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A constrained least squares problem in a Hilbert space H is considered. The
standard Tikhonov regularization method is used. In the case where the set of the
constraints is the nonempty intersection of a finite collection of closed convex
subsets of H , an iterative algorithm is designed. The resulting sequence is shown
to converge strongly to the unique solution of the regularized problem. The net
of the solutions to the regularized problems strongly converges to the minimum
norm solution of the least squares problem if its solution set is nonempty.

1. Introduction

Consider the following constrained least squares problem in a Hilbert space H :

min
x∈C

f (x) := 1
2
‖Ax− b‖2, (1.1)

where C is a nonempty closed convex subset of H , A : H →H is a bounded linear
operator, and b is an element of H .

Let S denote the solution set of (1.1). It is known that S is closed and convex,
but it may well be empty.

Since problem (1.1) may be ill-posed, a regularization process is necessary in
order to find a solution of (1.1) (if any). We will apply the standard Tikhonov
regularization to (1.1); that is, we consider the following regularized problem
(ε > 0):

min
x∈C

fε(x) := 1
2
‖Ax− b‖2 +

1
2
ε‖x‖2. (1.2)
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(The reader is referred to [6] by Engl et al. for regularization methods for inverse
and ill-posed problems. See also Tikhonov and Arsenin [12] and Björck [3].)

Since fε is continuous, convex, and coercive (i.e., ‖x‖ → ∞ ⇒ fε(x) →∞),
(1.2) has a unique solution which we denote by xε.

In this paper, we first discuss the asymptotic behavior of {xε} as ε ↓ 0 and then
design an iterative algorithm which produces a sequence converging strongly to
the unique solution xε of (1.2) in the case where C is the nonempty intersection
of a finite collection of closed convex subsets of H . Moreover, if S is nonempty,
then the net {xε} of the approximate solutions converges strongly to the mini-
mum norm solution of (1.1).

2. Behavior of {xε}
Let C, f , fε, {xε}, and S be given as in the introduction. It is the objective of this
section to study the behavior of the net {xε} of the solutions of the regularized
problem (1.2). The next result shows that as long as the solution set S of (1.1)
is nonempty, {xε} behaves well and approaches the minimum norm solution of
(1.1).

Theorem 2.1. The behavior of {xε} is as follows:

(i) S �= ∅ if and only if {xε} is bounded as ε ↓ 0. In this case, {xε} converges
strongly as ε ↓ 0 to the minimum norm solution of (1.1);

(ii) S=∅ if and only if limε↓0‖xε‖ =∞.

Proof. To prove (i), first assume that S �= ∅. Since S is closed and convex, there
is a unique element in S, denoted by S◦, such that

∥∥S◦∥∥=min
{‖v‖ : v ∈ S

}
. (2.1)

Since fε(xε)≤ fε(S◦), we see that

ε
(∥∥xε∥∥2−∥∥S◦∥∥2)≤ ∥∥AS◦ − b

∥∥2−∥∥Axε− b
∥∥2
. (2.2)

But f (S◦)≤ f (xε); that is, ‖AS◦ − b‖2 ≤ ‖Axε− b‖2, it follows from (2.2) that

∥∥xε∥∥≤ ∥∥S◦∥∥. (2.3)

Hence, {xε} is bounded.
Next, assume that {xε} is bounded as ε ↓ 0. Assume that εn ↓ 0 and xεn → x̄

weakly. Clearly, x̄ ∈ C.
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We claim that x̄ ∈ S. To see this, we note that the weak lower semicontinuity
of f implies that for any x ∈ C,

f
(
x̄
)≤ liminf

n→∞ f
(
xεn
)≤ limsup

ε↓0
f
(
xε
)= limsup

ε↓0
fε
(
xε
)

≤ limsup
ε↓0

fε(x)= f (x).
(2.4)

This shows that x̄ ∈ S.
Next, we prove, assuming that S �= ∅, that {xε} converges strongly as ε ↓ 0 to

S◦, the minimum norm solution of (1.1). Let v be any weak limit point of {xε}
when ε ↓ 0. Then, we have a sequence εn ↓ 0 such that xεn → v weakly. Since the
norm of H is weakly lower semicontinuous, it follows from (2.3) that

‖v‖ ≤ ∥∥S◦∥∥. (2.5)

Due to the uniqueness of the minimum norm element, this implies that v = S◦,
which in turn implies that S◦ is the only weak limit point of {xε}. Therefore,
again, due to the weak lower semicontinuity of the norm and (2.3), we have

w− lim
ε↓0

xε = S◦, lim
ε↓0

∥∥xε∥∥= ∥∥S◦∥∥. (2.6)

This implies that s− limε↓0 xε = S◦.
In order to prove (ii), we first note that if S �= ∅, then by (i) {xε} is bounded.

