there is a finite subcover
{x1Nx1 , . . . , xkNxk

}. Let N = Nx1 ∩ · · · ∩ Nxk
. We claim that f is induced by a

function G/N −→ Z. Indeed, suppose x and y are congruent modulo N . Now x must
lie in some xiNxi

, so x is congruent to xi modulo Nxi
. It follows that y is also

congruent to xi modulo Nxi
, and so f(x) = f(xi) = f(y), as required.

In fact, the dependence of C(G,R) on R is very simple.

Proposition 2.4. Suppose G is a profinite group and R is a discrete commutative
ring. Then the natural map σ : R⊗C(G,Z) −→ C(G,R) defined by σ(r, f)(g) = f(g)r
is an isomorphism.

Again, this proposition holds if R is graded as well, where C(G,Z) is thought of
as a graded ring concentrated in degree 0.

Proof. When G is finite, the proposition is clear since both sides are free R-modules
of rank |G|, and σ takes the basis {1⊗g∗} to the basis {g∗}, where g∗ is the function
that takes g to 1 and everything else to 0. When G = lim(G/U) is profinite, we take
the direct limits of the isomorphisms for G/U and use Lemma 2.3.

We need a version of Proposition 2.4 when R is complete in the a-adic topology,
for some ideal a. In this case, if S is a discrete ring such as C(G,Z), we define R⊗̂S
to be the completion of R⊗ S with respect to the image of a⊗ S in R⊗ S.

Proposition 2.5. Suppose G is a profinite group and R is a commutative ring
that is complete in the a-adic topology for some ideal a. Then there is a natural
isomorphism

R⊗̂C(G,Z)
∼=−→ C(G,R).

As usual, this isomorphism will work in the graded case as well, as long as a is
homogeneous.

Proof. Take the inverse limit of the isomorphisms

σ : R/ai ⊗ C(G,Z) −→ C(G, R/ai),

of Proposition 2.4.

We can now prove that C(Γ, E∗) is pro-free.

Theorem 2.6. Suppose G is a first countable profinite group and R is a commu-
tative ring that is complete in the a-adic topology for some ideal a. Then C(G,R)
is pro-free as an R-module.
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This theorem holds in either the graded or ungraded case.

Proof. Proposition 2.5 tells us that C(G,R) ∼= R⊗̂C(G,Z). Hence it suffices to
show that C(G,Z) is a free abelian group. But Lemma 2.3 tells us that

C(G,Z) ∼= colimU F (G/U,Z).

Since G is first countable, we can make this colimit run over a chain

· · · ⊆ Uk ⊆ · · · ⊆ U0.

Each group F (G/Uk,Z) is a finitely generated free abelian group, and each map
F (G/Uk,Z) −→ F (G/Uk+1,Z) is a split monomorphism. Hence C(G,Z) is a free
abelian group.

We then have the following general lemma about maps of pro-free modules.

Lemma 2.7. Suppose R is a Noetherian regular complete local ring with maximal
ideal m. A map f : M −→ N of pro-free modules is an isomorphism if and only
R/m⊗R f is an isomorphism.

We are of course interested in this lemma when R is graded, but the proof is the
same in any case.

Proof. It is proved in [HS99, Proposition A.13] that if R/m ⊗R f is a monomor-
phism, then f is a split monomorphism. The cokernel C of f is then a summand in
the complete module N , but C/mC = 0. It follows that C = 0.

We then have the following theorem.

Theorem 2.8. The map Φ: E∨
∗ E −→ C(Γ, E∗) is an isomorphism if and only if the

map Ψ: K0E −→ C(Γ,Fpn) induced by Φ is an isomorphism.

Proof. Since E∨
∗ E and C(Γ, E∗) are pro-free by Proposition 2.2 and Theorem 2.6,

Lemma 2.7 implies that Φ is an isomorphism if and only Φ/m is an isomorphism.
Lemma 2.1 then tells us that E∨

∗ E/m ∼= K∗E. Proposition 2.5 and Proposition 2.4
imply that

C(Γ, E∗)/m ∼= (E∗⊗̂C(Γ,Z))/m

∼= (E∗ ⊗ C(Γ,Z))/m ∼= (E∗/m)⊗ C(Γ,Z) ∼= C(Γ,K∗).

Now K∗E is concentrated in even dimensions by Proposition 2.2, as is C(Γ,K∗).
Since both contain the unit u in degree 2, Φ/m is an isomorphism if and only if the
degree 0 part Ψ of Φ/m is an isomorphism.

3. Ind-étale algebras

The object of this section is to show that

Ψ: K0E −→ C(Γ,Fpn)

is an isomorphism if and only if AlgFpn (Ψ,Fp) is an isomorphism of sets, where Fp

is the algebraic closure of Fp, and AlgFpn is the category of Fpn-algebras. We will
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accomplish this by showing that both K0E and C(Γ,Fpn) are ind-étale Fpn-algebras,
and proving a general result about maps between such algebras.

3.1. Ind-étale algebras
We first develop the algebraic theory of ind-étale algebras. For a general com-

mutative ring k, a finitely presented k-algebra is called étale if, whenever N is a
square 0 ideal in a k-algebra C, the natural map

Algk(A, C) −→ Algk(A,C/N)

is an isomorphism. A is called smooth if this map is always surjective, and unram-
ified if it is always injective. These definitions are taken from [DG70, Section I.4.3],
where of course one works with arbitrary schemes.

If k is a field, the category of étale k-schemes is equivalent to the category of G-
sets, where G is the Galois group of the separable closure ks over k [DG70, I.4.6.4].
Note that G is profinite, and so a G-set means a set with a continuous action of G.
The equivalence takes X to the set X(ks) of its ks-valued points. The equivalence
works because if X is an étale k-scheme, then X ⊗k ks is constant [DG70, I.4.6.2].
Now, if A is an étale algebra, then Spec A⊗k ks is both constant and affine, so must
be a finite constant scheme. Thus we have the following well-known proposition.
See Proposition 18.3 and Theorem 18.4 of [KMRT98].

Proposition 3.1. Suppose k is a field. A k-algebra A is étale if and only if A⊗k ks

is isomorphic to a finite product of copies of ks. Moreover, the category of étale
k-algebras is anti-equivalent to the category of finite G-sets, where G denotes the
Galois group of ks/k.

Now, the algebras we have to deal with are definitely not finitely presented, so
we make the following definition.

Definition 3.2. If k is a commutative ring, we define a k-algebra A to be ind-étale
if A is a filtered colimit of étale k-algebras.

The main reason we introduce this definition is the following lemma.

Lemma 3.3. If k is a field and G is a profinite group, then C(G, k) is an ind-étale
k-algebra.

Proof. Lemma 2.3 tells us that C(G, k) ∼= colim F (G/U, k), where U runs through
the open normal subgroups of G. Each F (G/U, k) is obviously étale, since it is a
product of copies of k even before tensoring with ks.

The terminology “ind-étale” is justified by the following proposition.

Proposition 3.4. For a commutative ring k, the category of ind-étale k-algebras
is equivalent to the category of ind-objects in the category of étale k-algebras.

Here, given a category C, the category of ind-objects in C is the category of all
functors F : I −→ C, where I can be any filtered small category. The morphisms in
this category from F to G are defined to be limα colimβ C(F (α), G(β)). See [SGA4,
Section I.8.2].
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Proof. The colimit is an obvious functor from ind-objects to ind-étale k-algebras.
It is essentially surjective by definition. To see that it is fully faithful, we compute

Algk(colimAα, colim Bβ) ∼= limα Algk(Aα, colim Bβ)
∼= limα colimβ Algk(Aα, Bβ),

using the fact that Aα is finitely presented as a k-algebra.

It follows from Proposition 3.1 that, if k is a field, the category of ind-étale k-
algebras is anti-equivalent to the category of pro-objects in the category of finite
G-sets.

Proposition 3.5. Let G be a profinite group. The limit functor from the category
of pro-objects in finite G-sets to profinite G-sets is an equivalence of categories.

The morphisms in the category of profinite G-sets are continuous equivariant
maps from X to Y , denoted CG(X,Y ).

Proof. The limit functor is essentially surjective by definition. To determine whether
it is fully faithful, we compute

CG(lim Xα, limYβ) ∼= limβ CG(lim Xα, Yβ).

There is a canonical map

σ : colimα CG(Xα, Yβ) −→ CG(lim Xα, Yβ).

We claim that this map is an isomorphism. To see that σ is surjective, note that
a continuous G-map f : lim Xα −→ Yβ is determined by a partition of limXα into
open and closed sets Uy = f−1(y) for y ∈ Yβ , with gUy ⊆ Ugy. A basis for the
topology on limXα is given by the sets π−1

γ (Vγ), where πγ : lim Xα −→ Xγ is the
evident map and Vγ is an arbitrary subset of Xγ . Because our indexing category is
filtered, this basis is closed under finite intersections and finite unions. Since limXα

is compact, this means that a set that is both open and closed must be of the form
π−1

γ (Vγ). Again using the fact that the indexing category is filtered, we conclude
that there is a γ and subsets Vy in Xγ such that Uy = π−1

γ (Vy) for all y ∈ Yβ . It
follows that f is in the image of CG(Xγ , Yβ), and hence that σ is surjective. This
implies that the inverse limit functor is full.

