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ON THE HOMOTOPY TYPE OF A CHAIN ALGEBRA

MAHMOUD BENKHALIFA

(communicated by James Stasheff)

Abstract
Let R be a P.I.D and let A be a dga over R. It is well-known

that the graded homology modules H∗(A) and TorA
∗ (R,R)

alone do not suffice (in general) to determine the homotopy
type of the dga A. J.H. Baues had built a more precise invari-
ant, the “certain” exact sequence of Whitehead associated with
A. Whitehead had built it for CW-complexes. In this work we
explore this sequence to show how it can be used to classify
the homotopy types of A.

1. Introduction

The classification of homotopy types is a classical and fundamental task in ho-
motopy theory. There are only a few explicit results in the literature (see [4], [6],
[7], [8], [9], [12], [17]) within the context of finite polyhedra and (see [4], [5], [6],
[11]) within the context of differential graded algebras and differential graded Lie
algebras. Recall that the existence of the models of Adams-Hilton [1], Anick [2], [3]
and Quillen [16] justify the geometrical interest of these types of algebras.

Let R be a principal ideal domain P.I.D. We denote by DGA∗(flat) the category
of R-flat, differential, graded, associative, augmented and connected algebras (dga).
Recall that DGA∗(flat) is a cofibration category [5, 6], so an object cylinder is
well defined in this category; hence we can define the notion of homotopy.

In [18] J.H.C. Whitehead has introduced a “certain” exact sequence associated
with a simply connected CW-complex and derived the classification of 4-dimensional
simply connected CW-complexes. After these results J.H. Baues proved, in [5], that
the Whitehead sequence exists also for a dga A and showed that this sequence can
establish a classification of the homotopy types of 4-dimensional simply connected
dgas.

Let V = (Vi)i>0 be a graded module, with V0 = 0. The tensor algebra T (V )
is the graded algebra whose underlying graded module is the graded sum ⊕

n>0
V ⊗n

(here V ⊗0 = 0). We say that a dga A is free if, forgetting differentials, one has
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A ∼= T (V ) for some V . In this case the differential on A is determined by its
restriction V → T (V ) and the graded module of indecompsable of A is isomorphic
to V .
A dga-morphism f : A → B is called a quasi-isomorphism if the induced morphism
H∗(f) : H∗(A) → H∗(B) is an isomorphism.

In [5] Baues showed that for each object A of DGA∗(flat) there exists a quasi-
isomorphism (T (V ), ∂) → A. The tensor algebra (T (V ), ∂) is called a model of A.
It is not unique up to isomorphism but it is unique up to homotopy.

Let (T (V ), ∂ be a model of A, then the Whitehead exact sequence associated
with A is the following long exact sequence:

· · · → TorA
n+2(R, R)

bn+2−→ Γn −→ Hn(A) −→ TorA
n+1(R, R)

bn+1−→ · · ·
Recall that TorA

∗ (R,R) = H∗(s−1V, d), where s−1 is the desuspension graded ho-
momorphism and where d is the linear part of the differential ∂ (see [4, 5]).
Recall also that Γn is defined by setting:

Γn = ker(Hn(T (V6n)) −→ Vn).

In this paper we study the problem of the classification of homotopy types in
the category DGA∗(flat). How we can recognize the homotopy type of an object in
DGA∗(flat) and how we can compute the number of homotopy types of a certain
object in DGA∗(flat) satisfying some given data?
Our tool to address this problem is the Whitehead exact sequence. Indeed this
sequence can be taken apart to give the following characteristic elements which we
call the Γ-system associated with A:
- a graded module TorA

n>2(R,R),
- a family of homomorphisms (bn+2)n>2, where bn+2 : TorA

n+2(R,R) → Γn,

- a family of extensions
(
i∗(πn) ∈ Ext(TorA

n+1(R,R), coker bn+2)
)
n>2

, where πn ∈
Ext(kern+1, cokerbn+2) denotes the extension represented by the short exact se-

quence coker bn+2 ½ Hn(A) ³ ker bn+1 and where ker bn+1
i

↪→ TorA
n+1(R,R).

We start by defining an algebraic category denoted Γ. Roughly speaking each
object of this category is the Γ-system associated with a certain free dga. Then we
define a surjective function:

F : ObDGA∗(flat)�' → ObΓ,

by using the Γ-system associated with A. But unfortunately the function F is
not a functor since it is not natural with respect to dga morphisms. Therefore,
to make this correspondence natural, we introduce the subcategory ΓDGA∗(flat)
of DGA∗(flat) whose morphisms are the dga morphisms α satisfying the condition
(3.3) and thereby F becomes a functor DGA∗(flat)�' → Γ which satisfies the
properties of a “detecting functor”, a notion introduced by H.J. Baues in [5], which
implies that the functor F induces the following results:

Theorem 1. Two objects A and B in DGA∗(flat) have the same homotopy type
if their Γ-systems are isomorphic.



Homology, Homotopy and Applications, vol. 6(1), 2004 111

Theorem 2. Homotopy types in the category ΓDGA∗(flat)�' are in bijection
with the classes of isomorphisms of objects in the category Γ.

Moreover, we have:

Theorem 3. Two objects A and B in ΓDGA∗(flat) have the same homotopy type
if and only if their Whitehead exact sequences are isomorphic.

If the condition (4.1) is satisfied, we can identify the category DGA∗(flat) with
its subcategory ΓDGA∗(flat). Therefore, under this condition, we conclude that
theorems 2 and 3 are also true in DGA∗(flat).

The functor F is surjective on objects then for every Γ-system there exists a
free dga (T (V ), ∂) such that F ((T (V ), ∂)) = Γ-system. When R is a field of any
characteristic we show that the dga (T (V ), ∂) coincides with the minimal model
defined in [10]. So the notion of Γ-system is probably the best substitute for the
minimal model in the case of differential algebras over a P.I.D R, rather than over
a field.

In the last section we treat a particular case where the definition of the category
Γ may be simplified. Indeed when the dga A is an object of ΓDGA3n+2

n (flat) (the
subcategory of ΓDGA∗(flat) of which the objects are those satisfying the relations
TorA

i (R, R) = 0 for i 6 n and i > 3n + 3) we can denote the graded module Γ∗
simply by the graded module TorA

∗ (R, R). Then we define an algebraic category
Γ3n+2

n and a functor:

F 3n+2
n : ΓDGA3n+2

n (flat)�' → Γ3n+2
n

and we show that F 3n+2
n is also a “detecting functor”. Hence we derive the following

homotopy classification theorem in ΓDGA3n+2
n (flat):

Theorem 4. Homotopy types of objects in ΓDGA3n+2
n (flat) are in bijection with

the proper equivalence classes ( see definition 15) of tuples (b3n+2, π3n, ...., b2n+2, π2n)
where bk+2 ∈ Hom(Hk+2, Γk) and where πk ∈ Ext(Hk+1, coker bk+2) for each
k 6 3n.

This article is organized as follows. In section 2, the Whitehead exact sequence
associated with a dga is defined and its essential properties are given. Section 3
is devoted to the Γ-homotopy systems of order n, a notion needed to define the
category Γ and to introduce the functor F and therefore to announce the main
results in section 4. We conclude with some geometric applications and examples in
section 5.

2. Whitehead exact sequence associated with a dga

In this section we give the definition and the essential properties of the Whitehead
exact sequence associated to an associative differential graded algebra. Recall that
Baues has constructed this sequence for dgas in [5] and he proved that it is an exact
sequence.
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Let A be a dga and let (T (V ), ∂) be a model of A. Form the following long exact
sequence:

· · · → Hn(T (V6n))
jn−→ Vn

βn−→ Hn−1(T (V6n−1)) → · · ·
where the connecting βn is defined by:

βn(vn) = ∂(vn), (2.1)

where ∂(vn) ∈ Hn−1(T (V6n−1)) is the homology class of the (n− 1)-cycle ∂(vn) ∈
Tn−1(V6n−1), we define the graded module (Γn)n>2 by setting:

Γn = ker(Hn(T (V6n))
jn−→ Vn). (2.2)

Recall that the linear part d of the differential ∂ is given by:

dn+1 = jn−1 ◦ βn ∀n > 2. (2.3)

The Whitehead exact sequence associated with the dga A is by definition ( see [5])
the following long exact sequence:

· · · → TorA
n+2(R, R)

bn+2−→ Γn −→ Hn(A) −→ TorA
n+1(R, R)

bn+1−→ · · ·
where bn+2(z) = βn+1(z).

