
CARLESON EMBEDDINGS

HELMUT J. HEIMING

Abstract. In this paper we discuss several operator ideal properties for so
called Carleson embeddings of tent spaces into specific Lq(µ)-spaces, where µ
is a Carleson measure on the complex unit disc. Characterizing absolutely
q-summing, absolutely continuous and q-integral Carleson embeddings in
terms of the underlying measure is our main topic. The presented results
extend and integrate results especially known for composition operators on
Hardy spaces as well as embedding theorems for function spaces of similar
kind.

1. Introduction and Main Results

Carleson measures proved to be an effective tool to discuss composition
operators on classical Hardy spaces Hq(D) on the complex unit disc D (see
Hunziker, Jarchow [6], or Zhu [9, Chapter 8]). Central idea in these discus-
sions is to translate the given problem into an embedding problem for Hardy
spaces into specific Lq(µ)-spaces. We enlarge Hardy spaces to so called tent
spaces T q(D), which are spaces of continuous functions on T still possessing
the same boundary behavior as functions in classical Hardy spaces. Embed-
ding these bigger spaces into Lq(µ)-spaces allows us to apply new techniques
in this field. We call the corresponding embeddings Iµ : T q(D) → Lβq(µ),
and their restrictions to subspaces of T q(D), Carleson embeddings. Espe-
cially discussing cases when they are absolutely q-summing or do have re-
lated properties profits from this approach. These operator ideal properties
correspond intimately to geometric and distributional properties of the cor-
responding measure. Before going into details let us state the main results.
Precise definitions are given below.

Throughout this paper assume that µ is a positive regular Borel measure
on the closed complex unit disc D. To show what we have in mind let us
recall a well-known result in this context ([6, 2.4]).
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Theorem A. Suppose that β ≥ 1. Then µ is a vanishing β-Carleson mea-
sure if and only if the formal identity Hq(D) → Lβq(µ) is compact for some,
and hence all, 1 ≤ q <∞.

We will see that enlarging the domain of the Carleson embedding breaks
up this equivalence. Clearly, as restrictions of compact operators are still
compact, a compact Carleson embedding is induced by a vanishing Carleson
measure. But the converse does not need to hold any longer.

Theorem 1. Assume that β ≥ 1 and q ≥ β−1 is finite. If µ is a vanishing
β-Carleson measure the Carleson embedding Iµ : T q(D) → Lβq(µ) can be
approximated in operator norm by (βq)-integral operators,

dist(Iµ, {u : T q(D) → Lβq(µ) : iβq(u) ≤ h− 1
q })βq

≤ ∥∥µ∣∣D \Ah

∥∥
Mβ

∥∥µ∣∣Ah

∥∥
M

with 0 < h < 1 and Ah :=
{
z ∈ D : |B(z)| < h}

.

In particular,

Corollary 1. If µ is a vanishing β-Carleson measure then, for all q ≥ β−1

the induced Iµ : T q(D) → Lβq(µ) is absolutely continuous.

Remark. In general, an arbitrary vanishing β-Carleson measure does not
induce a compact Carleson embedding. Let, for example, µ be the area
measure restricted to the disc 1

2D. Of course, this is a vanishing β-Car-
leson measure for all β > 0. But the Carleson embedding Iµ : T q(D) →
Lβq(µ) is not compact because the restriction operator Iµ ◦ J : C(D) →
Lβq(µ), f �→ f

∣∣1
2D lacks this property. Here J : C(D) → T q(D) is the

canonical embedding. On the other hand, by a normal families argument,
the restriction of this particular Iµ to the Hardy space Hq(D) is compact.

Thus the ideal of compact operators must be replaced by another opera-
tor ideal. In most cases the ideal of absolutely continuous operators is the
appropriate one.

Theorem 2. Suppose that either β = q = 1 or q > 1 and β ≥ 1. Then
µ is a vanishing β-Carleson measure if and only if the induced Carleson
embedding Iµ : T q(D) → Lβq(µ) is absolutely continuous.

Finally, we characterize cases when Carleson embeddings are absolutely
(βq)-summing or when they are (βq)-integral. In fact, we show that this
properties are equivalent and there is a precise condition on the distribution
of the corresponding measure guaranteeing them, and vice versa.