So, it remains to show that S=∅ implies

lim
ε↓0

∥∥xε∥∥=∞. (2.7)

Suppose on the contrary that (2.7) does not hold. Then we can find a sequence
{εn} ↓ 0 and some x̃ ∈ C such that

xεn −→ x̃ weakly. (2.8)

Repeating the first half of the proof of part (i), we obtain that

f
(
x̃
)≤ f (x), x ∈ C. (2.9)

That is, x̃ ∈ S and S is nonempty. The contradiction we have reached completes
the proof. �

Remark 2.2. Let y ∈H and let xε(y) denote the unique solution of the regular-
ized optimization problem

min
x∈C

fε(x) := 1
2
‖Ax− b‖2 +

1
2
ε‖x− y‖2. (2.10)
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Let PS be the nearest point projection from H onto S. Then, we can prove the
following results:

(i) S �= ∅ if and only if {xε(y)} is bounded as ε ↓ 0. In this case, {xε(y)}
converges strongly as ε ↓ 0 to the solution of (1.1) closest to y (i.e., PSy);

(ii) S=∅ if and only if limε↓0‖xε(y)‖ =∞.

3. Iterative algorithm

In this section, we will introduce an iterative algorithm which produces a se-
quence that converges strongly to the unique solution of the regularized prob-
lem (1.2) in the case where the set C of constraints is the intersection of finitely
many closed convex subsets of H . We need some lemmas. Lemma 3.1 is elemen-
tary (see [14] for a proof). Lemma 3.2 is an easy exercise in an inner product
space. Lemma 3.3 is well known in the fixed-point theory of nonexpansive map-
pings (see, e.g., Goebel and Kirk [7]). Lemma 3.4 may be known. A proof is,
however, included.

Lemma 3.1. Let {sn} be a sequence of nonnegative numbers satisfying

sn+1 ≤
(
1−αn

)
sn +αnβn, n≥ 0, (3.1)

where {αn} and {βn} are sequences of real numbers such that

(i) {αn} ⊂ [0,1] and
∑∞

n=0αn =∞ or equivalently,

∞∏
n=0

(
1−αn

)
:= lim

n→∞

n∏
k=0

(
1−αk

)= 0; (3.2)

(ii) limsupn→∞βn ≤ 0, or
∑

n αnβn is convergent.

Then limn→∞ sn = 0.

Lemma 3.2. Let H be a Hilbert space. Then ‖x+ y‖2 ≤ ‖x‖2 + 2〈y,x+ y〉, for all
x, y ∈H .

Lemma 3.3. Let D be a closed convex subset of H and T : D→H a nonexpansive
mapping with a fixed point. If {xn} is a sequence in D such that xn→ x weakly and
(I −T)xn→ y strongly, then (I −T)x = y. (Here I is the identity operator on H .)

Lemma 3.4 (the optimality condition for (1.2)). The point xε ∈ C solves (1.2) if
and only if

〈
x− xε,A

∗b− (A∗A+ εI
)
xε
〉≤ 0, x ∈ C, (3.3)

where A∗ is the adjoint of A.
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Proof. Assume that xε ∈ C is the minimizer of fε over C. We have, for any x ∈ C,

0≤ lim
t↓0

1
t

[
fε
(
xε + t

(
x− xε

))− fε
(
xε
)]

= lim
t↓0

[〈
Axε− b,A

(
x− xε

)〉
+ ε
〈
xε,x− xε

〉

+
t

2

(∥∥A(x− xε
)∥∥2

+ ε
∥∥x− xε

∥∥2
)]

= 〈A∗(Axε− b
)

+ εxε,x− xε
〉

= 〈(A∗A+ εI
)
xε−A∗b,x− xε

〉
.

(3.4)

Assume next that (3.3) holds. Calculations yield the derivative

f ′(x)= (A∗A+ εI
)
x−A∗b. (3.5)

Hence, by the subdifferential inequality, we obtain, for all x ∈ C,

f (x)≥ f
(
xε
)

+
〈
f ′
(
xε
)
,x− xε

〉
= f

(
xε
)

+
〈(
A∗A+ εI

)
xε−A∗b,x− xε

〉≥ f
(
xε
)
.