Remark 1. Since Vn is free, for each n > 2, from the short exact sequence:

Γn ½ Hn(T (V6n)) ³ kerβn ⊂ Vn,

we deduce that:
Hn(T (V6n)) ∼= Γn ⊕ kerβn, (2.4)

and in terms of the differential dn+2 : Vn+1 → Vn we deduce the following decom-
position:

Vn+1
∼= (Im dn+2)′ ⊕ ker dn+2, (2.5)

where (Im dn+2)′ ⊂ Vn+1 is a copy of Im dn+2 ⊂ Vn. Therefore the short exact
sequence:

(Im dn+2)′
dn+1½ ker dn+1 ³ TorA

n+1(R,R),

is a free resolution of the module TorA
n+1(R, R).

- Since dn+2 ((Imdn+2)′) ⊂ kerβn then the short exact sequence:

(Im dn+2)′
dn+2½ kerβn ³ ker bn+1, (2.6)

is a free resolution of the sub-module ker bn+1 ⊂ TorA
n+1(R, R).

- According to the relations (2.5) and (2.4), if (zn+2,σ)σ∈P and (ln+2,σ′)σ′∈P′ de-
note respectively the basis of the free modules ker dn+2 and (Im dn+2)′, the formula
(2.1) can be written :

βn+1(zn+2,σ + ln+2,σ′) = bn+2(zn+2,σ) + ϕn(ln+2,σ′) + dn+2(ln+2,σ′), (2.7)

where ϕn : (Im dn+2)′ → Γn is a homomorphism given by the differential in ∂.



Homology, Homotopy and Applications, vol. 6(1), 2004 113

Proposition 1. Let A be a dga, then for each n > 2, we have:

Hn(A) ∼= coker bn+2 ⊕ ker βn

Imϕn ⊕ Im dn+2
, (2.8)

where:

ϕn : (Im dn+2)′
ϕn→ Γn³coker bn+2.

Proof. Let (T (V ), ∂) be a model of A. From the following exact sequence:

Vn+1
βn+1−→ Hn(T (V6n)) → Hn(T (V6n+1)) → 0,

and the relation (2.4) we get:

Hn(T (V6n+1)) ∼= Γn ⊕ kerβn

Imβn+1
. (2.9)

Substituting the relation (2.7) in the formula (2.9) we get:

Hn(T (V6n+1)) ∼= Γn ⊕ kerβn

Im ϕn + Im bn+2 + Im dn+2
, (2.10)

but T (V ) is a model of A, so:

Hn(T (V6n+1)) = Hn(T (V )) = Hn(A),

thus the relation (2.10) can be written as:

Hn(A) ∼= Hn(T (V )) ∼= coker bn+2 ⊕ kerβn

Im ϕn + Im dn+2
,

as desired.

It’s well know that the Whitehead exact sequence is natural with respect to
dga morphisms; namely, a dga morphism f : A → B induces the following useful
commutative diagram:

. . . → TorA
n+2

(R, R)
bn+2−→ ΓA

n −→ Hn(A) −→ TorA
n+1

(R,R)
bn+1−→ ...

??
. . . → TorB

n+2
(R, R)

b′n+2−→ ΓB
n −→ Hn(B) −→ TorB

n+1
(R, R)

b′n+1−→ ...
?

Torf

n+2
(R, R)(A) Torf

n+1
(R, R)

?

γf
n Hn(f)

where γf
∗ : ΓA

∗ → ΓB
∗ is the graded homomorphism induced by the dga morphism

f. The commutativity of the above diagram induces the formula:
(
Torf

n+1(R, R)
)∗

([Hn(B)]) = (γf
n)∗([Hn(A)]), (2.11)

where [Hn(A)] ∈ Ext(ker bn+1, coker bn+2), [Hn(B)] ∈ Ext(ker b′n+1, coker b′n+2) and
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where:(
Torf

n+1(R, R)
)∗

: Ext(ker b′n+1, coker b′n+2) → Ext(ker bn+1, coker b′n+2)

(γf
n)∗ : Ext(ker bn+1, coker bn+2) → Ext(ker bn+1, coker b′n+2).

Remark 2. Formula (2.11) means the following:
consider:

(Im dn+2)′
dn+2→ kerβn ³ ker bn+1

(Im d′n+2)
′ d′n+2→ kerβ′n ³ ker b′n+1,

as two free resolutions of ker bn+1 and ker b′n+1 respectively. To the given extensions
[Hn(A)], [Hn(B)] and homomorphisms γf

n, Torf
n+1(R,R) there correspond the fol-

lowing diagrams:

?

(Im dn+2)′
dn+2½ kerβn ³ ker bn+1

(Im d′n+2)
′ d′n+2½ kerβ′n ³ ker b′n+1

(Im dn+2)′
dn+2½ kerβn ³ ker bn+1

coker b′n+1

coker bn+1

ϕn

?
coker b′n+1

?

?

γf
n ϕ′n

ξn+2

where [ϕn] = [Hn(A)] , [ϕ′n] = [Hn(B)] and where γf
n (respectively ξn+2) is the

homomorphism induced by γf
n (respect. by Torf

n+1(R,R)) on the quotient module
coker bn+2 (respectively on the sub-module (Im dn+2)′).

The homomorphisms(γf
n)∗ and

(
Torf

n+1(R, R)
)∗

satisfy the following relations:

(γf
n)∗([Hn(A)]) = [γf

n ◦ ϕn]

(Torf
n+1(R, R))∗([Hn(B)]) = [ϕ′n ◦ ξn+2],

so the formula (2.11) is equivalent to the relation:

[γf
n ◦ ϕn] = [ϕ′n ◦ ξn+2] in Ext(ker bn+1, coker b′n+2),

or that there exists a homomorphism gn : ker βn −→ coker b′n+2 satisfying the rela-
tion:

γf
n ◦ ϕn − ϕ′n ◦ ξn+2 = gn ◦ dn+2. (2.12)

3. Γ-Homotopy systems of order n and their category

The notion of homotopy systems of order n was defined by Baues in [5] for CW-
complexes. For him a homotopy system of order n is a triple constituting with a
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CW-complex Xn of dimension n, a chain complex (C∗, d) which coincides with the
cellular chain complex C∗(Xn) in dimension below n + 1 and a homomorphism
of abelian groups fn+1 : Cn+1 → πn(Xn) which satisfies the cocycle condition
fn+1 ◦ dn+2 = 0.

In this section we introduce the notion of homotopy systems of order n for dgas
and their morphisms. Although this definition is completely different from Baues
one but they express the same ideas.

Definition 1. Let n > 2. A Γ-homotopy system of order n is a triple
(T (V, ∂n), bn+2, πn) where:
1- T (V6n, ∂n) is an R-free graded algebra.
2- (V>1, d∗) is a positive chain complex.
3- bn+2 is a homomorphism of modules:

bn+2 : Hn+2(s−1V∗) → Γn ⊂ Hn(T (V6n)).

4- πn is an extension such that:

πn ∈ Ext(Hn+1(s−1V∗), coker bn+2).

Recall that the R-module Γn is given by the formula (2.2) and recall that s−1 is
the desuspension graded homomorphism.