Theorem 3. Let β > 0 and assume that µ(T) = 0. Then the following
statements are equivalent:

1. The map b : D → C, z �→ (1 − |z|2)−1 is in Lβ(µ);
2. for some, and then all, finite q ≥ β−1 there is a g ∈ Lβq(µ) such that
for all f in the unit ball of T q(D) we have |f | ≤ g µ-almost everywhere;
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3. Iµ : T q(D) → Lβq(µ) is (βq)-integral for some, and then all, finite
q ≥ β−1;

4. Iµ : T q(D) → Lβq(µ) is absolutely (βq)-summing for some, and then
all, finite q ≥ β−1.

2. Preliminaries

Before going into details, we recall necessary definitions and notations:
The sets of all complex numbers with absolute value less than, equal to, or
not bigger than 1 are denoted by D, T, and D, respectively. The normalized
arc length on T is dζ, and |E| stands for the normalized “length” of a
measurable E ⊂ T. As usual, Lq is short for Lq(T, dζ), (quasi-)normed by
‖ ‖q (0 < q ≤ ∞).

Let f : D → C be measurable. If 0 < r < 1 then fr : D → C is the map
which assigns f(rz) to each z ∈ D. Moreover, fr

∣∣T is dζ-measurable and so
it makes sense to form the q-th mean

Mq(r, f) :=
∥∥fr∣∣T∥∥

q
∈ [ 0,∞].

The Hardy space hq(D) (Hq(D)) consists of all harmonic (analytic) functions
f : D → C such that

‖f‖Hq := sup
0<r<1

Mq(r, f)

is finite.
Burkholder, Gundy and Silverstein characterized Hardy spaces in terms

of nontangential suprema (see Koosis [7, p. 246f]). In order to fit this charac-
terization into our presentation, some more preparations are necessary. We
assign to each z ∈ D a set B(z) ⊂ T, which is the whole unit circle when
z = 0, and which is, otherwise, the arc of length 1 − |z|2 centered at z/ |z|.
The Stoltz domain for a point ζ ∈ T is Γ(ζ) := { z ∈ D : ζ ∈ B(z) } , and
the tent over an open Ω ⊂ T is Θ(Ω) := { z ∈ D : B(z) ⊂ Ω } ∪ Ω.

Given f : D → C and ζ ∈ T, we define the nontangential supremum of f
at ζ to be

Nf(ζ) := sup
z∈Γ(ζ)

|f(z)| .

Clearly, Nf : T → [ 0,∞] is lower semicontinuous and therefore measurable.
Thus it makes sense to define

‖f‖T q := ‖Nf‖q ∈ [ 0,∞].

In this way we get an extended (q-)norm on the space of all complex valued
functions on D (see Heiming [4, pp. 36ff.] for details). Similar (q-)norms for
functions on halfspaces were introduced by Coifman, Meyer, and Stein [1].
One easily checks that, for every f : D → C,

|f(z)| ≤ |B(z)|−1/q ‖f‖T q (z ∈ D)(1)
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It is a standard procedure (see [4, 2.4]) to conclude from (1) that

T q(D) := { f : D → C : ‖f‖T q <∞ }
is a (q-)Banach space. By (1), the space C(D) embeds injectively and con-
tractively into T q(D). We denote the closure of C(D) in T q(D) by

(T q(D), ‖ ‖T q).

These spaces will be called tent spaces (The name “tent space” for simi-
lar function spaces goes back at least to [1]). Using above notation, the
Burkholder-Gundy-Silverstein Theorem can be reformulated as

hq(D) = { f ∈ T q(D) : f : D → C harmonic } (1 < q <∞)

and

Hq(D) = { f ∈ T q(D) : f : D → C analytic } (0 < q <∞)

with equivalent (q-)norms (see [4, 2.25]).
Let β > 0. A regular Borel measure µ ∈ M (D) = C(D)∗ is called a

β-Carleson measure if there is a constant C such that, for all open Ω ⊂ T,

|µ| (Θ(Ω)) ≤ C |Ω|β .
The least such constant C is ‖µ‖Mβ and

Mβ(D) :=
{
µ ∈M (D) : ‖µ‖Mβ <∞ }

is the space of all β-Carleson measures. Clearly, (Mβ(D), ‖ ‖Mβ ) is a Banach
space. A measure µ ∈Mβ(D) with |µ| (Θ(Ω)) = o(|Ω|β) as |Ω| → 0 is called
a vanishing β-Carleson measure.

