Research Article
 Existence and Multiplicity of Positive Solutions for Dirichlet Problems in Unbounded Domains

Tsung-Fang Wu

Received 30 September 2006; Revised 26 December 2006; Accepted 3 January 2007
Recommended by Vy Khoi Le

We consider the elliptic problem $-\Delta u+u=b(x)|u|^{p-2} u+h(x)$ in $\Omega, u \in H_{0}^{1}(\Omega)$, where $2<p<(2 N /(N-2))(N \geq 3), 2<p<\infty(N=2), \Omega$ is a smooth unbounded domain in $\mathbb{R}^{N}, b(x) \in C(\Omega)$, and $h(x) \in H^{-1}(\Omega)$. We use the shape of domain Ω to prove that the above elliptic problem has a ground-state solution if the coefficient $b(x)$ satisfies $b(x) \rightarrow b^{\infty}>0$ as $|x| \rightarrow \infty$ and $b(x) \geq c$ for some suitable constants $c \in\left(0, b^{\infty}\right)$, and $h(x) \equiv$ 0 . Furthermore, we prove that the above elliptic problem has multiple positive solutions if the coefficient $b(x)$ also satisfies the above conditions, $h(x) \geq 0$ and $0<\|h\|_{H^{-1}}<$ $(p-2)(1 /(p-1))^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$, where $S(\Omega)$ is the best Sobolev constant of subcritical operator in $H_{0}^{1}(\Omega)$ and $b_{\text {sup }}=\sup _{x \in \Omega} b(x)$.

Copyright © 2007 Tsung-Fang Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of positive solutions of the following elliptic problems:

$$
\begin{gather*}
-\Delta u+u=b(x)|u|^{p-2} u+h(x) \quad \text { in } \Omega, \\
u \in H_{0}^{1}(\Omega) \tag{1.1}
\end{gather*}
$$

where $2<p<(2 N /(N-2))(N \geq 3), 2<p<\infty(N=2)$, and Ω is a smooth unbounded domain in \mathbb{R}^{N}. We assume that $b(x) \in C(\Omega) \cap L^{\infty}(\Omega)$ satisfies

$$
\begin{equation*}
b(x)>0, \quad \forall x \in \Omega \tag{1.2}
\end{equation*}
$$

and $h(x)$ satisfies

$$
\begin{equation*}
h(x) \in H^{-1}(\Omega), \quad h(x) \geq 0 \tag{1.3}
\end{equation*}
$$

Associated with (1.1), we consider the energy functional J_{h}^{b} in the Sobolev space $H_{0}^{1}(\Omega)$:

$$
\begin{equation*}
J_{h}^{b}(u)=\frac{1}{2}\|u\|_{H^{1}}^{2}-\frac{1}{p} \int_{\Omega} b(x)|u|^{p}-\int_{\Omega} h(x) u, \tag{1.4}
\end{equation*}
$$

where $\|u\|_{H^{1}}=\left(\int_{\Omega}|\nabla u|^{2}+u^{2}\right)^{1 / 2}$. By Rabinowitz [1, Proposition B.10], $J_{h}^{b} \in C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$. It is well known that the solutions of (1.1) are the critical points of the energy functional J_{h}^{b} in $H_{0}^{1}(\Omega)$.

Under the assumption (1.3) and $h(x) \not \equiv 0,(1.1)$ can be regarded as a perturbation problem of the following homogeneous elliptic equation:

$$
\begin{gather*}
-\Delta u+u=b(x)|u|^{p-2} u \quad \text { in } \Omega, \\
u \in H_{0}^{1}(\Omega) . \tag{1.5}
\end{gather*}
$$

A typical approach for solving a problem of this kind is to use the minimax method:

$$
\begin{equation*}
\alpha_{\Gamma}^{b}(\Omega)=\inf _{\gamma \in \Gamma(\Omega)} \max _{t \in[0,1]} J_{0}^{b}(\gamma(t)) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(\Omega)=\left\{\gamma \in C\left([0,1], H_{0}^{1}(\Omega)\right) \mid \gamma(0)=0, \gamma(1)=e\right\} \tag{1.7}
\end{equation*}
$$