To see that σ is injective, we use an argument we learned from Neil Strickland.
Suppose we have two maps f : Xα −→ Yβ and f ′ : Xα′ −→ Yβ with f ◦ πα = f ′ ◦ πα′ .
Since the diagram {Xγ} is filtered, we can assume α = α′. Choose an x ∈ Xα with
f(x) 6= f ′(x). Let I denote the indexing category of the pro-object X, and let C
denote the category of all pairs (γ, i) where i : γ −→ α is a morphism in I. Then C is
itself a filtered category, and we can define a functor from C to finite sets by taking
(γ, i) to (X(i))−1(x). The inverse limit of this functor is π−1

α (x), which must be
empty since f ◦πα = f ′◦πα. By [DdSMS99, Proposition 1.1.4], it follows that there
exists an i : γ −→ α such that (X(i))−1(x) = ∅. Since there are only finitely many
elements x and I is filtered, it follows that there exists a morphism j : δ −→ α such
that (X(j))−1(x) is empty for all x with f(x) 6= f ′(x). Hence f ◦X(j) = f ′ ◦X(j),
and so f and f ′ represent the same element of colimα CG(Xα, Yβ).
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We reach the following conclusion.

Theorem 3.6. Suppose k is a field with separable closure ks. Let G be the Galois
group of ks over k. The functor that takes a k-algebra A to Algk(A, ks) defines an
anti-equivalence of categories between ind-étale k-algebras and profinite G-sets. In
particular, if f : A −→ B is a map of ind-étale k-algebras, then f is an isomorphism
if and only if the induced map

Algk(B, ks) −→ Algk(A, ks)

is an isomorphism.

3.2. Identification of K0E
We have seen already in Lemma 3.3 that C(Γ,Fpn) is an ind-étale Fpn -algebra.

To show that K0E is an ind-étale Fpn-algebra will require considerably more work.
The goal of this section is to show that

K0E ∼= Fpn ⊗V V T [t0, t−1
0 ]⊗V Fpn

where V is BP∗ thought of as an ungraded ring, and V T is BP∗BP thought of as
an ungraded ring. Thus (V, V T [t0, t−1

0 ]) is the Hopf algebroid that represents the
groupoid of p-typical formal group laws and arbitrary isomorphisms between them
(see [Rav86, p. 365]).

We begin by defining R∗ = BP∗[u, u−1], where u has degree 2. Then R∗ is a
free BP∗-algebra, so is obviously Landweber exact. Hence we get a commutative
ring spectrum R, and an isomorphism R∗X ∼= R∗ ⊗BP∗ BP∗X. This is easy to see,
but see [HS99, Section 2] for details on Landweber exact spectra. In particular,
R∗R ∼= R∗ ⊗BP∗ BP∗BP ⊗BP∗ R∗.

Lemma 3.7. There is an isomorphism of Hopf algebroids

τ : (V [u, u−1], V T [t0, t−1
0 ][u, u−1]) ∼= (R∗, R∗R).

Proof. A map of graded rings from R∗ to S is a pair (F (x, y), u) where F (x, y) is
a homogeneous p-typical formal group law over S and u is a unit in S2. To say
that F (x, y) =

∑
i,j aijx

iyj is homogeneous means that each aij is homogeneous of
degree 2(i + j − 1). On the other hand, a map of graded rings from V [u, u−1] to S
is a pair (F0(x, y), y) where F0 is p-typical formal group law over S0 and u is a unit
in S2. Given (F (x, y), u) we define

F0(x, y) =
∑

i,j

aiju
1−i−jxiyj = uF (u−1x, u−1y).

One can readily see from [Rav86, Lemma A2.1.26] that F0 is p-typical. Con-
versely, given (F0(x, y), u) we define F (x, y) = u−1F0(ux, uy), which is homogeneous
and p-typical. This one-to-one correspondence gives us the desired isomorphism
V [u, u−1] ∼= R∗.

Similarly, a map of graded rings from R∗R to S is a quintuple

(F (x, y), F ′(x, y), u, v, φ),
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where F (x, y) and F ′(x, y) are homogeneous p-typical formal group laws over S,
u, v are units in S2, and φ is a homogeneous strict isomorphism from F to F ′,
in the sense that φ(x) =

∑
bix

i with bi homogeneous of degree 2i − 2. On the
other hand, a map of graded rings from V T [t0, t−1

0 ][u, u−1] to S is a quadruple
(F0(x, y), F ′0(x, y), u, ψ), where F0 and F ′0 are formal group laws over S0, u is a unit
in degree 2, and ψ is an arbitrary isomorphism from F0 to F ′0. Given (F, F ′, u, v, φ),
we define F0(x, y) = uF (u−1x, u−1y) and F ′0(x, y) = vF ′(v−1x, v−1y) as above. We
define ψ(x) = vφ(u−1x). The reader can check that ψ is defined over S0, and has
leading term vu−1x. We have

F ′0(ψx, ψy) = vF ′(v−1ψx, v−1ψy) = vF ′(φ(u−1x), φ(u−1y))

= vφF (u−1x, u−1y) = vφ(u−1F0(x, y)) = ψF0(x, y).

Hence ψ is an isomorphism from F0 to F ′0. Conversely, given (F0, F
′
0, u, ψ). we let

w be the leading coefficient (dψ(x)/dx)(0) of ψ and define

v = uw, F (x, y) = u−1F (ux, uy), F ′ = v−1F ′0(vx, vy), and φ(x) = v−1ψ(ux).

We leave to the reader the check that φ(x) is a homogeneous strict isomorphism,
and that these constructions are inverse to one another.

We then have the following proposition.

Proposition 3.8. E0E ∼= E0 ⊗V V T [t0, t−1
0 ]⊗V E0.

Note that E0 is a V -algebra via the map that takes vi to ui for 0 6 i < n, takes
vn to 1, and takes vi to 0 for i > n.

Proof. The map BP∗ −→ E∗ used to build E∗(−) factors through R∗. Using Landwe-
ber exactness of E, we conclude that

E∗E ∼= E∗ ⊗R∗ R∗R⊗R∗ E∗.

Using Lemma 3.7, we conclude that

E0E[u, u−1] ∼= E∗E ∼= E0[u, u−1]⊗V [u,u−1] V T [t0, t−1
0 ][u, u−1]⊗V [u,u−1] E0[u, u−1]

∼= (E0 ⊗V V T [t0, t−1
0 ]⊗V E0)[u, u−1].

The proposition follows.

Corollary 3.9. K0E ∼= Fpn ⊗V V T [t0, t−1
0 ]⊗V Fpn .

In this corollary, the map V −→ Fpn sends all vi to 0 except vn, which goes to 1.

Proof. Because E is Landweber exact, E∗E is a flat E∗-module. In particular, by
tensoring the sequences

0 −→ E∗/(p, u1, . . . , ui−1)
ui−→ E∗/(p, u1, . . . , ui−1) −→ E∗/(p, u1, . . . , ui) −→ 0

with E∗E, we see that (p, u1, . . . , un−1) is a regular sequence on E∗E. Hence K∗E ∼=
E∗E/m, and so K0E ∼= E0E/m. Since In = (p, v1, . . . , vn−1) is an invariant ideal in
V T , the corollary follows from Proposition 3.8.
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3.3. K0E as an ind-étale Fpn-algebra
Having identified K0E, we can begin the process of proving that K0E is an

ind-étale Fpn-algebra. We begin by identifying the representing scheme for auto-
morphisms of the Honda formal group law Fn. Recall that this is the p-typical
formal group law over an Fp-algebra S whose classifying map takes vi to 0 for all
i 6= n and takes vn to 1. Its p-series is [p]Fn

(x) = xpn

.

Proposition 3.10. Let S be an Fp-algebra. A power series ψ(x) ∈ S[[x]] is an

automorphism of the Honda formal group law Fn if and only if ψ−1(x) =
∞∑Fn

i=0

tix
pi

where tp
n

i = ti for all i and t0 is a unit.

The only if half of this proposition is proved in the proof of [Str00, Theorem 12],
and the if half is stated there.

Proof. Suppose first that ψ(x) is an automorphism of Fn. Since Fn is p-typical,

Lemma A2.1.26 of [Rav86] implies that ψ−1(x) =
∞∑Fn

i=0

tix
pi

. Since ψ−1(x) is also

an automorphism of Fn, it commutes with the p-series. We conclude that
∞∑Fn

i=0

ti(xpn

)pi

= (ψ−1(x))pn

,

so
∞∑Fn

i=0

tix
pi+n

=
∞∑Fn

i=0

tp
n

i xpi+n

,

Hence tp
n

i = ti for all i.

Conversely, suppose ψ−1(x) =
∞∑Fn

i=0

tix
pi

, tp
n

i = ti for all i, and t0 is a unit.

Define F (x, y) = ψFn(ψ−1x, ψ−1y). Then F is a formal group law, and ψ is an iso-
morphism from Fn to F . Furthermore, F is p-typical by [Rav86, Lemma A2.1.26].

Thus [p]F (x) =
∞∑F

j=1

sjx
pj

for some elements sj of S. Note that sj is the image of

vj under the classifying map of F , so it suffices to show that sj = 0 for all j except
n, and that sn = 1.

We do this by comparing the p-series. On the one hand, we have

ψ−1[p]F (x) = ψ−1(
∞∑F

j=1

sjx
pj

) =
∞∑Fn

j=1

ψ−1(sjx
pj

) =
∞∑Fn

i=0

∞∑Fn

j=1

tis
pi

j xpi+j

.

On the other hand, we have

ψ−1[p]F (x) = [p]Fn(ψ−1x) =
∞∑Fn

i=0

tix
pi+n

,
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using the fact that tp
n

i = ti. Looking at the smallest power of x that occurs, we
conclude that t0s1 = 0 (if n > 1), so s1 = 0 since t0 is a unit. Continuing in this
fashion we see that sj = 0 for j < n and sn = 1. Hence

∞∑Fn

i=0

tix
pi+n

+Fn

∞∑Fn

i=0

∞∑Fn

j=n+1

tis
pi

j xpi+j

=
∞∑Fn

i=0

tix
pi+n

.