The following inequality is crucial for relating tent spaces and spaces of
Carleson measures,

‖f‖Lβq(D,|µ|) ≤ ‖µ‖1/βq

Mβ ‖f‖T q ,(2)

where f ∈ T q(D) and µ ∈Mβ(D). In addition,

‖µ‖1/βq

Mβ = sup
{

‖f‖Lβq(D,|µ|) : ‖f‖T q ≤ 1
}
.

A proof for (2) in a version including Lorentz-type spaces is given in [4].
The classical Riesz Representation Theorem for measures in conjunction

with (2) imply that Mβ(D) is isometric to the dual space of T 1/β(D). An-
other consequence of (2) — the main subject of this paper — is that the so
called Carleson embedding, which is the formal identity

Iµ : T q(D) → Lβq(µ), f �→ f,

is continuous exactly if µ is a β-Carleson measure. In this case ‖Iµ‖βp is
equivalent to ‖µ‖Mβ .
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Maybe the most prominent examples of Carleson measures are composi-
tion measures, which are defined as follows. For each analytic map φ : D →
D the radial limit limr↗1 f(rζ) exists for almost all ζ ∈ T. Thus

mφ(A) := |{ ζ ∈ T : lim
r↗1

φ(rζ) ∈ A }| (A ⊂ D measurable)(3)

defines a probability measure on D, which can be shown to be a Carleson
measure. The composition operator Cφ : Hq(D) → Hβq(D), f �→ f ◦ φ
corresponds to

Hq(D) ⊂ T q(D)
Imφ−−→ Lβq(mφ)

(see [6, 9] and the references given there).
We assume the reader to be familiar with the notion and fundamental

properties of specific operator ideals, namely, weakly compact, completely
continuous, absolutely p-summing, p-integral, and, finally, absolutely con-
tinuous operators. An elaborate exposition of these is presented by Diestel,
Jarchow, and Tonge [2].

3. Proof of Theorem 1

Let us first assume that our measure takes its support in the open disc.
Then the corresponding Carleson embedding is (βq)-integral. Precisely, we
have

Lemma 1. Suppose that the positive, regular Borel measure µ is supported
in D. Then Iµ : T q(D) → Lβq(µ) is (βq)-integral for all βq ≥ 1 and

iβq(Iµ) ≤ sup
{

|B(z)|−1/q : z ∈ supp(µ)
}
.

Proof. Let z0 ∈ supp(µ) be such that

B0 := |B(z0)| = min { |B(z)| : z ∈ supp(µ) } ,
put r0 := |z0|, and set D0 := r0D. Then supp(µ) ⊂ D0, and, denoting by ρ
the restriction map f �→ f

∣∣D0, we have the factorization

T q(D)
Iµ−−−→ Lβq(D, µ)

ρ

�
	f �→f

C(D0) −−−→
f �→f

Lβq(D0, µ).

Due to (1), ‖ρ‖ = B−1/q
0 settles our claim.

Now we are in position to prove Theorem 1. Fix ε > 0. As we assume that
µ is a vanishing β-Carleson measure, there is an 0 < R < 1 such that for
all R < r < 1 and all open Ω ⊂ T with |Ω| < r we have µ(Θ(Ω)) ≤ ε |Ω|β .
Thus, if we denote by µr the restricted measure µ

∣∣Ar we get ‖µr‖Mβ ≤ ε.
On the other hand we can apply Lemma 1 to µ′

r := µ − µr, which takes
its support in D \ Ar, and get iβq(Iµ′

r
) ≤ r−1/q. This shows that Iµ can be
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approximated by (βq)-integral operators, and, after reordering the estimates
given above, we get our hands on the quality of this approximation.

4. Proof of Theorem 2

The proof of Theorem 2 splits into two parts, depending on the range of
the Carleson embedding under consideration. The next lemma makes use of
the Dunford-Pettis characterization of weakly compact sets in L1-spaces.

Lemma 2. Let 0 < q < ∞. If Iµ : T q(D) → L1(µ) exists as a weakly
compact operator then µ is a vanishing β-Carleson measure for β = q−1.

Proof. The tent space T q(D) is weakly separated and L1(µ) is a Banach
space. Hence the second adjoint I∗∗

µ : T q(D)∗∗ → L1(µ)∗∗ is weakly compact
and takes its values in L1(µ). It is an extension of Iµ to T q(D)∗∗. As T q(D)∗

is isomorphic to Mβ(D) (cf. (2)) every nonvoid open subset Ω of T gives
rise to a normalized linear functional φΩ on T q(D)∗ via

φΩ(ν) := |Ω|−β ν(Θ(Ω)) (ν ∈Mβ(D)).