$J_{0}^{b}(e)=0$, and $e \neq 0$. By the mountain pass lemma due to Ambrosetti and Rabinowitz [2], we called the nonzero critical point $u \in H_{0}^{1}(\Omega)$ of J_{0}^{b} is as ground-state solution of (1.5) in Ω if $J_{0}^{b}(u)=\alpha_{\Gamma}^{b}(\Omega)$. We note that the ground-state solutions of (1.5) in Ω can also be obtained by the Nehari minimization problem

$$
\begin{equation*}
\alpha_{0}^{b}(\Omega)=\inf _{v \in \mathbf{M}_{0}^{b}(\Omega)} J_{0}^{b}(v), \tag{1.8}
\end{equation*}
$$

where $\mathbf{M}_{0}^{b}(\Omega)=\left\{\left.u \in H_{0}^{1}(\Omega) \backslash\{0\}\left|\|u\|_{H^{1}}^{2}=\int_{\Omega} b(x)\right| u\right|^{p}\right\}$. Note that $\mathbf{M}_{0}^{b}(\Omega)$ contains every nonzero solution of (1.5) in $\Omega, \alpha_{\Gamma}^{b}(\Omega)=\alpha^{b}(\Omega)>0$ (see Willem [3] and Wang and Wu [4]), and if $b(x) \equiv b^{\infty}>0$ is a constant, then J_{0}^{b} and $\alpha_{0}^{b}(\Omega)$ are replaced by J_{0}^{∞} and $\alpha_{0}^{\infty}(\Omega)$, respectively.

That the existence of ground-state solutions of (1.5) is affected by the shape of the domain Ω and $b(x)$ that satisfies some suitable conditions has been the focus of a great deal of research in recent years. By the Rellich compactness theorem and the minimax method, it is easy to obtain a ground-state solution for (1.5) in bounded domains. When Ω is an unbounded domain and $b(x) \equiv b^{\infty}$, the existence of ground-state solutions has been established by several authors under various conditions. We mention, in particular, results by Berestycki and Lions [5], Lien et al. [6], Chen and Wang [7], and Del Pino and Felmer [8, 9]. In [5], $\Omega=\mathbb{R}^{N}$. Actually, Kwong [10] proved that the positive solution of (1.5) in \mathbb{R}^{N} is unique. In [6], Ω is a periodic domain. In [7,6], the domain Ω is required
to satisfy that
($\Omega 1$) $\Omega=\Omega_{1} \cup \Omega_{2}$, where Ω_{1}, Ω_{2} are domains in \mathbb{R}^{N} and $\Omega_{1} \cap \Omega_{2}$ is bounded;
$(\Omega 2) \alpha_{0}^{\infty}(\Omega)<\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right)\right\}$.
In $[8,9]$, for $1 \leq l \leq N-1, \mathbb{R}^{N}=\mathbb{R}^{l} \times \mathbb{R}^{N-l}$. For a point $x \in \mathbb{R}^{N}$, we have $x=(y, z)$, where $y \in \mathbb{R}^{l}$ and $z \in \mathbb{R}^{N-l}$. Let $y \in \mathbb{R}^{l}$, we denote by $\Omega^{y} \subset \mathbb{R}^{N-l}$ the projection of Ω onto \mathbb{R}^{N-l}, that is,

$$
\begin{equation*}
\Omega^{y}=\left\{z \in \mathbb{R}^{N-l} \mid(y, z) \in \Omega\right\} . \tag{1.9}
\end{equation*}
$$

The domain Ω is required to satisfy that
$(\Omega 3) \Omega$ is a smooth subset of \mathbb{R}^{N} and the projections Ω^{y} are bounded uniformly in $y \in \mathbb{R}^{l}$;
$(\Omega 4)$ there exists a nonempty closed set $F \subset \mathbb{R}^{N-l}$ such that $F \subset \Omega^{y}$ for all $y \in \mathbb{R}^{l}$;
$(\Omega 5)$ for each $\delta>0$, there exists $K>0$ such that

$$
\begin{equation*}
\Omega^{y} \subset\left\{z \in \mathbb{R}^{N-l} \mid \operatorname{dist}(z, F)<\delta\right\} \tag{1.10}
\end{equation*}
$$