Definition 2. A morphism between two Γ-homotopy systems (T (V, ∂n), bn+2, πn)
and (T (W, δn), b′n+2, π

′
n) of order n is a pair (ξ∗, αn) such that:

αn : T ((V6n, ∂n)) → T (W6n, δn)) is a dga-morphism,
ξ∗ : s−1V∗ → s−1W∗ is a chain map such that:

Hi(ξ∗) = Torαn

i (R,R), ∀i 6 n + 1,

satisfying the following two conditions:

1− b′n+2 ◦Hn+2(ξ∗) = γαn

n ◦ bn+2

2− [Hn+1(ξ∗)]∗(π′n) = (γαn

n )∗(πn),

where the homomorphism γαn

n is induced by αn and where:

[Hn+1(ξ∗)]∗ : Ext(Hn+1(s−1W∗), coker b′n+2) → Ext(Hn+1(s−1V∗), coker b′n+2)

(γαn

n )∗ : Ext(Hn+1(s−1V∗), coker bn+2) → Ext(Hn+1(s−1V∗), coker b′n+2).

Remark 3. As in the remark (2), the last condition means the following:
Put Hn+1 = Hn+1(s−1V∗) and H ′

n+1 = Hn+1(s−1W∗) and consider:

(Im dn+2)′
dn+2→ ker dn+1 ³ Hn+1

(Imd ′n+2)
′ d′n+2→ ker d′n+1 ³ H ′

n+1,

as two free resolutions of Hn+1 and H ′
n+1 respectively. To the given extensions πn

and π′n and homomorphisms γαn

n , Hn+1(ξ∗) there corresponds the following diagram:
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?

(Im dn+2)′
dn+2½ ker dn+1 ³ Hn+1

(Im d′n+2)
′ d′n+2½ ker d′n+1 ³ H ′

n+1

(Im dn+2)′
dn+2½ ker dn+1 ³ Hn+1

coker b′n+1

coker bn+1

ϕn

?
coker b′n+1

?

?

γη
n ϕ′n

ξn+2

where [ϕn] = πn, [ϕ′n] = π′n and where γαn

n is the homomorphism induced by γαn

n

on the quotient module coker bn+2.
The homomorphisms (γαn

n )∗ and [Hn+1(ξ∗)]
∗ satisfy the relation:

(γαn

n )∗(πn) = [γαn

n ◦ ϕn]
[Hn+1(ξ∗)]

∗ (π′n) = [ϕ′n ◦ ξn+2].

So the second condition is equivalent to the existence of a homomorphism hn :
ker dn+1 −→ coker b′n+2 satisfying the relation:

γf
n ◦ ϕn − ϕ′n ◦ ξn+2 = hn ◦ dn+2. (3.1)

Denote by Hn the category of Γ-homotopy systems of order n and their mor-
phisms.

Definition 3 (see [5]). Let (ξ∗, αn) and (ξ′∗, α′n) be two morphisms in the category
Hn. We say that they are homotopic in Hn and we write (ξ∗, αn) ' (ξ′∗, α

′n), if
αn and α′n are homotopic as a dga morphisms and if there exist homomorphisms
σk+1 : (s−1V )k → (s−1W )k+1, k > n, such that:

ξk − ξ′k = σk ◦ dk + d′k+1 ◦ σk+1, k > n + 1.

Denote by Hn�' the category whose objects are those of Hn and whose mor-
phisms are the homotopy classes {(ξ∗, αn)} of morphisms (ξ∗, αn) of Hn. We denote
also by Hn+1

n the subcategory of Hn whose objects are the Γ-homotopy systems
(T (V, ∂n), bn+2, πn) of order n such that Vi = 0 for all i > n + 2.

3.1. Definition of the functor Fn+1
n

The Whitehead exact sequence introduced in the previous section allows us to
define a function:

Fn : OBDGA∗(flat)�' → OBHn�',

as follows :
let (T (V, ∂) ∈ OBDGA∗(flat)�' and let:

· · · → TorT (V )
n+2 (R,R)

bn+2−→ Γn → Hn(T (V )) → TorT (V )
n+1 (R, R)

bn+1−→ · · ·
be the Whitehead exact sequence associated with T (V ).
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This sequence gives us a homomorphism bn+2 : TorT (V )
n+2 (R,R) → Γn and a short

exact sequence coker bn+1 ½ Hn(T (V )) ³ ker bn+1. But according to relation (2.8)
we have:

Hn(A) ∼= coker bn+2 ⊕ ker βn

Im ϕn + Im dn+2
,

where
−
ϕn : (Im dn+1)′

ϕn½ Γn
pr→ coker bn+1.

Since the relation (2.3) implies ker βn ⊂ ker dn+1 we set:

πn =
[
coker bn+2 ⊕ ker dn+1

Im ϕn + Im dn+2

]
. (3.2)

Therefore, πn ∈ Ext(Tor
T (V )
n+1 (R,R), coker bn+2). We define Fn by:

Fn(T (V )) = (T (V, ∂n), bn+2, πn).

We now wish to define Fn on dga morphisms by setting Fn(α) = Torα
∗ (R,R),

but unfortunately this definition is not natural with respect to dga morphisms since
we have seen that if α is a dga morphism then the induced graded homomorphism
Torα

∗ (R, R) implies the formula (2.12). But as we know, in order to be a morphism
in Hn a graded homomorphism f∗ should satisfy the formula (3.1).

Therefore to make this correspondence natural with respect to dga morphisms,
we define ΓDGA∗(flat) as the subcategory of DGA∗(flat) whose morphisms are
the dga morphisms α satisfying the following condition: for all n > 2 :

[γα
n ◦ ϕn] = [ϕ′n ◦ ξn+2] in Ext(Tor

T (V )
n+1 (R, R), coker b′n+2). (3.3)

Note that this condition is trivial when we work over a field of any characteristic.
Thus we define the functor:

Fn : ΓDGA∗(flat)�' → Hn�',

by setting:

Fn(T (V )) = (T (V, ∂n), bn+2, πn)
Fn({α}) = {(ξ∗, αn)},

where αn denote the restriction of the dga-morphism α on T (V6n, ∂n) and where
the ξ∗ is the chain transformation induces by the dga-morphism α on the indecom-
posables.

Corollary 1. The condition (3.3) implies that the morphism (ξ∗, αn) satisfies the
second condition which define the morphisms in Hn.

Let DGAn+2
∗ (flat) be the subcategory of DGA∗(flat) on which the objects A

are those satisfying the relation TorA
i (R, R) = 0 , ∀i > n + 3.

Remark 4. If A is an object of the category DGAn+2
∗ (flat) then a model T (V6n+1, ∂)

of A can be chosen such that Vi = 0 for each i > n + 2. Therefore TorA
n+2(R, R) =

ker dn+2 ⊂ Vn+1. So TorA
n+2(R, R) is free.
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We can also consider the functor:

Fn+1
n : ΓDGAn+2

∗ (flat)�' → Hn+1
n �',

given by the formula:

Fn+1
n (T (V6n+1, ∂)) = (T (V6n+1, ∂

n), bn+2, πn)
Fn+1

n ({αn+1}) = {(ξ∗, αn)},
which is the restriction of the functor Fn to the subcategory ΓDGAn+2

∗ (flat)�'
of DGA∗(flat)�'.

3.2. Properties of the functor Fn+1
n

Now we approach the study of the functor Fn+1
n .

Theorem 5. A morphism α : T (V6n+1, ∂) → T (W6n+1, δ) in ΓDGAn+2
∗ (flat) is

a quasi-isomorphism if and only if Fn+1
n (α) is an isomorphism in Hn+1

n �'.

Proof. Recall that by definition of the functor Fn+1
n we have the formulas:

Fn+1
n (T (V6n+1, ∂)) = (T (V6n+1, ∂

n), bn+2, πn)
Fn+1

n (T (W6n+1, δ)) = (T (W6n+1, δ
n), b′n+2, π

′
n),

and the relation:

Tor
T (V6n+1)∗ (R, R) = H∗(s−1V6n+1, d∗)

Tor
T (W6n+1)
∗ (R, R) = H∗(s−1W6n+1, d

′
∗).