Cancelling and again recursively looking at the smallest power of x that occurs, we
find that sj = 0 for all j > n as well.

Corollary 3.11. The representing ring for automorphisms of the Honda formal
group law Fn is Fp[t0, t1, . . . ]/(tp

n−1
0 − 1, tp

n

1 − t1, . . . ).

We then get the following description of K0E, also obtained by Strickland in the
proof of [Str00, Theorem 12].

Proposition 3.12. K0E ∼= Fpn [t0, t1, . . . ]/(tp
n−1

0 − 1, tp
n

1 − t1, . . . )⊗ Fpn .

Proof. By Corollary 3.9, we have

K0E ∼= Fpn ⊗V V T [t0, t−1
0 ]⊗V Fpn

where the map V −→ Fpn takes ui to 0 for all i 6= n and takes un to 1. This ring
represents the functor that assigns to a ring R the set of triples (r, s, ψ), where
r, s : Fpn −→ R are ring homomorphisms and ψ is an isomorphism of formal groups
from r∗Fn to s∗Fn, where Fn is the Honda formal group law classified by the map
V −→ Fpn . In fact, Fn is actually defined over Fp, so r∗Fn = s∗Fn = Fn. We conclude
from Corollary 3.11 that

K0E ∼= Fpn ⊗ Fp[t0, t1, . . . ]/(tp
n−1

0 − 1, tp
n

1 − t1, . . . )⊗ Fpn ,

which proves the proposition.

Theorem 3.13. K0E is an ind-étale Fpn-algebra.

Proof. Define

R′k = Fpn [t0, t1, . . . , tk]/(tp
n−1

0 − 1, tp
n

1 − t1, . . . , t
pn

k − tk)

and define Rk = R′k ⊗ Fpn = R′k ⊗Fpn (Fpn ⊗ Fpn). It is clear from Proposition 3.12
that K0E ∼= colim Rk as Fpn-algebras. Thus it suffices to show that Rk is an étale
Fpn-algebra. Since

AlgFpn (Rk,−) ∼= AlgFpn (R′k,−)×AlgFpn (Fpn ⊗ Fpn ,−),

it suffices to show that both R′k and Fpn ⊗ Fpn are étale. It is easy to check that
Fpn ⊗ Fpn is an étale Fpn -algebra. Indeed, an Fpn-algebra map from Fpn ⊗ Fpn to
A is the same thing as a ring map Fpn −→ A. Now suppose N is a square-zero ideal
in A. If f, g : Fpn −→ A become equal in A/N , then (f(x) − g(x))pn

= 0, and so
f(xpn

) = g(xpn

) for all x ∈ Fpn . Since xpn

= x, we conclude that f = g. Conversely,
if f : Fpn −→ A/N is a ring map, we define f(x) for x ∈ Fpn as follows. Write
f(x) = z + N for some z ∈ A, and define f(x) = zpn

, One can readily verify that
this is independent of the choice of z, and is therefore a ring map that lifts f .
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The proof that R′k is étale is very similar. If f, g : R′k −→ A become equal in A/N ,
then again f(xpn

) = g(xpn

) for all x ∈ R′k. In particular, since tp
n

i = ti, we see that
f(ti) = g(ti) for all i, and so f = g. Also, given f : R′k −→ A/N , choose yi ∈ A such
that f(ti) = yi + N . Then define f : R′k −→ A by f(ti) = ypn

i . Since f is a ring map,
ypn

i − yi ∈ N . Hence (ypn

i )pn

= ypn

i . Similarly, since ypn−1
0 − 1 ∈ N , we see that

ypn+1−p
0 = 1, and so y0 is a unit. Hence f is a ring map lifting f .

By combining Theorem 2.8 with Theorem 3.6, Lemma 3.3, and Theorem 3.13,
we get the following theorem.

Theorem 3.14. The map Φ: E∨
∗ E −→ C(Γ, E∗) is an isomorphism if and only if

AlgFpn (Ψ,Fp) is an isomorphism, where Ψ: K0E −→ C(Γ,Fpn) is induced by Φ.

4. Geometric points

In this section, we prove that

Φ: E∨
∗ E −→ C(Γ, E∗)

is an isomorphism by calculating the effect of

Ψ: K0E −→ C(Γ,Fpn)

on geometric points; that is, on Fpn -algebra homomorphisms to Fp.

Proposition 4.1. AlgFpn (K0E,Fp) is isomorphic to the set of pairs (α, β), where
α is an automorphism of the Honda formal group law Fn defined over Fpn , and β
is an element of the Galois group of Fpn over Fp.

Proof. By Proposition 3.12 and Corollary 3.11, an Fpn -algebra homomorphism from
K0E to Fp is equivalent to an automorphism of Fn defined over Fp together with
a ring homomorphism Fpn −→ Fp. A ring homomorphism Fpn −→ Fp is equivalent to
an element of the Galois group of Fpn over Fp. Also, any endomorphism of Fn over
Fp is in fact defined over Fpn by [Rav86, Theorem A2.2.17].

Proposition 4.2. AlgFpn (C(Γ,Fpn),Fp) is isomorphic to Γ. The isomorphism
takes x ∈ Γ to the map that evaluates at x.

Proof. In view of Lemma 2.3, we have

AlgFpn (C(Γ,Fpn),Fp) ∼= limU AlgFpn (F (Γ/U,Fpn),Fp),

as U runs over the open normal subgroups of Γ. But F (Γ/U,Fpn) is generated as an
Fpn-algebra by the orthogonal idempotents x∗ for x ∈ Γ/U , where x∗ is the function
that takes x to 1 and everything else to 0. Note that

∑
x∈Γ/U x∗ = 1. There are no

idempotents in Fp except 0 and 1. It follows easily that

AlgFpn (F (Γ/U,Fpn),Fp) ∼= Γ/U

where the isomorphism takes x ∈ Γ/U to the map that evaluates at x. Taking
inverse limits gives the desired result.
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Thus to proceed any further, we must identify the group Γ. Strickland does this
in [Str00, Proposition 4], but we will fill in many missing details.

We first prove some preliminary results about Landweber exact spectra. Some
of this will require some of the results of [HS99, Section 2.1], where the authors
study Landweber exact spectra whose homotopy is evenly graded. Recall that, if
(A, Γ) is a Hopf algebroid and M and N are Γ-comodules, then M ∧N denotes the
comodule which is isomorphic to the tensor product of the left A-modules M and
N , with the diagonal coaction of Γ.

Lemma 4.3. Suppose F and G are evenly graded Landweber exact spectra. Then
the natural map MU∗F ∧ MU∗G −→ MU∗(F ∧ G) of MU∗MU -comodules is an
isomorphism.

Proof. Any evenly graded Landweber exact spectrum is a minimal weak colimit of
finite spectra that have only even-dimensional cells, by [HS99, Proposition 2.12].
Such a spectrum is called evenly generated in [HS99, Section 2.1]. The lemma at
hand is true for any evenly generated spectra F and G. Indeed, the lemma is clear
for finite spectra with only even-dimensional cells, and then one takes a suitable
colimit.

Lemma 4.4. Suppose F and G are Landweber exact spectra. Then F ∧ G is also
Landweber exact.

Proof. Landweber exactness implies that

(F ∧G)∗ ∼= F∗ ⊗MU∗ MU∗MU ⊗MU∗ G∗

as MU∗-modules. Now let (A, Γ) be any Hopf algebroid. An A-module B is called
Landweber exact if B ⊗A (−) takes exact sequences of Γ-comodules to exact se-
quences of A-modules. This is equivalent to B⊗A Γ being flat as a right A-module,
by [HS03, Lemma 2.2]. Now, if B and C are Landweber exact, then B ⊗A Γ⊗A C
is obviously Landweber exact since

B ⊗A Γ⊗A C ⊗A Γ ∼= (B ⊗A Γ)⊗A (C ⊗A Γ)

is flat, as the tensor product of two flat modules.

Proposition 4.5. Suppose F and G are Landweber exact, evenly graded, commu-
tative MU -algebra spectra. Let φF : MU∗F −→ F∗ denote the map induced by the
action of MU on F , and let ηF : F∗ −→ MU∗F denote the map induced by the unit
of MU .

1. The map [F, G] −→ HomMU∗(MU∗F,G∗) that takes f to φG ◦ MU∗f is an
isomorphism.

2. The map f : F −→ G is an isomorphism if and only if φG ◦MU∗f ◦ ηF is an
isomorphism.

3. The map f : F −→ G is a map of ring spectra if and only if φG ◦MU∗f is a
map of MU∗-algebras.
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Proof. Part 1 is proved in [HS99, Corollary 2.17]. For part 2, we note that

φG ◦MU∗f ◦ ηF = φG ◦ ηG ◦ f∗ = f∗.

For part 3, if f is a map of ring spectra, then MU∗f is a map of MU∗-algebras, so
φG ◦ MU∗f is also a map of MU∗-algebras. Conversely, suppose φG ◦ MU∗f is a
map of MU∗-algebras. Then it must take 1 to 1, from which it follows easily that
f is compatible with the unit. To see that f is compatible with the multiplication,
we first prove that MU∗f is a map of MU∗-algebras. Indeed, consider the diagram
below.