for all $|y| \geq K$.
Moreover, when $\Omega=\mathbb{R}^{N} \backslash \omega$ is an exterior domain, where ω is a bounded domain. It is well known that (1.5) in $\mathbb{R}^{N} \backslash \omega$ does not admit any ground-state solution (see Benci and Cerami [12]). However, Bahri and Lions [11] and Benci and Cerami [12] asserted that (1.5) in $\mathbb{R}^{N} \backslash \omega$ has a higher-energy positive solution. As Ω is an Esteban-Lions domain, (1.5) in Ω does not admit any nontrivial solution (see Esteban and Lions [13]), where the definition of Esteban-Lions domain is as follows: for a proper unbounded domain Ω in \mathbb{R}^{N}, there exists $\chi \in \mathbb{R}^{N},\|\chi\|=1$ such that $n(x) \cdot \chi \geq 0$ and $n(x) \cdot \chi \not \equiv 0$ on $\partial \Omega$, where $n(x)$ is the unit outward normal vector to $\partial \Omega$ at the point x.

When $b(x) \not \equiv b^{\infty}$, which satisfies the condition (1.2), the existence of ground-state solutions of (1.5) has been established by the condition $b(x) \geq b^{\infty}$ and the existence of ground-state solutions of limit equation

$$
\begin{gather*}
-\Delta u+u=b^{\infty}|u|^{p-2} u \quad \text { in } \Omega, \\
u \in H_{0}^{1}(\Omega) \tag{1.11}
\end{gather*}
$$

On the other hand, for $\Omega=\mathbb{R}^{N}$ and $b(x) \leq b^{\infty}$ on \mathbb{R}^{N} with a strict inequality on a set of positive measures, (1.5) in \mathbb{R}^{N} does not admit any ground-state solution. However, Bahri and Lions [11], Cao [14], and Bahri and Li [15] asserted that (1.5) in \mathbb{R}^{N} has a higher-energy positive solution under the coefficient $b(x)$ which satisfies conditions $b(x) \geq(1 / 2)^{(p-2) / 2} b^{\infty}$ and $b(x) \rightarrow b^{\infty}$ as $|x| \rightarrow \infty$ such that the functional J_{0}^{b} in $H_{0}^{1}(\Omega)$ satisfies the Palais-Smale condition for energy level β with

$$
\begin{equation*}
\alpha_{0}^{\infty}\left(\mathbb{R}^{N}\right)<\beta<\alpha_{0}^{\infty}\left(\mathbb{R}^{N}\right)+\alpha_{0}^{b}\left(\mathbb{R}^{N}\right) \tag{1.12}
\end{equation*}
$$

The first result of our paper is relaxing the condition $b(x) \geq b^{\infty}$ to show the existence of ground-state solution of (1.5) by the shape of domain Ω. First, we consider the following assumptions:
($\Omega 1^{\prime}$) given $k \geq 0$ and $1 \leq m \leq k$, the domain $\Omega=\bigcup_{i=1}^{k} \Omega_{i}$, where $\Omega_{i} \cap \Omega_{j}$ is bounded for all $i \neq j$ and Ω_{j} is unbounded domain for all $j=1,2, \ldots, m$;
$\left(\Omega 2^{\prime}\right)$ the functional J_{0}^{∞} in $H_{0}^{1}(\Omega)$ satisfies the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega) ;$
(b1) $b(x) \geq\left(\alpha_{0}^{\infty}(\Omega) / \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}\right)^{(p-2) / 2} b^{\infty}$ and $b(x) \rightarrow b^{\infty}$ as $|x| \rightarrow \infty$.
Then we have the following result.
Theorem 1.1. If the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$ and $b(x)$ satisfies the condition (b1), then (1.5) in Ω has a ground-state solution.
Remark 1.2. If the domain Ω satisfies the conditions $(\Omega 1)-(\Omega 2)$, then the functional J_{0}^{∞} in $H_{0}^{1}(\Omega)$ satisfies the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega)$, and we have

$$
\begin{equation*}
0<\alpha_{0}^{\infty}(\Omega)<\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \tag{1.13}
\end{equation*}
$$