So if Fn+1
n (α) is an isomorphism in Hn+1

n �' then we deduce that the graded
homomorphism:

Torα
∗ (R, R) : Tor

T (V6n+1)
∗ (R, R) → Tor

T (W6n+1)
∗ (R,R),

is an isomorphism and then we apply the classical theorem of Moore [13, 15] which
asserts that a dga morphism f in DGA∗(flat) is a quasi-isomorphism if and only
if Torf

∗ (R, R) is a quasi-isomorphism as a chain morphism.

Theorem 6. For each Γ-homotopy system (T (V6n+1, ∂
n), bn+2, πn) in Hn+1

n , there
exists a free dga T (V6n+1, ∂) in DGAn+2

∗ (flat) such that:

Fn+1
n (T (V6n+1, ∂)) = (T (V6n+1, ∂

n+1), bn+2, πn)

Tor
T (V6n+1)
n+2 (R, R) = Hn+2(s−1V6n+1).

Proof. Consider:

(Im dn+2)′
dn+2½ kerβn ³ ker bn+1,

as a free resolution of ker bn+1. The inclusion ker bn+1
i

↪→ Hn+1(s−1V∗) implies the
homomorphism:

Ext(Hn+1(s−1V∗), coker bn+2)
i∗−→ Ext(ker bn+1, coker bn+2).
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Therefore for the given extension πn ∈ Ext(Hn+1(s−1V∗), coker bn+2) and the ho-
momorphism bn+2, there exist homomorphisms µn+2, ϕn which make the following
diagram commutative:

ker dn+2 - Zn(T (V6n))µn+2

Γn ³ coker bn+2

PPPPPPPPPPPq
bn+2

´
´

´
´

´
´

´
´

+́

(Im dn+2)′

0
?

?

pr

?
kerβn

»»»»»»»»»9

?
ker bn+1

ϕn

ϕn

?

where [ϕn] = i∗(πn).
Using the decomposition of the module Vn+1 = (Im dn+2)′⊕ker dn+2 in the relation
(2.5), we define ∂ on T (V6n+1) by the formulas:

∂n+1(zn+2,σ + ln+2,σ′) = dn+2(ln+2,σ′) + ϕn(ln+2,σ′) + µn+2(zn+2,σ)
∂6n = ∂n

6n,

where (zn+2,σ)σ∈P and (ln+2,σ′)σ′∈P′ denote respectively bases of the free sub-
modules ker dn+2 and (Im dn+2)′.
Note that by the above diagram the element:

ϕn(ln+2,σ′) + µn+2(zn+2,σ) ∈ Zn(T (V6n)),

hence ∂n
6n(ϕn(ln+2,σ′) + µn+2(zn+2,σ)) = 0.

Since ∂n
6n(dn+2(ln+2,σ′)) = dn+1 (dn+2(ln+2,σ′)) = 0 we deduce that ∂ is a differen-

tial on T (V6n+1).
It’s easy to see that the Whitehead exact sequence associated with the dga A =
(T (V6n+1), ∂) can be written:

ker dn+2 = TorA
n+2(R,R)

bn+2−→ Γn → Hn(A) → TorA
n+1(R,R) → · · ·

then according to the definition of the functor Fn+1
n , it easy to check that:

Fn+1
n (A) = (T (V6n+1, ∂

n), bn+2, πn)
TorA

6n+2(R,R) = H6n+2(s−1V6n+1),

and the proof is completed.

Theorem 6 allows us to describe an action of the group
Hom(Tor

T (V )
n+2 (R, R),Γn) on the set OBDGA∗(flat) as follows:

Corollary 2. Given a free dga (T (V ), ∂), let bn+2 ∈ Hom(Tor
T (V )
n+2 (R, R), Γn).

Perturb the differential ∂n+1 in the dga (T (V6n+1, ∂
n+1) by setting:

∂′n+1(zn+2,σ + ln+2,σ′) = ∂n+1(zn+2,σ + ln+2,σ′) + µn+2(zn+2,σ). (3.4)
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For a given extension πn ∈ Ext(Tor
T (V )
n+1 (R, R), coker b′n+2), also perturb ∂′n+1 to

obtain a new differential δn+1 of T (V6n+1) by setting:

δn+1(zn+2,σ + ln+2,σ′) = ∂′n+1(zn+2,σ + ln+2,σ′) + dn+2(ln+2,σ′) (3.5)
+ϕn(ln+2,σ′), (3.6)

so that the differential δ is defined by the formulas:

δi = ∂′i = ∂i ∀i 6= n + 1
δn+1 = ∂′n+1

n+1 + dn+2 + ϕn = ∂n+1 + dn+2 + µn+2.

Definition 4. The dga (T (V6n+1), ∂) constructed below is called the dga associated
with the Γ-homotopy system (T (V6n+1, ∂

n), bn+2, πn) of order n.

Definition 5. We call the pair (bn+2, πn) an adapted couple for the dga (T (V6n), ∂n).

Definition 6. A dga morphism αn : (T (V6n), ∂n) → (T (W6n), δn) is said to be
n-diagonal if αn maps T (V6n−1) onto T (W6n−1) and the direct factor ker dn+1 of
Vn onto the module Wn.

Lemma 1. If αn : (T (V6n), ∂n) → (T (W6n), δn) is n-diagonal then according to the
splitting Hn(T (V6n)) ∼= Γn⊕ ker bn+1 (respectively. Hn(T (W6n)) ∼= Γ′n⊕ ker b′n+1),
the homomorphism:

Hn(αn) : Hn(T (V6n)) → Hn(T (W6n)),

splits into:

Hn(αn) = γαn

n ⊕ ξn+1, (3.7)

where γαn

n is the homomorphism induced by αn on the sub-module Γn, and where
ξn+1 : kerβn → kerβ′n is the chain transformation induced by αn on the indecom-
posables.

Theorem 7. Let (T (V6n+1, ∂) and (T (W6n+1, δ) be two free dgas in DGAn+2
∗ (flat)

and let:

(ξ∗, αn) : Fn+1
n ((T (V6n+1, ∂)) → Fn+1

n ((T (W6n+1, δ)),

be a morphism in Hn+1
n such that αn is n-diagonal. Then there exists a dga-

morphism Λ : (T (V6n+1), ∂) → (T (W6n+1), δ) such that Λ is (n + 1)-diagonal
and satisfies:

Fn+1
n (Λ) = Hn+2(ξ∗). (3.8)

In order to prove the theorem we consider the following diagram:
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Vn+1 - Wn+1
´

´
´

´
´́+

Q
Q

Q
Q

Q
Qs

Q
Q

Q
Q

QQs

´
´

´
´

´
+́

ξn+2

βn+1 β′n+1

jn j′n

d′n+2dn+2

Vn - Wn

? ?

? ?...
...

ξn+1

Hn(αn)Hn(T (V6n)) - Hn(T (W6n))

- where the left and right triangles commute by the definition of the linear differen-
tials,
- where the lower trapezoid commutes by the definition of the given morphism
(ξ∗, αn),
- where the central square commutes by the definition of ξ∗.

Since j′n(Hk(αn) ◦ βn+1 − β′n+1 ◦ ξn+2) = 0, then:

Im (Hn(αn) ◦ βn+1 − β′n+1 ◦ ξn+2) ⊂ Γ′n.

We begin by giving the following lemma:

Lemma 2. There exists a homomorphism gn : Vn → Γ′n such that

Hn(αn) ◦ βn+1 − β′n+1 ◦ ξn+2 = gn ◦ dn+1 (mod Im b′n+2).

Proof. Since the dga morphism αn is n-diagonal, the relations (2.7) and (3.7) give
us an explicit expression of the homomorphism Hn(αn) ◦ βn+1 − β′n+1 ◦ ξn+2 so it’s
easy to show that:

Hn(αn) ◦ βn+1 − β′n+1 ◦ ξn+2 = γαn

n ◦ ϕn − ϕ′n ◦ ξn+2.