MU∗F ⊗MU∗ MU∗F
MU∗f⊗MU∗f−−−−−−−−−→ MU∗G⊗MU∗ MU∗G

φG⊗φG−−−−−→ G∗ ⊗MU∗ G∗

µ

y µ

y
yµ

MU∗F −−−−→
MU∗f

MU∗G −−−−→
φG

G∗

The right-hand square of this diagram is commutative. We want to show that the
left-hand square is commutative. Because MU∗G ∼= MU∗MU ⊗MU∗ G∗ is an ex-
tended MU∗MU -comodule, it suffices to check that the two composites become
equal upon applying φG, This is equivalent to checking whether the outer bound-
ary of the diagram is commutative. But this is true since φ ◦ MU∗f is a map of
MU∗-algebras.

We have now shown that MU∗f is a map of MU∗-algebras. Using the isomor-
phism of Lemma 4.3, we see that the diagram below is commutative.

MU∗(F ∧ F )
MU∗(f∧f)−−−−−−−→ MU∗(G ∧G)

MU∗µ

y
yMU∗µ

MU∗F −−−−→
MU∗f

MU∗G

But F ∧ F and G ∧G are also Landweber exact and evenly graded by Lemma 4.4.
Hence we can apply part 1 in the form

[F ∧ F, G] ∼= HomMU∗MU (MU∗(F ∧ F ),MU∗G)

to conclude that F −→ G is a map of ring spectra.

Corollary 4.6. Suppose F is a Landweber exact, evenly graded, commutative MU -
algebra spectra. Then the set of ring spectrum automorphisms of F is isomorphic to
the set of F∗-algebra homomorphisms f : F∗F −→ F∗ such that fηR : F∗ −→ F∗ is an
isomorphism.

Proof. By Proposition 4.5, the set of ring spectrum automorphisms of F is isomor-
phic to the set of maps of MU∗-algebras h : MU∗F −→ F∗ such that h ◦ ηE is an
isomorphism. This is equivalent to the set of F∗-algebra homomorphisms

f : F∗F ∼= F∗ ⊗MU∗ MU∗F −→ F∗

such that fηR is an isomorphism.
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We can now apply this to our spectrum E. Recall that there is a p-typical formal
group law F over E0, whose classifying map takes vi to ui for i < n, takes vn to 1,
and takes all other vi to 0.

Proposition 4.7. The group Γ is isomorphic to the set of all pairs (τ, φ) where τ
is an automorphism of the ring E0 and φ is an isomorphism from the formal group
F to τ∗F .

Proof. In view of Corollary 4.6 and the fact that E∗ has a unit u in degree 2, we
see that Γ is isomorphic to the set of all E0-algebra maps

f : E0E −→ E0

such that fηR is an isomorphism. Proposition 3.8 tells us that

E0E ∼= E0 ⊗V V T [t0, t−1
0 ]⊗V E0,

Since the tensor product is the coproduct in the category of commutative rings, and
V T [t0, t−1

0 ] is the representing ring for isomorphisms of formal group laws, we get
the desired result.

Recall that the correspondence between elements of Γ and E0-algebra maps
f : E0E −→ E0 for which fηR is an isomorphism takes γ to (π0µ) ◦ E0(γ). The
following corollary is then immediate.

Corollary 4.8. If γ ∈ Γ corresponds to (τ, φ) as in Proposition 4.7, then the
induced map

(π0µ) ◦ E0(γ) : E0E ∼= E0 ⊗V V T [t0, t−1
0 ]⊗V E0 −→ E0

takes a⊗ b⊗ c to asφ(b)τ(c), where sφ denotes the classifying map of φ.

We can now identify Γ, following [Str00, Proposition 4].

Theorem 4.9. Let Γ0 denote the automorphism group of the Honda formal group
law Fn as a formal group law over Fpn , and let C denote the Galois group of Fpn

over Fp. Then Γ ∼= Γ0oC. In particular, Γ is isomorphic to the set of pairs (α, β),
where α is an automorphism of Fn defined over Fpn , and β is an element of the
Galois group of Fpn over Fp.

Proof. Proposition 4.7 and Lubin-Tate deformation theory [LT66] show that Γ is
isomorphic to the set of all pairs (α, β) where β is an automorphism of Fpn ∼= E0/m
and α is an isomorphism of the reduction Fn of F modulo m with β∗Fn. But Fn

is defined over Fp, so β∗Fn = Fn. Hence α is an automorphism of Fn defined over
Fpn , and β is an element of C.

There is an obvious action of C on Γ0; if σ ∈ C, then σ induces an isomorphism
Fpn [[x]] −→ Fpn [[x]] that takes

∑
i cix

i to
∑

i cσ
i xi. This isomorphism preserves Γ0.

We leave to the reader the check that the multiplication of Γ corresponds to the
multiplication on Γ0 o C.

Combining Theorem 4.9 with Proposition 4.1, we see that the two sets

AlgFpn (K0E,Fp) and AlgFpn (C(Γ,Fpn),Fp)



Homology, Homotopy and Applications, vol. 6(1), 2004 219

are abstractly isomorphic. To see that the map AlgFpn (Ψ,Fp) is an isomorphism,
though, we need to understand the map Ψ better. The main point is the following
corollary.

Corollary 4.10. If γ ∈ Γ corresponds to (α, β) as in Theorem 4.9, then the map

Ψ: Fpn ⊗V V T [t0, t−1
0 ]⊗V Fpn ∼= K0E −→ C(Γ,Fpn)

has Ψ(a⊗ b⊗ c)(γ) = asα(b)β(c), where sα is the classifying map of α.

Proof. Recall that Ψ is induced by Φ by dividing by m and taking the induced
map in degree 0. Using the fact that K∗E = E∨

∗ E/m (see Lemma 2.1), we see that
Ψ(a)(γ) is the composite

S0 a−→ K ∧ E
1∧γ−−→ K ∧ E

µ−→ K.

Since the Lubin-Tate correspondence proceeds by reducing a pair (τ, φ) as in Propo-
sition 4.7 modulo m to obtain (α, β), this corollary follows from Corollary 4.8.

We can now complete the proof that Φ is an isomorphism.

Theorem 4.11. The map

Φ: E∨
∗ E −→ C(Γ, E∗)

of Section 1 is an isomorphism.

Proof. In view of Theorem 3.14, it suffices to show that AlgFpn (Ψ,Fp) is an iso-
morphism. By Proposition 4.2, a typical element of AlgFpn (C(Γ,Fpn),Fp) is the
evaluation at γ map Evγ for γ ∈ Γ. If γ corresponds to the pair (α, β) as in Theo-
rem 4.9, then Corollary 4.10 tells us that Evγ ◦Ψ is the Fpn-algebra map

Evγ ◦Ψ: Fpn ⊗V V T [t0, t−1
0 ]⊗V Fpn −→ Fp

that takes a⊗ b⊗ c to asα(b)β(c), where sα is the classifying map of α. Under the
isomorphism of Proposition 4.1, this map corresponds to (α, β). Thus AlgFpn (Ψ,Fp)
is an isomorphism.

5. Cohomology operations

In this section, we prove that E∗E is isomorphic to the twisted completed group
ring E∗[[Γ]]. The strategy is to construct the commutative square below,

E∗[[Γ]] −−−−→ E∗E
y

y
HomE∗(C(Γ, E∗), E∗) −−−−→ HomE∗(E

∨
∗ E,E∗)

and to show that the vertical maps are isomorphisms.
We begin with the right-hand vertical map in Section 5.1, and we discuss the

left-hand vertical map in Section 5.2. We then complete the proof in Section 5.3.
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5.1. Duality for E∗E
The object of this section is to prove the following theorem.

Theorem 5.1. Suppose X is a spectrum such that K∗X is evenly graded. Then the
natural map

E∗X
ρ−→ HomE∗(E

∨
∗ X,E∗)

is an isomorphism.

The natural map in question takes an element x ∈ EmX to the homomorphism
that takes y ∈ E∨

k X to the composite

Sk−m Σ−my−−−−→ E∧̃Σ−mX
1e∧x−−→ E∧̃E

µ−→ E.

One can define an analogous map

ρ : F ∗X −→ HomE∗(E
∨
∗ X, F∗)

for any E-module spectrum F .
Note that Theorem 5.1 would be automatic if we had a suitable universal coef-

ficient spectral sequence for E∨
∗ (−). Indeed, since K∗X is evenly graded, E∨

∗ X is
pro-free and so projective in the category of L-complete E∗-modules [HS99, Theo-
rem A.9]. We do have a universal coefficient spectral sequence for E∗(−), following
Adams’ approach [Ada74, Section III.13]. But our hypotheses do not guarantee
that E∗X is projective over E∗. A universal coefficient spectral sequence for E∨

∗ (−)
has in fact recently been constructed [Hov04].

We will prove Theorem 5.1 by working with (E/J)∗(X), where

J = (pi0 , ui1
1 , . . . , u

in−1
n−1 )

is a regular ideal in E∗, and E/J is obtained by taking successive cofibers as
in [EKMM97, Chapter V]. The ring E∗/J is a local ring with nilpotent maximal
ideal m. We have the following lemma, which is surely well-known, about modules
over such rings.

Lemma 5.2. Suppose f : M −→ N is a map of R-modules, where R is a local ring
with nilpotent maximal ideal m.

1. f is surjective if and only if R/m⊗R f is surjective.
2. If M and N are flat and R/m⊗R f is an isomorphism, then f is an isomor-

phism.

It follows easily from this lemma that flat R-modules are in fact free, though we
do not need this fact.