(3.6)

This shows that xε is indeed a minimizer of fε over C. �

We now assume that S �= ∅ and look for the minimum norm solution of (1.1)
in the case where

C =
N⋂
i=1

Ci, (3.7)

where N ≥ 1 is an integer and {C1, . . . ,CN} is a finite collection of closed convex
subsets of a Hilbert space H . We assume that for each i, Ci is the fixed-point
set of a nonexpansive mapping Ti (i.e., Ci = {x ∈ H : Tix = x}). Recall that a
mapping T : H → H is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H .
It is well known that the (nearest point) projection PD from H onto a closed
convex subset D of H is nonexpansive. Note that each Ci is the fixed-point set of
the projection PCi .

We now introduce the iterative algorithm. Let a sequence {αn} of real num-
bers in the interval [0,1] be given. For ε > 0, we put

B ≡ Bε := A∗A+ εI, u :=A∗b. (3.8)
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Starting with an arbitrary initial guess x0 ∈ H , we define the sequence {xn}
recursively by the following algorithm:

x1 =
(
I −α1B

)
T1x0 +α1u,

x2 =
(
I −α2B

)
T2x1 +α2u,

...

xN =
(
I −αNB

)
TNxN−1 +αNu,

xN+1 =
(
I −αN+1B

)
T1xN +αN+1u,

...

(3.9)

We can rewrite the algorithm in a more compact form

xn+1 =
(
I −αn+1B

)
Tn+1xn +αn+1u, n≥ 0, (3.10)

where Tn = TnmodN and the mod function takes values in {1,2, . . . ,N}.
Remark 3.5. The algorithm is a modification of an iteration scheme proposed
by Halpern [8] and developed by Lions [9], Wittmann [13], Reich [10, 11],
Bauschke [1], Xu [14, 15], and others. The algorithm and its variants apply to
the convex feasibility problem (CFP). (See [2, 4] for some of the recent develop-
ments regarding the CFP.)

We now prove the main result of the paper. Some related work can also be
found in a paper by Deutsch and Yamada [5].

Theorem 3.6. Assume that

(1) αn→ 0;
(2)

∑
n αn =∞;

(3) αn/αn+N → 1 or
∑

n |αn−αn+N | <∞;
(4) C = ⋂N

i=1F(Ti) = F(T1T2 ···TN ) = F(TNT1 ···TN−1) = ··· = F(T2T3

···TNT1).

Then, the sequence (xn) generated by algorithm (3.10) converges in norm to the
unique solution xε of (1.2).

Proof. We will divide the proof into several steps.
(1) First, we show that the sequence {xn} is bounded. Indeed, since B is self-

adjoint, we have that for any 0 < α < (‖A‖2 + ε)−1, I −αB is positive. Hence,

‖I −αB‖ = sup
‖x‖=1

〈(
I −αB

)
x,x
〉≤ 1−αε. (3.11)
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(Without loss of generality, we may assume throughout the proof that αn <
(‖A‖2 + ε)−1 for all n.) It follows from (3.11) that for p ∈ C,

∥∥xn+1− p
∥∥= ∥∥(I −αn+1B

)(
Tn+1xn− p

)
+αn+1(u−Bp)

∥∥
≤ (1− εαn+1

)∥∥xn− p
∥∥+αn+1‖u−Bp‖. (3.12)

Hence, by induction, we obtain

∥∥xn− p
∥∥≤max

{∥∥x0− p
∥∥, ‖u−Bp‖

ε

}
, n≥ 0. (3.13)

(2) Next, we note that ‖xn+1 − Tn+1xn‖ → 0. This follows from assumption
(1), step (1), and the fact that ‖xn+1−Tn+1xn‖ = αn+1‖u−BTn+1xn‖.

(3) Now, we prove that ‖xn+N − xn‖ → 0. Indeed, we have (note that Tn+N =
Tn)

∥∥xn+N − xn
∥∥= ∥∥(I −αn+NB

)(
Tn+Nxn+N−1−Tnxn−1

)
+
(
αn+N −αn

)(
u−BTnxn−1

)∥∥
≤ (1− εαn+N

)∥∥xn+N−1− xn−1
∥∥+M

∣∣αn+N −αn
∣∣

= (1− εαn+N
)∥∥xn+N−1− xn−1

∥∥+ εαn+Nβn,

(3.14)

where M is a constant such that ‖u − BTnxn−1‖ ≤ M for all n and βn :=
Mε−1α−1

n+N |αn+N −αn|. Applying Lemma 3.1 together with assumptions (2) and
(3), we obtain that ‖xn+N − xn‖→ 0.