(see Lien et al. [6] and Chen and Wang [7]). Thus,

$$
\begin{equation*}
0<\left(\frac{\alpha_{0}^{\infty}(\Omega)}{\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}}\right)^{(p-2) / 2}<1 \tag{1.14}
\end{equation*}
$$

It is known that the general unbounded domains in \mathbb{R}^{N} can be classified into three kinds. If Ω is an unbounded domain in \mathbb{R}^{N}, then it satisfies one of the following conditions:
(1) J_{0}^{∞} in $H_{0}^{1}(\Omega)$ satisfies the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega)$. In particular, (1.11) in Ω has a ground-state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$;
(2) J_{0}^{∞} in $H_{0}^{1}(\Omega)$ does not satisfy the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega)$, but (1.11) in Ω has a ground-state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$;
(3) equation (1.11) in Ω does not admit any ground-state solution.

In this motivation, consider a general unbounded domain Ω and its exterior domain $\Omega^{c}(r)=\Omega \backslash \overline{B^{N}(0 ; r)}$, and the following assumptions:
$\left(\Omega 3^{\prime}\right)$ equation (1.11) in Ω has a ground state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$.
(b2) $b(x) \geq\left(\alpha_{0}^{\infty}(\Omega) / \lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)\right)^{(p-2) / 2} b^{\infty}$ and $b(x) \rightarrow b^{\infty}$ as $|x| \rightarrow \infty$.
Then we have the following result.
Theorem 1.3. If the unbounded domain Ω satisfies the condition ($\Omega 3^{\prime}$) and $b(x)$ satisfies the condition (b2), then (1.5) in Ω has a ground-state solution.
Remark 1.4. (1) If the domain Ω satisfies the conditions ($\Omega 3)-(\Omega 5)$, J_{0}^{∞} in $H_{0}^{1}(\Omega)$ satisfies the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega)$. Then $\alpha_{0}^{\infty}(\Omega)<\alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)$ for all $r>0$ (see Del Pino and Felmer [8,9] or Wu [16]). Since $\alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)$ is nondecreasing as r is
increasing, we have

$$
\begin{equation*}
0 \leq\left(\frac{\alpha_{0}^{\infty}(\Omega)}{\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)}\right)^{(p-2) / 2}<1 \tag{1.15}
\end{equation*}
$$

(2) If Ω is a periodic domain, then J_{0}^{∞} in $H_{0}^{1}(\Omega)$ does not satisfy the Palais-Smale condition for energy level $\alpha_{0}^{\infty}(\Omega)$, but (1.11) in Ω has a ground-state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$. Then $\alpha_{0}^{\infty}(\Omega)=\alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)$ for all $r>0$ (see Lien et al. [6]). Thus,

$$
\begin{equation*}
\left(\frac{\alpha_{0}^{\infty}(\Omega)}{\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)}\right)^{(p-2) / 2} \equiv 1 \tag{1.16}
\end{equation*}
$$

Remark 1.5. If the domain $\Omega=\mathbb{R}^{N}$, coefficient $b(x)$ satisfies the condition (1.2) and $b(x) \leq b^{\infty}$ with a strict inequality on a set of positive measures, then (1.5) in \mathbb{R}^{N} does not admit any ground-state solution and $\alpha_{0}^{\infty}\left(\mathbb{R}^{N}\right)=\alpha_{0}^{b}\left(\mathbb{R}^{N}\right)$. However, if the domain Ω satisfies the conditions ($\Omega 1$)-($\Omega 2$) (or ($\Omega 3$)-($\Omega 5$)), $b(x)$ satisfies the condition ($b 1$) (or (b2)) and $b(x) \leq b^{\infty}$ with a strict inequality on a set of positive measure, then from Theorem 1.1 (or Theorem 1.3), we can conclude that (1.5) has a ground-state solution. Moreover, $\alpha_{0}^{\infty}(\Omega)<\alpha_{0}^{b}(\Omega)$.