Therefore,

U := I∗∗
µ ({φΩ : ∅ �= Ω ⊂ T })

is a relatively weakly compact subset of L1(µ). By the Dunford-Pettis The-
orem (Dunford, Schwartz [3, IV.8.11]), U is uniformly absolutely continuous
with respect to µ,

lim
µ(E)→0

sup
f∈U

∣∣∣∣
∫

E
f dµ

∣∣∣∣ = 0.

If Ωn ⊂ T are such that lim |Ωn| = 0, then limµ(Θ(Ωn)) = 0, since µ ∈
Mβ(D). The conclusion is that

|Ω|−β µ(Θ(Ωn)) =
∫

Ωn

φΩn dµ ≤ sup
f∈U

∣∣∣∣
∫

Ωn

f dµ

∣∣∣∣ → 0 (n→ ∞).

So, µ is a vanishing β-Carleson measure.

Lemma 3. Assume that q > 1, β ≥ 1 and Iµ : T q(D) → Lβq(µ) is com-
pletely continuous. Then µ is a vanishing β-Carleson measure.

Proof. As q > 1 the Hardy spaceHq(D) is reflexive. Therefore the restriction
of Iµ toHq(D) is compact. By Theorem A, µmust be a vanishing β-Carleson
measure.

The proof of Theorem 2 is now easy: As already stated in Corollary 1 every
vanishing β-Carleson measure induces an absolutely continuous Carleson
embedding. On the other hand, if Iµ is absolutely continuous, Lemma 2 and
Lemma 3 imply that the measure under consideration must be a vanishing
β-Carleson measure, because every absolutely continuous operator is weakly
compact and completely continuous.
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5. Proof of Theorem 3

The implication “3. ⇒ 4.” follows from the very definition of the con-
sidered operator properties.

“1. ⇒ 3.” Fix β−1 ≤ q < ∞. The linear operator v : T q(D) → C(D),
f �→ b

− 1
q f is continuous with ‖v‖ = 1. Since b ∈ Lβ(µ), the formal

identity J : C(D) → Lβq(bβµ) is bounded with ‖J‖ = ‖b‖
1
q

β . Moreover,

w : Lβq(bβµ) → Lβq(µ), f �→ b
1
q f is isometric, and we have the following

factorization of Iµ : T q(D) → Lβq(µ),

T q(D)
Iµ−−−→ Lβq(µ)

v

�
	w

C(D) J−−−→ Lβq(bβµ).

Consequently, Iµ is βq-integral with iβq(Iµ) ≤ ‖b‖
1
q

β .

“1. ⇒ 2.” Fix β−1 ≤ q < ∞. First of all we show that µ is a β-Carleson
measure. Given an open Ω ⊂ T, we have |B(z)| ≤ |Ω| for all z ∈ Θ(Ω), and
so

µ(Θ(Ω))

|Ω|β ≤
∫

Θ(Ω)
|B(z)|−β dµ ≤ ‖b‖β .

This proves µ to be a β-Carleson measure. For each f in the unit ball
of T q(D) and every z ∈ D we have |f(z)| ≤ |B(z)|−1/q = b(z)−1/q. Our
assumption b ∈ Lβ(µ) implies b1/q ∈ Lβq(µ) and so we can take g := b1/q.

“2. ⇒ 1.” For z ∈ D we have

b(z)1/q = ‖δz‖∗
T q = sup { |f(z)| : f ∈ T q(D), ‖f‖T q ≤ 1 } ≤ g(z).

This clearly implies b ∈ Lβ(µ).

“4. ⇒ 2.” Assume that Iµ : T q(D) → Lβq(µ) is absolutely (βq)-summing.
Let K be the unit ball of T q(D)∗ endowed with the weak∗ topology. Then
Pietsch’s Domination Theorem yields a probability measure λ on K such
that

‖f‖βq ≤ πβq(Iµ)
(∫

K
|〈f , ω〉|βq dλ(ω)

) 1
βq

.