Since pr ◦ (
γαn

n ◦ ϕn − ϕ′n ◦ ξn+2

)
= γαn

n ◦ ϕn − ϕ′n ◦ ξn+2 and according to the
condition (2) defining a morphism in the category Hn and remark 3, there exists a
homomorphism gn which makes the following diagram commutative after composi-
tion with the projection pr:

?
Γ′n --coker b′n+2

γαn

n ϕn − ϕ′nξn+2 gn

0 -(Im dn+2)′ - ker dn+1
©©©©©©©©©©©©¼

pr

dn+2

Since Vn = (Im d′n+1) ⊕ ker dn+1 then we can extend gn to Vn and the proof is
completed.
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Proof. (of theorem (7))
According to lemma 2 we have:

Hn(α) ◦ βn+1 − β′n+1 ◦ ξn+2 − gn ◦ dn+2 : (Im d′n+2) → Im b′n+2,

or:

(Hn(α)− gn ◦ jn) ◦ βn+1 − β′n+1 ◦ ξn+2 : (Im d′n+2) → Im b′n+2.

As a result there exists a homomorphism λn+1 which makes the upper triangle in
the following diagram commutative:

66

?

ker d′n+2

»»»»»»»»»»»»»»»»»:

XXXXXXXXXXXXXXXXXXXXzZn(T (W6n))

Vn+1 - Im b′n+2 ⊂ Γ′n
(Hn(αn)− gnjn)βn+1 − β′n+1ξn+2

pr

λn+1

(αn − hn)∂ − δξn+2

?

where the homomorphism hn : Vn → Zn(T (W6n)) satisfies the relation pr◦hn = gn

and where Zn(T (W6n)) is the module of n-cycles of the dga T (W ).
Choose (zn+2,σ)σ∈P and (ln+2,σ′)σ′∈P′ respectively as bases of the free sub-modules
(Im dn+2)′ and ker dn+2. Recall that:

Vn+1
∼= (Im dn+2)′ ⊕ (ker dn+2).

By the commutativity of the above diagram, for each σ ∈ Σ and σ′ ∈ Σ′, there
exists an element tn+2,σ,σ′ ∈ Tn+1(W6n) such that:

((αn − hn)∂ − δξn+2)(zn+2,σ + ln+2,σ′) = δ ◦ λn+1(ln+2,σ′) (3.9)
+δ(tn+2,σ,σ′).

If zn+2,σ + ln+2,σ′ ∈ Vn+1, then we define Λ : (T (V6n+1), ∂) −→ (T (W6n+1), δ) by
setting:

Λn+1(zn+2,σ + ln+2,σ′) = λn+1(ln+2,σ,σ′) + tn+2,σ,σ′ + ξn+2(zn+2,σ + ln+2,σ′)
Λn = αn − hn

Λi = αi i 6= n, n + 1.

Λ is a dga morphism i.e. Λ◦∂ = δ ◦Λ. Indeed, since for each zn+2,σ + ln+2,σ′ ∈ Vn+1

we have ∂(zn+2,σ + ln+2,σ′) ∈ Zn (T (W6n)) , then according to the definition of Λ
we have

Λ ◦ ∂(zn+2,σ + ln+2,σ′) = (αn − hn) ◦ ∂(zn+2,σ + ln+2,σ′),

and, on the other hand, according to the relation (3.9) and the definition of Λ, we
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have

δ ◦ Λn+1(zn+2,σ + ln+2,σ′) = δ ◦ λn+1(ln+2,σ′) + δ ◦ ξn+2(zn+2,σ + ln+2,σ′)
+ δ(tn+2,σ′)
= ((αn − hn) ◦ ∂ − δ ◦ ξn+2)((zn+2,σ + ln+2,σ′))
+ δ ◦ ξn+2(zn+2,σ + ln+2,σ′)
= (αn − hn) ◦ ∂((zn+2,σ + ln+2,σ′)).

Therefore Λ is a dga morphism. Finally by the definition, it’s clear that α is (n+1)-
diagonal and satisfies the relation (3.8).

Following H.J. Baues in [5], let A and B be two categories and let F : A → B
be a functor. We say that F is a “detecting functor ” if the following conditions are
satisfied:
1 -A morphism α : A1 → A2 in the category A is an isomorphism if and only if
F (α) : F (A1) → F (A2) is an isomorphism.
2 - For each object B in the category B, there exists an object A in A such that
F (A) = B.
3 - Let A1 and A2 be two objects in A and let β : F (A1) → F (A2) be a morphism
in B, there exists a morphism α : A1 → A2 verifying F (α) = β.
We summarize the properties of the functor Fn+1

n in the following result:

Theorem 8. The functor:

Fn+1
n : ΓDGAn+2

∗ (flat)�' → Hn+1
n �',

is a detecting functor.

4. The category Γ

4.1. Notion of Γ-system and Γ-morphism
Roughly speaking, each object of the category Γ gives a long exact sequence which
is the Whitehead exact sequence associated with a certain object in DGA∗(flat).
Given a graded R-module H∗, choose a free chain complex (s−1V∗, d) such that
H∗ = H∗(s−1V∗, d) .

Definition 7. A Γ-system is a triple (Hn, bn+2,πn)n>2 where, for each n, (bn+2,πn)
is an adapted couple (see definition 5) for the dga (T (V6n), ∂n) which is constructed
from the dga (T (V62), d) and the pairs (bk+2,πk)26k6n−1 according to theorem 6.

Thus if we iterate this process we find a free dga (T (V ), ∂) having the following
property:
for each n > 2 we have:

Fn((T (V ), ∂)) = (T (V, ∂n), bn+2, πn).

Definition 8. The dga (T (V ), ∂) constructed below is called the dga associated with
the Γ-system (Hn, bn+2, πn)>2.
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Remark 5. The (T (V ), ∂) is not unique but we shall prove later that (T (V ), ∂) is
unique up to homotopy.

Let (Hn, bn+2, πn)n>2 and (H ′
n, b′n+2, π

′
n)n>2 be two Γ-systems and let f∗ : H∗ → H ′

∗
be a graded homomorphism of degree 0. We say that f∗ is a Γ-morphism if f∗ satisfies
the following inductive construction:
let (T (V ), ∂) and (T (W ), δ) be two free dgas associated respectively with the given
Γ-systems. By virtue of the homotopy extension theorem [14], there exists a chain
transformation ξ∗ : (s−1V, d) → (s−1W,d′) such that H∗(ξ∗) = f∗. We begin by
considering the dga morphism α2 : (T (V62), d) → (T (W62), d′) given by:

α2 = ξ3 on V2

α2 = ξ2 on V1.

Since ker d3 = H3 we deduce that (ξ∗, α2) is a morphism in the category H3
2 and

it’s clear that α2 is 2-diagonal by the definition, so theorem 7 gives a dga morphism
α3 : (T (V63), ∂3) → (T (W63), δ3) which is 3-diagonal and such that Torα3

i (R, R) =
fi for all i 6 4.
Suppose now that we have built a dga morphism:

αn : (T (V6n), ∂n) → (T (W6n), δn),

by using the above process, such that αn is n-diagonal and such that:

Torαn

i (R, R) = fi for all i 6 n + 1.

If we assume that (ξ∗, αn) is a morphism in Hn+1
n , then theorem 7 allows us to

construct a dga morphism αn+1 : (T (V6n+1), ∂n+1) → (T (W6n+1), δn+1) which is
(n + 1)-diagonal and such that:

Torαn+1

i (R,R) = fi for all i 6 n + 2.

Thus if we iterate this process for all n > 2 we find a dga morphism α : (T (V ), ∂) →
(T (W ), δ) satisfying the following properties:
1- Torα

∗ (R, R) = f∗.
2- For each n > 2, (ξ∗, αn) is a morphism in the category Hn, where
αn : T (V6n), ∂) → (T (W6n), δ) is the restriction of α.

Definition 9. A graded homomorphism f∗ : H∗ → H ′
∗ satisfying the above inductive

condition for each n > 2 is called a Γ-morphism.

Definition 10. The dga morphism α : (T (V ), ∂) → (T (W ), δ) constructed by the
above process is called the dga morphism associated with the Γ-morphism f∗.