(4) Next, we observe that xn−Tn+N ···Tn+1xn
s−→ 0.

Indeed, noting that each Tn is nonexpansive and using step (2), we observe
that

xn+N −Tn+Nxn+N−1
s−→ 0,

Tn+Nxn+N−1−Tn+NTn+N−1xn+N−2
s−→ 0,

...

Tn+N ···Tn+2xn+1−Tn+N ···Tn+1xn
s−→ 0.

(3.15)

Adding up and using step (3), we see that xn−Tn+N ···Tn+1xn
s−→ 0.

(5) Now, we show that limsupn→∞〈u − Bxε,xn − xε〉 ≤ 0, where xε is the
unique solution of (1.2).
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Take a subsequence {xnj} of {xn} such that

limsup
n→∞

〈
u−Bxε,xn− xε

〉= lim
j→∞

〈
u−Bxε,xnj − xε

〉
. (3.16)

Since {xn} is bounded, we may also assume that there exists some x̃ ∈ H such
that xnj

w−→ x̃. Since the pool of mappings is finite, we may further assume (pass-
ing to a further subsequence if necessary) that, for some i∈ {1,2, . . . ,N},

Tnj ≡ Ti, ∀ j ≥ 1. (3.17)

It follows from step (4) that

xnj −Ti+N ···Ti+1xnj

s−→ 0. (3.18)

Lemma 3.3 then ensures that the weak limit x̃ of {xnj} is a fixed point of the map-
ping Ti+N ···Ti+1. This together with assumption (4) implies that x̃ ∈ F(Ti+N

···Ti+1)= C. Therefore, we have, by (3.16) and Lemma 3.4, that limsupn→∞〈u−
Bxε,xn− xε〉 = 〈u−Bxε, x̃− xε〉 ≤ 0.

(6) Finally, we claim that xn
s−→ xε. Indeed, we can write

xn+1− xε =
(
I −αn+1B

)(
Tn+1xn− xε

)
+αn+1

(
u−Bxε

)
. (3.19)

Apply Lemma 3.2 to get

∥∥xn+1− xε
∥∥2 ≤ ∥∥(I −αn+1B

)(
Tn+1xn− xε

)∥∥2
+ 2αn+1

〈
u−Bxε,xn+1− xε

〉

≤ (1− εαn+1
)∥∥xn− xε

∥∥2
+ 2αn+1

〈
u−Bxε,xn+1− xε

〉
.

(3.20)

Using Lemma 3.1 and step (5), we now conclude that ‖xn− xε‖2 → 0. �

Remark 3.7. Assumption (4) in Theorem 3.6 is automatically satisfied if each Ti

is firmly nonexpansive (i.e., Ti satisfies the property: 〈x− y,Tix−Tiy〉 ≥ ‖Tix−
Tiy‖2, for x, y ∈H). Since a projection is firmly nonexpansive, we have the fol-
lowing consequence of Theorem 3.6.

Corollary 3.8. Assume that

(1) αn→ 0;
(2)

∑
n αn =∞;

(3) αn/αn+N → 1 or
∑

n |αn−αn+N | <∞.

Let x0 ∈H be chosen arbitrarily and let {xn} be generated by the iterative algorithm

xn+1 =
(
I −αn+1B

)
Pn+1xn +αn+1u, n≥ 0, (3.21)

where Pk = PCk (1≤ k ≤N). Then, {xn} converges in norm to the unique solution
xε of (1.2).
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Remark 3.9. We have used two steps to find a solution of problem (1.1); that is,
we first find the unique solution xε of the regularized problem (1.2) and then ap-
proximate xε via the iterative algorithm (3.10). It is not clear if one can combine
the two steps into one. In other words, if one defines a sequence {xn} by

xn+1 =
(
I −αn+1Bεn

)
Tn+1xn +αn+1u, n≥ 0, (3.22)

where {εn} ⊂ (0,1) and εn → 0 as n→∞, does the sequence {xn} defined by
(3.22) converge to the minimum norm solution of problem (1.1) (if the solution
set S of (1.1) is nonempty)?
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