Proof. Suppose that R/m⊗R f is surjective. Given y in N , we show by induction on
k that there is an xk in M such that f(xk)− y ∈ mkN . Since m is nilpotent, taking
k large enough shows that f is surjective. The case k = 1 is clear since R/m ⊗R f
is surjective. Now suppose that

f(xk)− y = r1z1 + · · ·+ rjzj
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where ri ∈ mk. For each i, we can find an wi ∈ M such that zi = f(wi) + ti, where
ti ∈ mN , by the base case of the induction. It follows that

f(xk − r1w1 − · · · − rjwj)− y ∈ mk+1N,

proving the induction step.
Now suppose M and N are flat. Let K denote the kernel of f . Since N is flat,

the sequence

0 −→ K −→ M
f−→ N −→ 0

pure, and so K is flat [Lam99, Corollary 4.86] and K/mK = 0. Since mk/mk+1 is a
free module over the field R/m, we see that K⊗R mk/mk+1 = 0 for all k. Tensoring
the short exact sequence

0 −→ mk/mk+1 −→ R/mk+1 −→ R/mk −→ 0

with K, we conclude by induction that K/mkK = 0 for all k. Since m is nilpotent,
we see that K = 0.

With this lemma in hand, we can now analyse (E/J)∗(X).

Proposition 5.3. Suppose X is a spectrum such that K∗X is evenly graded, and
J = (pi0 , ui1

1 , . . . , u
in−1
n−1 ) is a regular ideal in E∗. Then the natural map

ρ : (E/J)∗(X) −→ HomE∗(E
∨
∗ X, E∗/J)

is an isomorphism.

Proof. Note that

HomE∗(E
∨
∗ X, E∗/J) ∼= HomE∗/J((E∨

∗ X)/J,E∗/J).

and E∗/J is a commutative ring with nilpotent maximal ideal m = (p, u1, . . . , un−1).
The plan is thus to use Lemma 5.2.

Since K∗X is evenly graded, so is its dual K∗X. Thus E∗X is pro-free by
Lemma 2.1. In particular, the sequence (p, u1, . . . , un−1) is a regular sequence on
E∗X. It follows from [Mat89, Theorem 16.1] that

(pi0 , ui1
1 , . . . , u

in−1
n−1 )

is also a regular sequence on E∗X, and therefore that (E/J)∗X ∼= (E∗X)/J , Since
E∗X is the completion of a free E∗-module, we conclude that (E/J)∗X is a free
E∗/J-module, and that ((E/J)∗X)/m ∼= K∗X.

Similarly, because K∗X is evenly graded, E∨
∗ X is evenly graded and pro-free by

Lemma 2.1. The same argument as in the preceding paragraph then shows that

(E/J)∗X ∼= (E∨
∗ X)/J

and is a free E∗/J-module. It follows that HomE∗/J ((E∨
∗ X)/J,E∗/J) is a prod-

uct of free modules, and so is flat (since E∗/J is Noetherian). It also follows that
((E/J)∗X)/m ∼= K∗X.

Furthermore, there is a natural map

HomE∗/J((E∨
∗ X)/J,E∗/J) −→ HomE∗/J((E∨

∗ X)/J,K∗) ∼= HomK∗(K∗X, K∗).
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This map is surjective, since (E∨
∗ X)/J is free. Hence we get an induced surjection

(HomE∗/J((E∨
∗ X)/J,E∗/J))/m −→ HomK∗(K∗X,K∗).

We claim this map is an isomorphism. To see this suppose f : (E∨
∗ X)/J −→ E∗/J is

a homomorphism that goes to zero as a map to K∗. This means that f(x) ∈ m for
all x. In particular, if we let {ei} be a generating set for the free module (E∨

∗ X)/J ,
we can write

f(ei) = pxi0 + u1xi1 + · · ·un−1xi,n−1

for some elements xij in E∗/J . But then we can define homomorphisms

gj : (E∨
∗ X)/J −→ E∗/J

for j = 0, 1, . . . , n− 1 by gj(ei) = xij . This gives

f = pg0 + u1g1 + · · ·un−1gn−1,

and so f ∈ mHomE∗/J ((E∨
∗ X)/J,E∗/J), as required.

It now follows from an easy diagram chase that if we tensor the map

(E/J)∗X −→ HomE∗(E
∨
∗ X, E∗/J)

with E∗/m, we get the isomorphism

K∗X ∼= HomK∗(K∗X, K∗).

Lemma 5.2 completes the proof.

We now prove Theorem 5.1.

Proof of Theorem 5.1. Choose a sequence of ideals

· · · ⊆ Jk ⊆ Jk−1 ⊆ · · · ⊆ J1

such that each Jk is of the form (pi0 , ui1
1 , . . . , u

in−1
n−1 ) and the Jk converge to 0 in the

m-adic topology. We have a commutative square

E∗X
ρ−−−−→ HomE∗(E

∨
∗ X, E∗)y

y
limk(E/Jk)∗(X) −−−−→

lim ρk

limk HomE∗(E
∨
∗ X,E∗/Jk).

The right-hand vertical map is an isomorphism because E∗ is complete. To under-
stand the left-hand vertical map, we apply the Milnor exact sequence

0 −→ lim1(E/Jk)∗+1X −→ E∗X −→ lim(E/Jk)∗X −→ 0.

Since K∗X is evenly graded, (E/Jk)∗X ∼= (E∨
∗ X)/Jk as we have seen in the proof

of Proposition 5.3. Thus the lim1-terms vanish, and so the left-hand vertical map
is an isomorphism. Proposition 5.3 implies that the bottom horizontal map is an
isomorphism as well, completing the proof.
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5.2. Duality for C(G, R)
We now turn our attention to the twisted completed group ring E∗[[Γ]].
In general, whenever G is a profinite group and a is an ideal in a ring R, we can

define the R-module

R[[G]] = limk limU (R/ak)[G/U ].

We then have the following theorem.

Theorem 5.4. Let G be a profinite group and a an ideal in a commutative ring R
such that R is complete in the a-adic topology. Then the natural map

R[[G]] −→ HomR(C(G,R), R)

is an isomorphism of R-modules.

Proof. There is a natural map

α : R[G] −→ HomR(C(G,R), R),

where α(r[g])(f) = rf(g). It is clear that α is an isomorphism when G is finite.
Hence we get an induced natural isomorphism

R[[G]] = lim
k,U

(R/ak)[G/U ] −→ lim
k,U

HomR/ak(C(G/U,R/ak), R/ak).

We must show that the right-hand side of this isomorphism is naturally isomorphic
to HomR(C(G, R), R). To see this, we first use Proposition 2.4 and Proposition 2.5
to conclude that C(G,R)/ak ∼= C(G,R/ak) This fact together with Lemma 2.3
gives us the following chain of isomorphisms

HomR(C(G,R), R) ∼= limk HomR(C(G,R), R/ak)
∼= limk HomR/ak(C(G,R/ak), R/ak)

∼= limk limU HomR/ak(C(G/U,R/ak), R/ak),

completing the proof.

Now, when G acts continuously on R, HomR(C(G,R), R) is the dual of the Hopf
algebroid C(G,R), so is an R-algebra. In view of Theorem 5.4, then, R[[G]] should
also be an algebra, in analogy with the group ring, but in a way that takes into
account the action of G on R.

To see how this works, assume first that an arbitrary group G acts on a com-
mutative ring R by ring isomorphisms. Then the twisted group ring R[G] is
the free R-module generated by the elements of G, with multiplication defined by
(a[g])(b[h]) = abg[gh]. We would like to realize R[[G]] as a completion of the twisted
group ring R[G] with respect to a suitable family of ideals. For this, we need to
assume G is a profinite group, R is a local ring with maximal ideal m that is com-
plete in the m-adic topology, and G acts continuously on R, and, even better, acts
through a finite quotient on R/mk for all k. That is, we need to assume that, for all
k, there is an open normal subgroup Uk of G such that Uk acts trivially on R/mk.
Note that this is automatic from continuity if R/mk is finite, or, in the graded case,
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finite in each degree, as is true for R = E∗. Indeed, in this case Aut(R/mk) is finite,
so the homomorphism G −→ Aut(R/mk) must factor through a finite quotient.

Assuming that G does act through a finite quotient on each R/mk, we define
ideals I(k, U) of R[G] for each integer k and each open normal subgroup U of G
such that U acts trivially on R/mk. The ideal I(k, U) is the kernel of the surjection
R[G] −→ (R/mk)[G/U ] to the twisted group ring. In more concrete terms, I(k, U) is
the set of all elements

∑
ag[g] in R[G] such that for every coset C of U in G, we

have
∑

g∈C ag ∈ mk. We then the twisted completed group ring R[[G]] to be
the completion of R[G] with respect to the ideals I(k, U), so that

R[[G]] = limk,U (R/ak)[G/U ].

This is the same R-module as we defined above, since we can take this inverse limit
over arbitrary pairs (k, U). Note that the natural map R[G] −→ R[[G]] is injective
since

⋂
k mk = 0. All the statements above work when R is a graded ring, as long

as m is homogeneous and the action of G preserves the grading.
With these definitions, the isomorphism of Theorem 5.4 is in fact an isomorphism

of R-algebras, using the mulitplication on HomR(C(G,R), R) dual to the Hopf al-
gebroid structure on C(G,R). We do not need this result, so we leave the proof to
the interested reader.

5.3. The isomorphism
We can now compute E∗E.

Theorem 5.5. The inclusion Γ −→ E0E induces an E∗-algebra isomorphism

E∗[[Γ]] −→ E∗E.

Proof. There is a map E∗ −→ E∗E that takes r ∈ Ek to r̃ ∈ EkE, where r̃ is the
composite

E = S0 ∧ E
r∧1−−→ ΣkE ∧ E

Σkµ−−−→ ΣkE.