Remark 6. Since Torα
∗ (R,R) = f∗ we deduce that the dga morphism α constructed

below satisfies condition (3.3). So it is a morphism in the category ΓDGA∗(flat).

4.2. Definition of the category Γ and the functor F
Now we are able to give the following definition:

Definition 11. The category Γ is defined as follows:
Objects: the Γ-systems defined in the definition (7)
Morphisms: the Γ-morphisms defined in the definition (9)
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Thus we define the functor F : ΓDGA∗(flat)�' → Γ by setting:

F ((T (V ), ∂)) = (Tor
T (V )
k (R,R), bk+2, πk)k>2

F ({α}) = Torα
∗ (R, R).

We now give some properties of the functor F and we show that the functor
satisfies the properties of a “detecting functor”. We begin with the following propo-
sitions:

Proposition 2. Let (T (V ), ∂) and (T (W ), δ) be two free dgas. If the Γ-systems

(Tor
T (V )
k (R, R), bk+2, πk)k>2 and (Tor

T (W )
k (R, R), b′k+2, π

′
k)k>2 are isomorphic in

the category Γ, then the given dgas have the same homotopy type.

Proof. Let f∗ : (Tor
T (V )
k (R, R), bk+2, πk)k>2 → (Tor

T (W )
k (R, R), b′k+2, π

′
k)k>2 be

the isomorphism between the two Γ-systems and let α : (T (V ), ∂) → (T (W ), δ)
be the dga morphism associated with the Γ-morphism f∗ (see definition 10). Since
Torα

∗ (R, R) = f∗ and again we apply the classical Moore’s theorem to get the
result.

Proposition 3. A dga-morphism α is a quasi-isomorphism if and only if F (α) is
an isomorphism.

Proof. Obvious since F (α) = Torα
∗ (R, R).

Remark 7. ¿From the proposition 3, we conclude that the dga morphism α asso-
ciated to the Γ-morphism f∗ is unique up to homotopy.

Now we are able to announce the main theorem in this paper:

Theorem 9. The functor:

F : ΓDGA∗(flat)�' → Γ,

is a detecting functor.

Proof. Definition 7 implies that to each Γ-system is associated a dga (T (V ), ∂) such
that F (T (V )) is the given Γ-system. Definition 10 implies that to each Γ-morphism
is associated a morphism in ΓDGA∗(flat) which has for image, by the functor F ,
the given Γ-morphism. We conclude the proof by proposition 3.

As a consequence of theorem 9 we deduce the following result:

Theorem 10. Homotopy types in the category ΓDGA∗(flat)�' are in bijection
with the classes of isomorphisms of objects in the category Γ.

Moreover, we derive the following theorem:

Theorem 11. Two objects of the category ΓDGA∗(flat) have the same homotopy
type if and only if their Whitehead exact sequences are isomorphic.

Now we give a relation identifying the subcategory ΓDGA∗(flat) with DGA∗(flat).
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Proposition 4. Let:

· · · → Tor
T (V )
n+2 (R,R)

bn+2−→ Γn −→ Hn(T (V )) −→ Tor
T (V )
n+1 (R, R)

bn+1−→ · · ·

· · · → Tor
T (W )
n+2 (R,R)

b′n+2−→ Γ′n −→ Hn(T (W )) −→ Tor
T (W )
n+1 (R, R)

b′n+1−→ · · ·
be the Whitehead exact sequences associated respectively with two free dgas (T (V ), ∂)
and (T (W ), δ). If

Ext

(
Tor

T (V )
n+1 (R, R)
ker bn+1

, coker b′n+1

)
= 0 for all n > 2, (4.1)

then the condition (3.3) is satisfied.

Proof. ¿From the following short exact sequence:

kerβn
i

↪→ ker dn+1 ³ ker dn+1

kerβn
,

where i is the inclusion, and by the second isomorphism theorem which asserts that:

ker dn+1

kerβn

∼= Tor
T (V )
n+1 (R, R)
ker bn+1

,

we deduce that:

Ext

(
Tor

T (V )
n+1 (R, R)
ker bn+1

, coker b′n+1

)
=

Hom(kerβn, cokerb′n+1)
i∗(Hom(ker dn+1, coker b′n+1))

= 0. (4.2)

¿From the relation (2.12) we know that the homomorphism γf
n ◦ ϕn − ϕ′n ◦ ξn+1

satisfies the following relation:

γf
n ◦ ϕn − ϕ′n ◦ ξn+1 = gn ◦ dn+1

where gn : ker βn −→ coker b′n+2. So the relation (4.2) implies that
gn ∈ i∗(Hom(ker dn+1, coker b′n+1)). Hence there exists a homomorphism
hn : ker dn+1 → coker b′n+1 such that gn = hn ◦ i. Therefore the relation (4.1)
implies the condition (3.3).

As a consequence of proposition 4, we derive the following result, which is the
main result in this paper

Theorem 12. If the relation (4.1) is satisfied, then two free dgas (T (V ), ∂) and
(T (W ), δ) have the same homotopy type if and only if their Whitehead exact se-
quences are isomorphic.

Corollary 3. If the relation (4.1) is satisfied for all dga (T (V ), ∂), then we have:

DGA∗(flat) = ΓDGA∗(flat).

Let k be a field of any characteristic. In [[10], thm 2.3] Baues and Lemaire
establish the following result: for every dga A over k there exists a quasi-isomorphism
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α : (T (V ), ∂) → A, where the differential ∂ is decomposable, i.e: ∂ : V → T>2(V ).
This tensor algebra is called the minimal model of A. It is unique up to isomorphism.
Over a field k, following the construction in definition (7), the tensor
algebra (Ts−1(TorA

∗ (R, R)), ∂) can be taken as the dga associated with the
Γ-system Γ(A). Therefore by theorem 9 there exists a quasi-isomorphism α :
(T (s−1TorA

∗ (R,R)), ∂) → A, where the differential ∂ is decomposable.
The dga (T (s−1TorA

∗ (R, R)), ∂) is not unique, but the Γ-system Γ(A) =
(TorA

n (R,R)), bn+2)n>2 is unique.

5. The category Γ3n+2
n

In this section we treat a partial special case where the notion of the Γ-system
may be simplified, even over a P.I.D. Indeed we will show when the dga A is an
object of ΓDGA3n+2

n (flat) (the subcategory of ΓDGA∗(flat) of which the objects
are those satisfying the relations TorA

i (R, R) = 0 for i 6 n and i > 3n + 3, we can
denote the graded module Γ∗ simply by the graded module TorA

∗ (R,R) and the
homomorphism b2n+2.
This section is motivated by the following theorem which gives us explicitly the
graded module ΓA

∗ which appear in the Whitehead sequence associated with A.

Theorem 13. Let A be an object in DGA3n+2
n (flat). If we put Hk = TorA

k (R,R),
then we have:

ΓA
k =

k−n+1⊕
i=n+1

Hi ⊗Hk−i+2 ⊕
k−n⊕

i=n+1
TorR(Hi,Hk+1−i) , 2n 6 k 6 3n− 1

ΓA
3n =

2n+1⊕
i=n+1

Hi ⊗H3n−i+2 ⊕ Hn+1 ⊗Hn+1 ⊗Hn+1

(Im b2n+2)⊗Hn+1 + Hn+1 ⊗ (Im b2n+2)

⊕ 2n⊕
i=n+1

TorR(Hi,H3n+1−i)

ΓA
k = 0, k 6 2n− 1.

Proof. Recall that Γ∗ is defined, for each i > 2, by the formula:

Γi = ker(Hi(T (V6i)) → Vi), (5.1)

where (T (V ), δ) is a free model of A. Since A is an object of DGA3n+2
n (flat), we

can choose (T (V ), δ) such that:

Vi = 0 if i 6 n− 1 and i > 3n + 1. (5.2)

Now we filter the dga (T (V ), δ) by setting :

F p = ⊕
i>p

V ⊗i,

which induces a spectral sequence (E−r
∗,∗, d

−r
∗,∗) of the first quadrant converging to

H∗(T (V ), δ).
According to the relation (5.1), we have

ΓA
k = ⊕

i>2
E∞

i,k−i , k 6 3n,
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from (5.2), we have

E∞
i,k−i = E−1

i,k−i = Hk(V ⊗i, d) , k 6 3n− 1,

so for k 6 3n− 1 we deduce

E∞
i,k−i = 0 for i > 2,

and we get
Γk = E∞

2,k−2 = Hk(V ⊗2, d).