This implies that for all positive f ∈ T q(D),

‖f‖βq ≤ πβq(Iµ)
(∫

K
〈f , |ω|〉βq dλ(ω)

) 1
βq

.(4)

We define a map σ : T q(D) → C(K) by

σf(ω) := 〈f , |ω|〉 (f ∈ T q(D), ω ∈ K).
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σ is continuous, linear, positive and |σf(ω)| ≤ 1K(ω) for each ω ∈ K and all
f in the unit ball of T q(D). Let Y be the image of σ(T q(D)) in Lβq(K,λ)
under the canonical embedding of C(K) into the latter space. Then, by (4),

ρ : Y → Lβq(µ), σf �→ f

is a well-defined, continuous operator. Since K contains all normalized point
evaluations δz/‖δz‖∗

T q (z ∈ D), pointwise ordering on K is stronger than
pointwise ordering on D. Thus ρ is also positive. Put

F :=
{
g ∈ Lβq(K,λ) : ∃f ∈ Y : |g| ≤ f

}
.

This is a sublattice of Lβq(K,λ) containing Y . As Lβq(µ) is a Dedekind com-
plete Riesz space, the Kantorovich Extension Theorem (see Meyer-Nieberg
[8, 1.5.9]) provides a positive, continuous extension of ρ to F and, by conti-
nuity, even to the closure of F ,

ρ : F → Lβq(µ), ρ
∣∣Y = ρ.

Since T q(D) is separable, there is countable dense subset

{ fn ∈ T q(D) : n ∈ N }
of the unit ball of T q(D). Set gn := maxk≤n σ(|fk|), then (gn) is an increas-
ing, positive sequence in the unit ball of σ(T q(D)). Therefore it is also an
increasing sequence in F ⊂ Lβq(K,λ) and it is dominated by 1K . Hence an
appeal to Lebesgue’s Dominated Convergence Theorem yields g ∈ F such
that

lim
n→∞ ‖gn − g‖βq = 0 and gn ≤ g (n ∈ N).

The construction of g reveals that σ(|fn|) ≤ g and so

|fn| = ρ(σ(|fn|) ≤ ρ(g) µ-a.e.

for all n ∈ N. Now fix f in the unit ball of T q(D). There is a sequence (fnk
)k

such that limk→∞ ‖f − fnk
‖T q = 0 and thus limk→∞ ‖|f | − |fnk

|‖βq = 0.
This implies, up to selecting once more a subsequence,

ρ(g) − |f | = lim
k→∞

(ρ(g) − |fnk
|) ≥ 0

µ-almost everywhere. Hence ρ(g) is the function we are seeking.

6. Concluding Remarks

Composition operators. As pointed out in (3) every analytic φ : D → D
gives rise to a Carleson measure mφ. By ‘change of variables’, for q ≥ 1, the
associated Carleson embedding corresponds to

Cφ : T q(D) → Lq( dζ), f �→ [
ζ �→ lim

r↗1
f(φ(rζ))

]
.

Under this assumptions condition 1. of Theorem 3 is equivalent to the
finiteness of

∑
n ‖φn‖H1 (see Hunziker [5, Satz 6.3] for Hardy spaces).



CARLESON EMBEDDINGS 201

Embedding Hardy spaces into weighted Bergman spaces. It is easy
to verify that, for β > 1,

dAβ(z) := (β − 1)(1 − |z|2)β−2 dz

defines a probability measure on D, which additionally is a β-Carleson mea-
sure with ‖ dAβ‖Mβ = 1. These measures appear in the theory of weighted
Bergman spaces (cf. [9, 6.4.1]),

Lq
a(D, dAβ) := { f ∈ Lq(D, dAβ) : f is analytic } .

Clearly, this implies that Hq(D) embeds continuously into Lβq
a (D, dAβ).

Due to the fact that every β-Carleson measure is a vanishing α-Carleson
measure (α < β), for all p < βq, the embedding Hq(D) ⊂ Lp

a(D, dAβ) is
absolutely continuous. If q > 1 it is even compact, because its domain is
reflexive. Moreover, for β > 2, as (1 − |z|2)−1 ∈ L1(D, dAβ), we get that
the embedding of Hq(D) into Lq

a(D, dAβ) is 1-integral.

Main open question. In Theorem 2 it is left as an open question, whether
the absolute continuity of an Carleson embedding Iµ : T 1(D) → Lβ(µ) (β >
1) is sufficient for µ to be a vanishing β-Carleson measure.
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