The inclusion of Γ then certainly induces a map α : E∗[Γ] −→ E∗E, defined by letting
α(r[γ]) be the composite r̃ ◦ γ. To see that α is an E∗-algebra homomorphism, use
the commutative diagram below.

E
∼=−−−−→ S0 ∧ E

r∧1−−−−→ ΣkE ∧ E
Σkµ−−−−→ ΣkE

γ

y 1∧γ

y Σkγ∧γ

y
yΣkγ

E −−−−→∼= S0 ∧ E −−−−→
rγ∧1

ΣkE ∧ E −−−−→
Σkµ

ΣkE

This diagram commutes because γ is a map of ring spectra, and it shows that
α([γ]r) = (α[γ])(αr), so that α is an E∗-algebra homomorphism.

Now, E∗E is complete with respect to the m-adic topology, so to show that α
extends to an E∗-algebra homomorphism

β : E∗[[Γ]] −→ E∗E,
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it suffices to show that α is continuous. That is, given k, we must find an m and U
such that αI(m,U) ⊆ mkE∗E. But the action of Γ on E∗E is continuous, so there
is a U such that U preserves mkE∗E. This means that the composite

E∗[Γ] α−→ E∗E −→ (E∗E)/mk

factors through (E∗/mk)[Γ/U ], and so αI(k, U) ⊆ mkE∗E, as required.
Now consider the diagram below.

E∗[[Γ]]
β−−−−→ E∗Ey

yρ

HomE∗(C(Γ, E∗), E∗) −−−−→ HomE∗(E
∨
∗ E,E∗)

The left-hand vertical map is the isomorphism of Theorem 5.4, the right-hand ver-
tical map is the isomorphism of Theorem 5.1, and the bottom horizontal map is
dual to the isomorphism of Theorem 4.11. One can easily check that the diagram
is commutative. Indeed, it suffices to check that the element [γ] ∈ E∗[Γ] goes to the
same place under both composites. In fact, it goes to the map that takes x ∈ E∨

k E
to the composite

S0 x−→ ΣkE∧̃E
Σk(1e∧γ)−−−−−→ ΣkE∧̃E

Σkµ−−−→ ΣkE.

Hence β is an isomorphism.

6. Hopf algebroid structure

The object of this section is to show that (E∗, E∨
∗ E) and (E∗, C(Γ, E∗)) are

both graded formal Hopf algebroids, and that the isomorphism Φ of Theorem 4.11
preserves the Hopf algebroid structure. We begin by defining precisely what we
mean by a graded formal Hopf algebroid. We then show that (E∗, E∨

∗ E) is a graded
formal Hopf algebroid in Section 6.2, then discuss C(Γ, E∗) in Section 6.3. We show
that Φ preserves the Hopf algebroid structure in Section 6.4.

6.1. Graded formal Hopf algebroids
A graded formal Hopf algebroid should be a cogroupoid object in the category

of graded formal rings. Recall from [Str99, Section 4] that a formal ring A is
a topological commutative ring A such that cosets of open ideals form a basis for
the topology on A, and such that A ∼= limA/I as I runs through the open ideals.
Morphisms in the category of formal rings are continuous homomorphisms. The
category of formal rings has all finite colimits. The pushout S⊗̂RT of two continuous
homomorphisms R −→ S and R −→ T is the completion of the tensor product S⊗R T
with respect to the topology defined by the ideals I ⊗R T + S ⊗R J , where I and J
run through open ideals in S and T . Note that this definition of ⊗̂ does not conflict
with our previous use of the notation, in Proposition 2.5. We can thus define a
formal Hopf algebroid to be a cogroupoid object in the category of formal rings.
The major difference between a formal Hopf algebroid (A,Γ) and a Hopf algebroid
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is that the diagonal has the form ∆: Γ −→ Γ⊗̂Γ, and so all diagrams involving ∆
must be similarly changed.

Some subtleties arise in the graded case. We define a graded formal ring to be
a graded ring A equipped with a family {Ij} of homogeneous ideals such that for all
j, j′ there is a j′′ such that Ij′′ ⊆ Ij ∩ Ij′ and such that A is the inverse limit, in the
category Ringsgr of graded rings, of the A/Ij . This means that Ak

∼= limj(A/Ij)k

for all k. The family of ideals {Ij} will sometimes be referred to as the topology
on A. Maps of graded formal rings R −→ S are maps of graded rings such that each
Rk −→ Sk is continuous (in the inverse limit topology).

Note that the forgetful functor from Ringsgr to Rings does NOT preserve
inverse limits. In particular, if k is a field and x has degree 2, the ring k[x] is a
graded formal ring in the x-adic topology, but it is not a formal ring in the x-adic
topology.

Nevertheless, the category of graded formal rings has all finite colimits, where
the pushout of R −→ S and R −→ T is S⊗̂RT , the completion in the graded sense
of the graded ring S ⊗R T with respect to the ideals I ⊗ T + S ⊗ J , where I and
J are the homogeneous ideals that define the formal structure on R and S. Hence
we can define a graded formal Hopf algebroid to be a cogroupoid object in the
category of graded formal rings.

From an algebro-geometric perspective, it would be much more natural to con-
sider formal graded rings, rather than graded formal rings. Here a formal graded
ring would be a formal ring R equipped with a coaction of the Hopf algebra
Z[u, u−1]. That is, the “grading” would actually be a continuous ring homomor-
phism R −→ R⊗̂Z[u, u−1] that is coassociative and counital. The drawback of this
approach for us is that this is just not how we think of completions in algebraic
topology. For example, when we form (v−1

n BP∗)In , we do not allow the element∑∞
k=1 vk

1 . It is possible that it would be better to allow such elements, giving us
homotopy groups that are only graded in this weak sense. We will stick with graded
formal rings though.

6.2. E∨
∗ E as a graded formal Hopf algebroid

We now show that (E∗, E∨
∗ E) is a graded formal Hopf algebroid. The topology

is defined by the powers of the maximal ideal m of E∗. We have seen that E∨
∗ E is

pro-free in Proposition 2.2, and so E∨
∗ E is a graded formal ring. The usual proof

that (R∗, R∗R) is a Hopf algebroid [Rav86, Proposition 2.2.8] depends on knowing
that the natural map

R∗R⊗R∗ R∗R −→ R∗(R ∧R)

is an isomorphism. If we are to apply the same argument in this case, we need to
know that

E∨
∗ E⊗̂E∗E

∨
∗ E −→ E∨

∗ (E∧̃E)

is an isomorphism.
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Proposition 6.1. Suppose X is a spectrum such that K∗X is concentrated in even
dimensions. Then the natural map

σ : (E∨
∗ E ⊗E∗ E∨

∗ X)∧m −→ E∨
∗ (E∧̃X)

is an isomorphism.

Proof. Since K is a field spectrum, the natural map

ρ : K∗E ⊗K∗ K∗X −→ K∗(E ∧X) = K∗(E∧̃X)

is an isomorphism. In particular, K∗(E∧̃X) is concentrated in even dimensions.
Lemma 2.1 then guarantees that E∨

∗ X and E∨
∗ (E∧̃X) are pro-free, as is E∨

∗ E. If
M ∼= F∧m and N ∼= (F ′)∧m are pro-free modules, then (M ⊗ N)∧m is also pro-free,
since it is isomorphic to the completion of F ⊗E∗ F ′. Hence (E∨

∗ E ⊗E∗ E∨
∗ X)∧m is

pro-free as well. In view of Lemma 2.7, to prove the proposition it suffices to check
that σ/m is an isomorphism. Using Lemma 2.1 and the fact that m is an invariant
ideal in E∗E, we conclude that σ/m ∼= ρ, and so σ is an isomorphism.

Corollary 6.2. Suppose X is a ring spectrum such that K∗X is concentrated in
even dimensions. Then the natural map

E∨
∗ X⊗̂E∗E

∨
∗ X −→ E∨

∗ (E∧̃X)

is an isomorphism.

Proof. By Lemma 2.1, E∨
∗ X is pro-free, and so in particular is a formal ring with

respect to the ideals mn. The corollary then follows from Proposition 6.1 because
m is an invariant ideal in E∗.

Recall that if R is a flat commutative ring spectrum, then (R∗, R∗R) is a graded
Hopf algebroid [Rav86, Proposition 2.2.8]. The only use of the flatness of R in this
argument is in the isomorphisms

R∗X ⊗R∗ R∗Y −→ R∗(X ∧ Y )

in case X = Y = R, needed to define the diagonal, and in case X = R, Y = R ∧R
and X = R ∧ R, Y = R, needed to prove coassociativity. We can repeat this
argument using the isomorphisms of Corollary 6.2 to deduce the following theorem,

Theorem 6.3. (E∗, E∨
∗ E) is a graded formal Hopf algebroid.

6.3. C(Γ, E∗) as a graded formal Hopf algebroid
The object of this section is to show that (E∗, C(Γ, E∗)) is a graded formal Hopf

algebroid. We will work more generally with a profinite group G acting continuously
on a graded ring R that is complete in the a-adic topology, where a is a homogeneous
ideal.

We begin with a very simple case. Given a group G, the constant group scheme
G is the functor on commutative rings defined by G(S) = C(SpecS, G). If S has
no nontrivial idempotents, then Spec S is connected, and so G(S) = G, consisting
only of the constant maps. The constant group scheme G is in fact the coproduct in
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the category of schemes of |G|-many copies of SpecZ. In particular, it is not affine
when G is infinite, because it is not quasi-compact.

However, when G is finite, we have the following well-known proposition.

Proposition 6.4. Suppose G is a finite group. Then the constant group scheme G
is affine and represented by the Hopf algebra F (G,Z) of functions from G to Z.