Finally by the Künneth formula we get

Γk =
k⊕

i=0
Hi ⊗Hk−i+2 ⊕

k−n⊕
i=n+1

Tork(Hi,Hk+1−i), k 6 3n− 1.

Since Hi = 0, i 6 n then we deduce

Γk = 0 , i 6 2n− 1.

For k = 3n, we remark that E∞
i,3n−i = 0 , i > 4 because E−1

i,3n−i = H3n(V ⊗i, d), so
we get

Γ3n = E∞
2,3n−2 ⊕ E∞

3,3n−3.

Observe that E∞
2,3n−2 = E−1

2,3n−2 = H3n(V ⊗2) so by the Künneth formula we get

E∞
2,3n−2 =

2n+1⊕
i=n+1

Hi ⊗H3n−i+2 ⊕
2n⊕

i=n+1
TorR(Hi,H3n−i+1).

To compute E∞
3,3n−3, note that we have

E−1
2,2n−1

d−1
2,3n−1−→ E−1

3,3n−3 → E−1
4,3n−5 = 0. (5.3)

Applying the Künneth formula to (5.3), we get

2n+2⊕
i=n+1

Hi ⊗H3n−i+2 ⊕
2n+1⊕

i=n+1
TorR(Hi,H3n−i+1)

d−1
i,3n−1−→ Hn+1 ⊗Hn+1 ⊗Hn+1 → 0

and it’s easy to see that the differential d−1
i,3n−1 is identified with the homomorphism:

d−1
2,3n−1 = b2n+2 ⊗ idHn+1 + (−1)nidHn+1 ⊗ b2n+2,

so
Imd−1

2,3n−1 = Im b2n+2 ⊗Hn+1 + Hn+1 ⊗ Im b2n+2.

Finally we get

E∞
3,3n−3 =

Hn+1 ⊗Hn+1 ⊗Hn+1

Im b2n+2 ⊗Hn+1 + Hn+1 ⊗ Im b2n+2
,

and the theorem is proved.

As a consequence of this result, we derive the following proposition, which is the
version of the Hurewicz theorem in the category DGA3n+2

n (flat).
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Proposition 5. Let R be a P.I.D and A an object of DGA3n+2
n (flat). The Hurewicz

homomorphism:

hk : Hk(A) −→ TorA
k+1(R, R),

is an isomorphism for k 6 2n− 1 and surjective for k = 2n.

Proof. One only need apply theorem 13 to the Whitehead exact sequence associated
with the dga A.

That’s the same result obtained in ([10] ) where R is a field of any characteristic.
The next corollary is a known geometrical version of proposition 5.

Corollary 4. Let X be a (n − 1)-connected (3n + 1)-dimensional CW-complex.
Then the homomorphism:

hk : Hk(ΩX,R) −→ Hk+1(X, R),

is an isomorphism for k 6 2n− 1 and surjective for k = 2n.

Proof. It suffices to apply proposition 5 to the free dga (TX(V ), ∂X) which is the
Adams-Hilton model of X in [1]. Note that since X is (n− 1)-connected (3n + 1)-
dimensional then the dga (TX(V ), ∂X) is an object in DGA3n+2

n (flat).

5.1. Definition of the category Γ3n+2
n

We recall that H∗ is said to be n-connected, (3n+2)-dimensional graded module
if Hi = 0 for i 6 n and i > 3n + 3.

Definition 12. For each n-connected, (3n+2)-dimensional graded module H∗ and
for each b2n+2 ∈ Hom(H2n+2, Hn+1⊗Hn+1), we define the graded module Γ63n by
setting:

Γk = 0 k 6 2n− 1

Γk =
k−n+1⊕
i=n+1

Hi ⊗Hk−i+2 ⊕
k−n⊕

i=n+1
TorR(Hi,Hk+1−i) 2n 6 k 6 3n− 1

Γ3n =
2n+1⊕

i=n+1
Hi ⊗H3n−i+2 ⊕ Hn+1 ⊗Hn+1 ⊗Hn+1

Im b2n+2 ⊗Hn+1 + Hn+1 ⊗ Im b2n+2
⊕

2n⊕
i=n+1

TorR(Hi,H3n+1−i).

Γ63n is called the graded module associated with H∗ and the homomorphism b2n+2.

Note that by theorem 13, ΓA
63n is the graded module associated with TorA

∗ (R, R)
and b2n+2 given by the Whitehead sequence associated with A.

Definition 13. For each graded homomorphism f∗ : H∗ → H ′
∗ which makes the

following diagram commutative:
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??
H ′

2n+2 - H ′
n+1 ⊗H ′

n+1

f2n+2 fn+1 ⊗ fn+1

H2n+2 - Hn+1 ⊗Hn+1
b2n+2

b′2n+2

we define the homomorphisms γ63n by setting:

γk = 0 k 6 2n− 1

γk =
k−n+1⊕
i=n+1

fi ⊗ fk−i+2 ⊕
k−n⊕

i=n+1
TorR(fi, fk+1−i) 2n 6 k 6 3n− 1

γ3n =
2n+1⊕

i=n+1
fi ⊗ f3n−i+2 ⊕ fn+1

⊗3 ⊕ 2n⊕
i=n+1

TorR(fi, f3n+1−i),

where:

fn+1
⊗3

:
Hn+1 ⊗Hn+1 ⊗Hn+1

Imb2n+2 ⊗Hn+1 + Hn+1 ⊗ Im b2n+2
→

H ′
n+1 ⊗H ′

n+1 ⊗H ′
n+1

Im b′2n+2 ⊗H ′
n+1 + H ′

n+1 ⊗ Im b′2n+2

.

γ∗ is called the graded homomorphism associated with f∗.

Proposition 6. Let α : A → B be a morphism in DGA3n+2
n (flat), then γα

∗ : ΓA
∗ →

ΓB
∗ is the graded homomorphism associated with Torα

∗ (R, R).

Proof. The proof is very simple but it’s very long. It is just a simple computation
and verification (see [11])

Definition 14. The category Γ3n+2
n is defined as follows:

Object: a collection (H∗, (bi+2, πi)2n6i63n) such that:
H∗ is an n-connected, (3n + 2)-dimensional graded module.
For each 2n 6 i 6 3n, bi+2 is a homomorphism of modules Hi+2 → Γi where Γ63n

is the graded module associated with H∗.
For each 2n 6 i 6 3n, πi ∈ Ext(Hi+1, coker bi+2).

Morphism: a morphism between two objects (H∗, (bi+2, πi))2n6i63n and
(H ′

∗, (b
′
i+2, π

′
i))2n6i63n is a graded homomorphism f∗ : H∗ → H ′

∗ satisfying the
conditions:

fi+2 ◦ b′i+2 = γi ◦ bi+2, (fi+1)∗(π′i) = (γi)∗(πi) i 6 3n,

where γ63n is the homomorphism associated with f∗ and where the homomorphisms
(fi+1)∗, (γi)∗ are given by:

(γi)∗ : Ext(Hi+1, coker bi+2) → Ext(H ′
i+1, coker b′i+2)

(fi+1)∗ : Ext(H ′
i+1, coker b′i+2) → Ext(Hi+1, coker b′i+2)

and where γi is induced by γi on coker bi+2.
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5.2. The functor F 3n+2
n

As in the previous section we define the functor:

F 3n+2
n : ΓDGA3n+2

n (flat)�' → Γ3n+2
n ,

by setting:

F 3n+2
n (A) = (TorA

∗ (R, R), (bi+2, πi)2n6i63n)
F 3n+2

n ({α}) = Torα
∗ (R,R).