This proposition follows from the fact that F (G,Z) is the product of |G|-many
copies of Z. The structure maps of the Hopf algebra F (G,Z) are defined as fol-
lows. The counit ε : F (G,Z) −→ Z is evaluation at the identity element e of G,
the conjugation χ is induced by the inverse map in G, and the diagonal ∆ is the
composite

F (G,Z) −→ F (G×G,Z)
τ−1

G−−→ F (G,Z)⊗ F (G,Z)

where the first map is induced by the multiplication map of G and τG is the iso-
morphism defined by τG(f ⊗ f ′)(g, h) = f(g)f ′(h).

We can generalize Proposition 6.4 to profinite groups as well.

Proposition 6.5. Suppose G is a profinite group. Then the group-valued functor
on commutative rings defined by G(S) = C(Spec S,G), where G is given the profi-
nite topology, is an affine group scheme represented by the Hopf algebra C(G,Z) of
continuous functions from G to Z.

Note that if S has no nontrivial idempotents, then G(S) = G, just as for the
constant group scheme. There is a natural map from the constant group scheme
to this profinite group scheme G, because every map that is continuous to the
discrete topology on G is also continuous to the profinite topology, and this map
is an isomorphism on every S with no nontrivial idempotents. But it is not an
isomorphism on all S unless G is finite, since the constant group scheme is not affine
when G is infinite but the profinite group scheme is, according to Proposition 6.5.

Proof. We simply compute

G(S) = C(Spec S, G) ∼= limU C(Spec S, G/U)
∼= limU Rings(F (G/U,Z), S) ∼= Rings(C(G,Z), S).

This shows that G is affine and represented by C(G,Z). Since G is visibly a group-
valued functor, C(G,Z) is a Hopf algebra.

Note that C(G,Z) is the colimit of the Hopf algebras F (G/U,Z). One can de-
scribe the structure maps in a similar fashion. The counit is again evaluation at
e, the conjugation is induced by the (continuous) inverse mapping on G, and the
diagonal is the composite

C(G,Z) −→ C(G×G,Z)
τ−1

G−−→ C(G,Z)⊗ C(G,Z),

where τG is again defined by τG(f⊗f ′)(g, h) = f(g)f ′(h). The map τG is the colimit
of the isomorphisms τG/U , so is an isomorphism.

We now show how to build the Hopf algebroid (R, C(G,R)) from the Hopf al-
gebra C(G,Z). Recall that a Hopf algebroid is a cogroupoid object in the category
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of commutative rings [Rav86, Appendix 1]. In general, a cogroupoid object in a
category C is a pair of objects (A, Γ) such that (C(A,X), C(Γ, X)) is a groupoid that
is natural in X for all objects X of C. Here C(A,X) is the object set of the groupoid
and C(Γ, X) is the morphism set. When C has finite colimits, (A,Γ) is a cogroupoid
object if and only if there are structure maps ηL, ηR : A −→ Γ, ε : Γ −→ A, χ : Γ −→ Γ,
and ∆: Γ −→ ΓqA Γ analogous to the structure maps of a Hopf algebroid [Rav86,
Appendix 1], where Γ qA Γ denotes the pushout of Γ

ηR←−− A
ηL−−→ Γ. These struc-

ture maps are required to satisfy certain axioms analogous to those of [Rav86,
Definition A1.1.1].

One of these axioms deserves special attention, because Ravenel’s description of
it is not optimal. Define ΓqA Γ̃ to be the pushout where A acts on the right factor
of Γ though ηR instead of ηL; simmilarly, define Γ̃ qA Γ to be the pushout where
A acts on the left factor through ηL instead of ηR. Then axiom (f) of Ravenel’s
definition [Rav86, A1.1.1], which implies that the composition of a map and its
inverse is the appropriate identity, should be rephrased to say that the following
diagram, and a similar diagram involving ηL and 1q χ, are commutative.

Γ ∆−−−−→ ΓqA Γ
χq1−−−−→ Γ̃qA Γ

∥∥∥
y∇

Γ −−−−→
ε

A −−−−→
ηR

Γ

Here ∇ denotes the fold map, which is the identity on each factor of Γ.
Here is a general result on constructing cogroupoid objects from actions of

cogroups.

Proposition 6.6. Suppose C is a category with finite colimits and C is a cogroup
object of C that coacts on the right on an object A of C. Then (A,A q G) is a
cogroupoid object of C.

A cogroupoid object of this form is sometimes called a split cogroupoid. In the
case of Hopf algebroids, this recovers the definition of a split Hopf algebroid given
in [Rav86, Definition A1.1.22].

Proof. Let 0 denote the initial object of C. Since C is a cogroup, it comes with maps
∆: C −→ C qC, ε : C −→ 0, and χ : C −→ C playing the role of the diagonal, counit,
and conjugation. There is also a coassociative and counital map ψ : A −→ A q C
giving the coaction of C. We then define the left unit ηL : A −→ A q C to be the
structure map i1 of the coproduct, the right unit ηR : A −→ AqC to be the coaction
ψ, and the counit εA : AqC −→ A to be 1qε. It is then obvious that εAηL = 1A, and
εAηR = 1A because ψ is counital. We define the conjugation χA : A q C −→ A q C
to be ψ on A and i2χ on C. Then χAηL = ηR by definition, and χAηR = ηL since
χ2 = 1. Also, χ2

A = 1AqC for the same reasons. Finally, the diagonal ∆A is the
composite

Aq C
1q∆−−−→ Aq C q C ∼= (Aq C)qC (Aq C),

The fact that ∆ is coassociative, counital, and compatible with χ implies the same
facts for ∆A.
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We can now apply this to (R, C(G,R)),

Theorem 6.7. Suppose G is a profinite group acting continuously on a ring R that
is complete in the a-adic topology for some ideal a. Then (R,C(G, R)) is a split
formal Hopf algebroid.

This theorem is also true in the graded case, where the action of G must preserve
the grading, the ideal a must be homogeneous, and R need only be complete in the
graded sense.

Proof. Think of C(G,Z) as a cogroup object in the category of formal rings, where
the topology is trivial. Recall from Proposition 2.5 that there is an isomorphism

σ : R⊗̂C(G,Z) −→ C(G,R).

Define a coaction ψ of the cogroup C(G,Z) on R as the composite

R
ηR−−→ C(G,R) σ−1

−−→ R⊗̂C(G, /Z),

where ηR(r)(g) = rg. It is easy to check that σ is counital. To see that ψ is coasso-
ciative, we use the following commutative diagram.

R
ηR−−−−→ C(G,R) σ←−−−− R⊗̂C(G,Z)

ηR

y µ∗
y

y1b⊗µ∗

C(G,R)
β−−−−→ C(G×G,R) σ←−−−− R⊗̂C(G×G,Z)

σ

x α

x
x1b⊗τ

R⊗̂C(G,Z) −−−−→
ηR b⊗1

C(G,R)⊗̂C(G,Z) ←−−−−
σb⊗1

R⊗̂C(G,Z)⊗̂C(G,Z)

In this diagram, µ : G × G −→ G denotes the multiplication map, β : C(G, R) −→
C(G×G, R) is defined by (βf)(g, h) = f(h)g, and α : C(G,R)⊗̂C(G,Z) −→ C(G×
G,R) is defined by α(f ⊗ f ′)(g, h) = f ′(h)f(g). The reader can check that this
diagram is in fact commutative. All the maps that go either left or up are isomor-
phisms, using Proposition 2.4 and the fact that τ is an isomorphism. Hence we can
reverse those arrows, and then the equality of the outer composites shows that ηR

is coassociative. Hence Proposition 6.6 completes the proof.

We now describe the structure maps of (R,C(G, R)). The left unit is the inclusion
of the constant functions, and the right unit ηR is defined by ηR(r)(g) = rg. The
counit is evaluation at e, and the conjugation χ is defined by (χf)(g) = f(g−1)g.
We have the commutative diagram below,

R⊗̂C(G,Z)
1b⊗µ∗−−−−→ R⊗̂C(G×G,Z) 1b⊗τ←−−−− R⊗̂C(G,Z)⊗ C(G,Z)

σ

y σ

y
yσb⊗σ

C(G,R) −−−−→
µ∗

C(G×G,R) ←−−−−
τ

C(G,R)⊗̂RC(G,R)
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when the τ on the bottom line is defined to be the completion of the map defined
by τ(f ⊗ f ′)(g, h) = f(g)f ′(h)g. Hence τ is an isomorphism, and the diagonal is the
composite of the bottom line after reversing τ .

6.4. Φ is a map of graded formal Hopf algebroids
Theorem 6.8. The map

(1, Φ): (E∗, E∨
∗ E) −→ (E∗, C(Γ, E∗))

is a map of graded formal Hopf algebroids.

Proof. we begin by showing that ΦηL = ηL. Indeed, if a ∈ Em and γ ∈ Γ, then we
have

(ΦηL(a))(γ) = µ ◦ (1∧̃γ) ◦ (1∧̃η) ◦ a = µ ◦ (1∧̃η) ◦ a = a = (ηL(a)(γ),

as required. Here we have used the fact that γ ◦ η = η, since γ is a map of ring
spectra, Similarly, we have

(ΦηR(a))(γ) = µ(1∧̃γ)(η∧̃1)a = µ(η∧̃1)γ ◦ a = γ ◦ a = aγ = (ηR(a))(γ),

To see that Φ commutes with ε, we have

εΦ(a) = (Φa)(e) = µ ◦ (1∧̃e) ◦ a = µ ◦ a = ε(a).