The main result in this section is the following theorem:

Corollary 5. Under the condition (4.1), the functor

F 3n+2
n : DGA3n+2

n (flat)�' → Γ3n+2
n ,

is a “detecting functor ”

Proof. The proof is the same as in theorem 9.

As a corollary we have the result which we can use to compute the number of
the homotopy types in the category DGA3n+2

n (flat).

Theorem 14 (Homotopy classification theorem ). Homotopy types of objects
in ΓDGA3n+2

n (flat) are in bijection with the proper equivalence classes of tuples
(b3n+2, π3n, ...., b2n+2, π2n) where bi+2 ∈ Hom(Hi+2, Γi), πi ∈ Ext(Hi+1, coker b′i+2),
2n 6 i 6 3n and where H∗ is n-connected, (3n + 2)-dimensional graded module.

Recall that (Γi)i63n is the graded module associated with H∗ and b2n+2.

Definition 15. Two tuples (b3n+2, π3n, ...., b2n+2, π2n) and
(b′3n+2, π

′
3n, ...., b′2n+2, π

′
2n) are called proper equivalent if there exists a graded auto-

morphism f63n : H63n
∼= H63n such that for every i 6 3n:

(fi+1)∗(π′i) = (γi)∗(πi), and γi ◦ bi+2 = b′i+2 ◦ fi+2.

5.3. Examples
We conclude this work by giving some geometric applications to the above the-

orems.

Proposition 7. Let A an object of DGA3n+2
n (flat). Denote by SA the set consist-

ing of the dgas B satisfying:

TorB
i (R, R) = TorA

i (R, R) for every n 6 i 6 3n.

Assume that TorA
i (R, R) = 0 for each i satisfying:

i 6 3n + 2
2

if n is even (5.4)

i 6 3n + 1
2

if n is odd

then all objects of the set SA have the same homotopy type.
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Proof. If B is an element of SA then from the hypothesis (5.4) and theorem 13 we
deduce that the module Γi is trivial for all i 6 3n. Hence we get:

F3n+2
n (B) = (TorB

∗ (R, R), 0, 0) = (TorA
∗ (R, R), 0, 0) = F3n+2

n (A).

The relation (4.1) is trivially satisfied . So by corollary 5, F3n+2
n is a detecting

functor, thus B and A have the same homotopy type.

Proposition 8. Let n ∈ N and X be a CW-complex such that
Hk(X,R) = 0 for each k satisfying:

k 6 3n + 2
2

if n is even

k 6 3n + 1
2

if n is odd

k > 3n + 3

If we put Hk = Hk(X, R) then we have :

Hi(ΩX,R) = ⊕
k
H⊗q

k if i = q(k − 1)

Hi(ΩX,R) = ⊕
k
( ⊕
s+t=q

TorR(H⊗s
k ,H⊗t

k )) if i = q(k − 1) + 1

Hi(ΩX,R) = 0 otherwise.

Proof. Let M(Hk, k) be a Moore space and let :

Y = ∨
k
M(Hk, k)

be the wedge of the spaces M(Hk, k) and let A(X) and A(Y ) be the Adams-Hilton
models associated respectively to X and Y . We recall that we have:

Tor
A(X)
∗ (R,R) = H∗(X, R) and Tor

A(Y )
∗ (R,R) = H∗(Y,R).

Since H∗(X, R) = H∗(Y, R), the relation implies that A(Y ) is an object of the set
ΣA(X) in proposition 7, so that A(X) and A(Y ) have the same homotopy type. We
deduce that:

H∗(A(X)) ∼= H∗(A(Y )), (5.5)

since A(X) and A(Y ) are respectively the Adams-Hilton models of X and Y . Then:

H∗(A(X)) = H∗(ΩX, R) and H∗(A(Y )) = H∗(ΩY, R),

so according to (5.5) we get:

H∗(ΩX, R) ∼= H∗(Ω ∨
k

M(Hk, k), R) ∼= ⊕
k
H∗(M(Hk, k), R).

Now the next lemma allows us to achieve the proof.

Lemma 3. The graded algebra H∗(ΩM(Hk, k), R) is given by:

Hi(ΩM(Hk, k), R) = H⊗q
k if i = q(k − 1)

Hi(ΩM(Hk, k), R) = ⊕
s+t=q

TorR(H⊗s
k ,H⊗t

k ) if i = q(k − 1) + 1

Hi(ΩM(Hk, k), R) = 0 otherwise.
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Proof. Let A(M(Hk, k)) be an Adams-Hilton model of the Moore space M(Hk, k).
The Whitehead sequence associated with A(M(Hk, k)) is:

→ Hi+2(M(Hk, k), R) → Γi → Hi(ΩM(Hk, k), R) → Hi+1(M(Hk, k), R) →
Since we have:

Hi+2(M(Hk, k), R) = 0 unless i = k − 2

it follows that
Hi(ΩM(Hk, k), R) ∼= Γi.

According to section (3), we can realize the object Γ ({A(M(Hk, k)}) by the free

dga T (Vk, Vk−1, d) where Vk
d½ Vk−1 ³ Hk is a free resolution of Hk.

Since the module Γi = ker (Hi(T (Vk, Vk−1, d)) −→ Vi) and since the differential d
is linear, the Künneth formula allows us to write:

Γi = H⊗q
k if i = q(k − 1)

Γi = ⊕
s+t=q

TorR(H⊗s
k ,H⊗t

k ) if i = q(k − 1) + 1

Γi = 0 otherwise

and the proof is achieved.

Example 1. Let X be a CW-complex 1-connected having the following homology
groups:

H2(X,Z) = Z2, H3(X,Z) = Z3, H4(X,Z) = Z3,

H5(X,Z) = Z,Hi(X,Z) = 0 otherwise.

How many homotopy type of the dga C∗(ΩX) exist?

According to theorem 13 we have:

Γ2 = H2 ⊗H2 = Z2

Γ3 = H2 ⊗H3 ⊕H3 ⊗H2 ⊕ H2 ⊗H2 ⊗H2

Im b4 ⊗H2 + H2 ⊗ Im b4
= Z2.

We begin by computing the homomorphisms b4. We have:

Hom(H4(X), Γ2) = Hom(Z3,Z2) = 0.

So we deduce that b4 = 0 and:

Ext(H3, coker b4) = Ext(Z3,Z2) = 0.

Then we only find the trivial extension π2 = 0. Now we have:

b5 ∈ Hom(H5 , Γ3) = Hom(Z,Z2) = Z2,

so we find two homomorphisms b
(0)
5 = 0 and b

(1)
5 = 1.

For b
(0)
5 = 0 we get Ext(H4 , coker b

(0)
5 ) = Ext(Z3,Z2) = 0 so in this case we also

find the trivial extension π
(0)
3 = 0. For b

(1)
5 = 1 then b

(1)
5 is onto and we deduce that

Ext(H4 , cokerb(1)
5 ) = 0 and also we get the trivial extension π

(1)
3 = 0.
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Then we find two Γ-systems (0, 0, 0, 0) , (1, 0, 0, 0) which are obviously not isomor-
phic in their category.

Now since by computation we have:

Ext
(

H4

ker b4
, coker b

(0)
5

)
= Ext(Z3,Z2) = 0

Ext
(

H4

ker b4
, coker b

(1)
5

)
= Ext(Z3, 0) = 0

Ext

(
H5

ker b
(0)
5

, coker b6

)
= Ext(0,Z2) = 0

Ext

(
H5

ker b
(1)
5

, coker b6

)
= Ext(Z,Z2) = 0

Ext
(

Hn+1

ker bn+1
, coker bn+2

)
= Ext(0,Z2) = 0 for n > 5,

then condition (4.1) is satisfied. Therefore, according to the theorem 14 of classifi-
cation of homotopy types, we have two homotopy types having the above homology
groups.
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[13] J.M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Berlin.
Heidelberg. New York. Springer 1977.

[14] S. Mac lane, Homology, Springer 1967.
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