And to see that Φ commutes with χ we compute:

[χΦ(a)](γ) = [Φ(a)(γ−1)]γ = γ ◦ µ ◦ (1∧̃γ−1) ◦ a

= µ ◦ (γ∧̃γ) ◦ (1∧̃γ−1) ◦ a = µ ◦ (γ∧̃1) ◦ a

= µ ◦ (1∧̃γ) ◦ T ◦ a = [Φ(χa)](γ).

We are left with proving that Φ is compatible with ∆ in the sense that (Φ ⊗
Φ)∧m ◦∆ = ∆ ◦ Φ. We do this by constructing the commutative diagram below.

E∨
∗ E

Φ−−−−→ C(Γ, E∗)

ρ

y
ym∗

E∨
∗ (E∧̃E) Φ′−−−−→ C(Γ× Γ, E∗)

τ

x∼= ∼=
xτ

(E∨
∗ E ⊗E∗ E∨

∗ E)∧m −−−−−→
(Φ⊗Φ)∧m

(C(Γ, E∗)⊗E∗ C(Γ, E∗))∧m

(6.9)

Here ρ is induced by 1∧̃η∧̃1, and of course the vertical composites (after inverting
τ) are the diagonal maps. The map Φ′ will be defined analogously to Φ. Indeed, we
have a map

σ′ : Γ× Γ× E∨
∗ (E∧̃E) −→ E∗

that takes the triple (γ, γ′, a), where a ∈ E∨
m(E∧̃E) to the composite

Sm a−→ E∧̃E∧̃E
1e∧γe∧γ′−−−−−→ E∧̃E∧̃E

1e∧1e∧γ−−−−→ E∧̃E∧̃E
1e∧µ−−→ E∧̃E

µ−→ E.
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Since σ′ is a composite of composition maps and smash product maps, it will be
continuous when every set of maps is given its natural topology (see the discussion
at the beginning of Section 1). Thus the adjoint of σ′ is our desired map

Φ′ : E∨
∗ (E ∧ E) −→ C(Γ× Γ, E∗).

Now we need to check that the two squares in our diagram (6.9) commute. For
the top square, we have

(Φ′ρ(a))(γ, γ′) = µ ◦ (1∧̃µ) ◦ (1∧̃1∧̃γ) ◦ (1∧̃γ∧̃γ′) ◦ (1∧̃η∧̃1) ◦ a

= µ ◦ (1∧̃µ) ◦ (1∧̃1∧̃γ) ◦ (1∧̃η∧̃1) ◦ (1∧̃γ′) ◦ a

= µ ◦ (1∧̃µ) ◦ (1∧̃η∧̃1) ◦ (1∧̃γ) ◦ (1∧̃γ′) ◦ a

= µ ◦ (1∧̃γ) ◦ (1∧̃γ′) ◦ a

= [m∗Φ(a)](γ, γ′).

It suffices to check that the bottom square commutes before we complete the bottom
row. We then have

[τ(Φ⊗ Φ)(a, b)](γ, γ′) = µ ◦ (1∧̃γ) ◦ (µ∧̃µ) ◦ (1∧̃γ∧̃1∧̃γ′) ◦ (a∧̃b)

= µ ◦ (1∧̃µ) ◦ (1∧̃γ∧̃γ) ◦ (µ∧̃1) ◦ (1∧̃γ∧̃1∧̃γ′) ◦ (a∧̃b)

= µ ◦ (1∧̃µ) ◦ (µ∧̃1∧̃1) ◦ (1∧̃γ∧̃γ∧̃γγ′) ◦ (a∧̃b)

= µ ◦ (1∧̃µ) ◦ (1∧̃µ∧̃1) ◦ (1∧̃γ∧̃γ∧̃γγ′) ◦ (a∧̃b)

= µ ◦ (1∧̃µ) ◦ (1∧̃γ∧̃γγ′) ◦ (1∧̃µ∧̃1) ◦ (a∧̃b)
= [Φ′τ(a, b)](γ, γ′),

completing the proof.

Appendix A. The topology on Γ

Recall that we identified the group Γ in Theorem 4.9 as the semi-direct product
Γ0 o C, where Γ0 is the automorphism group of the Honda formal group law over
Fpn and C is the Galois group of Fpn over Fp, This is an identification of abstract
groups; for the isomorphism Φ: E∨

∗ E −→ C(Γ, E∗) to be useful, we also need to
understand the topology on Γ. At the moment, we know only that this topology is
profinite. The topology on Γ was described in [Str00], but many details are missing
that we fill in here.

As explained in [Rav86, Lemma A2.2.16], the group Γ0 is the group of units in
the endomorphism ring D of Fn, which is a noncommutative ring obtained from the
Witt ring WFpn by adjoining an indeterminate S subject to the relations Sn = p
and Sw = wσS, where σ denotes the generator of C. The group C acts on WFpn

according to [Rav86, Lemma A2.2.15]. The subgroup of Γ0 consisting of the strict
isomorphisms is called the Morava stabilizer group Sn in [Rav86, Section 6.2].

We begin with some well-known facts about the stabilizer group Sn, whose proofs
can be hard to find in the literature.

Lemma Appendix A.1. The Morava stabilizer group Sn is a topologically finitely
generated, pro-p group, and an open subgroup of finite index in Γ0 o C.
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Here a topological group is topologically finitely generated if it has a dense
finitely generated subgroup. Note that it follows from Lemma Appendix A.1 that
Γ0 o C, as a finite extension of Sn, is also topologically finitely generated.

Proof. First note that D itself is a profinite ring. Indeed, by Lemma A2.2.16
of [Rav86], D is a free Z(p)-module of rank n2, and since p is central in D, we
conclude that D = lim D/(pk) as rings. It follows that Γ0, as the group of units in
D, is a profinite group (see the proof of Corollary 1.2). Hence Γ0 oC is a profinite
group as well in the product topology.

The stabilizer group Sn is the preimage of 1 under the map of rings D −→ Fpn that
takes an endomorphism of Fn to the coefficient of x in it. This map is the canonical
reduction mod p on W and takes S to 0. Its kernel is the 2-sided ideal (S) generated
by S, which is open since Sn = p. Hence this reduction map is continuous, so Sn is
closed. Since Fpn is finite, Sn has finite index in D× and so also in Γ0 o C, and so
must also be open.

Since Sn = p, D is complete in the S-adic topology. Hence Sn is the inverse
limit of the groups Gk = ker(D/Sk)× −→ (D/S)×. Since S is nilpotent in D/Sk,
this kernel is 1 + Hk, where Hk = ker(D/Sk −→ D/S). In particular, Gk is a finite
p-group, so Sn is a pro-p group.

We now prove that Sn is topologically finitely generated. Recall from [Rav86,
Lemma A2.2.16] that every element of Sn can be written as 1 +

∑∞
i=1 eiS

i, with
ei ∈ F̃pn , where F̃pn is the set of all e ∈ WFpn such that epn

= e. The reduction
map WFpn −→ Fpn sends F̃pn to Fpn by a multiplicative bijection; F̃pn is known as
the set of Teichmuller lifts. Now, let

T = {1 + eSk|e ∈ F̃pn , 1 6 k 6 np

p− 1
}.

We claim that the subgroup generated by T is dense. To see this, we first show that
for all e ∈ F̃pn and for all k, T contains an element xe,k such that xe,k

∼= 1 + eSk

(mod Sk+1). Indeed, this is obvious for all k 6 np
p−1 . For k > np

p−1 , we let xe,k =
xp

e,k−n. To see that xp
e,k−n has the required form, we use the fact that

(1 + eSk−n)p

= 1 + peSk−n + · · ·+
(

p

i

)
e(pi−1)/(p−1)Si(k−n) + · · ·+ e(pn−1)/(p−1)Sp(k−n)

∼= 1 + eSk + e(pn−1)/(p−1)Sp(k−n) (mod Sk+1),

since Sn = p, and Se = epS for e ∈ F̃pn . Now, since k > np
p−1 , we see that p(k−n) >

k, so xp
e,k−n is indeed a good choice for xe,k.

Now, in order to see that T is dense, it suffices to show that for all k and
e1, . . . , ek ∈ F̃pn , T contains an element congruent to 1 +

∑k
i=1 eiS

i modulo Sk+1.
We prove this by induction on k, the base case being obvious. For the induction
step, the induction hypothesis guarantees we can find an element

y ∼= 1 +
k∑

i=1

eiS
i + aSk+1 (mod Sk+2)
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in T . We can also find an element b ∈ F̃pn such that a + b ∼= ek+1 (mod p). Then

yxb,k+1
∼= 1 +

k∑

i=1

eiS
i + (a + b)Sk+1 (mod Sk+2)

∼= 1 +
k∑

i=1

eiS
i + ek+1S

k+1 (mod Sk+2),

as required, using the fact that Sn = p.

Theorem Appendix A.2. This isomorphism Γ ∼= Γ0 o C of Theorem 4.9 is a
continuous isomorphism of profinite groups. Furthermore, a subgroup of Γ is open
if and only if it has finite index.

This theorem is saying that the topology on Γ is completely determined by the
group structure. This is believed to be true for a general profinite group, but remains
an open question [CR02].

Proof. By [DdSMS99, Theorem 1.17], the open subgroups of a topologically finitely
generated pro-p group such as Sn are precisely the subgroups of finite index. By
[And76, Proposition 2], this remains true for any finite extension, such as Γ0 oC,
of such a group. It follows that the isomorphism Γ0oC −→ Γ of Theorem 4.9 is con-
tinuous. It is therefore a homeomorphism as well, since it is a map from a compact
space to a Hausdorff space.
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