Finally, we consider (1.1). For $\Omega=\mathbb{R}^{N}$, several authors have shown the existence of at least two positive solutions of (1.1) in \mathbb{R}^{N} under some suitable conditions. In [17] by Zhu for $b(x)=b^{\infty}, h(x)$ is exponential decay and $\|h\|_{L^{2}}$ is sufficiently small. By Cao and Zhou in [18] and Jeanjean [19], for $b(x) \geq b^{\infty}$ and $\|h\|_{H^{-1}}$ sufficiently small. By Adachi and Tanaka in [20], for $b(x) \geq b^{\infty}-C e^{-\lambda|x|}$ for some $C, \lambda>0$ and $\|h\|_{H^{-1}}$ sufficiently small. Moreover, Adachi and Tanaka [21] used that (1.5) in \mathbb{R}^{N} does not admit any ground-state solution for the condition $b(x) \leq b^{\infty}$ with a strict inequality on a set of positive measures, to show that (1.1) in \mathbb{R}^{N} has at least four positive solutions for $\|h\|_{H^{-1}}$ sufficiently small. The second aim of our paper is also relaxing the condition $b(x) \geq b^{\infty}$ to show the existence of at least two positive solutions of (1.1) in Ω. Denote

$$
\begin{equation*}
b_{\text {sup }}=\sup _{x \in \Omega} b(x) \tag{1.17}
\end{equation*}
$$

and $S(\Omega)=\left[(2 p /(p-2)) \alpha_{0}^{\infty}(\Omega)\right]^{(2-p) / 2 p}$ is the best Sobolev constant of subcritical operator in $H_{0}^{1}(\Omega)$ (see Lin et al. [22] or Willem [3]). Then we have the following results.
Theorem 1.6. Suppose that the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$ and $b(x)$ satisfies the condition (b1). If $h \geq 0$ and

$$
\begin{equation*}
0<\|h\|_{H^{-1}}<(p-2)\left(\frac{1}{p-1}\right)^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}, \tag{1.18}
\end{equation*}
$$

then (1.1) in Ω has at least two positive solutions.

Theorem 1.7. Suppose that the domain Ω satisfies the condition ($\Omega 3^{\prime}$) and $b(x)$ satisfies the condition (b2). If $h \geq 0$ and

$$
\begin{equation*}
0<\|h\|_{H^{-1}}<(p-2)\left(\frac{1}{p-1}\right)^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}, \tag{1.19}
\end{equation*}
$$

then (1.1) in Ω has at least two positive solutions.
This paper is organized as follows. In Section 2, we describe various preliminaries. In Section 3, we use the shape of the domain Ω to prove that (1.5) in Ω has a ground-state solution. In Section 4, we modify the proof of Adachi and Tanaka [21], Tarantello [23], Cao and Zhu [18], and Zhu [17] to prove that (1.1) in Ω has at least two positive solutions.

2. Preliminary

We define the Palais-Smale (PS) sequences, (PS) values, and (PS) conditions in $H_{0}^{1}(\Omega)$ for J_{h}^{b} as follows.
Definition 2.1. (i) For $\beta \in \mathbb{R}$, a sequence $\left\{u_{n}\right\}$ is a (PS $)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b} if $J_{h}^{b}\left(u_{n}\right)=\beta+o(1)$ and $\left(J_{h}^{b}\right)^{\prime}\left(u_{n}\right)=o(1)$ strongly in $H^{-1}(\Omega)$ as $n \rightarrow \infty$;
(ii) $\beta \in \mathbb{R}$ is a (PS) value in $H_{0}^{1}(\Omega)$ for J_{h}^{b} if there is a (PS $)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b};
(iii) J_{h}^{b} satisfies the $(\mathrm{PS})_{\beta}$-condition in $H_{0}^{1}(\Omega)$ if every $(\mathrm{PS})_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b} contains a convergent subsequence;
(iv) J_{h}^{b} satisfies the (PS) condition in $H_{0}^{1}(\Omega)$ if for every $\beta \in \mathbb{R}, J_{h}^{b}$ satisfies the (PS $)_{\beta^{-}}$ condition in $H_{0}^{1}(\Omega)$.

We need the following lemmas.
Lemma 2.2. Let $u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$. Then there exists a subsequence $\left\{u_{n}\right\}$ such that
(i) $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ and $\|u\|_{H^{1}} \leq \liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H^{1}}$;
(ii) $u_{n}-u, \nabla u_{n}-\nabla u$ weakly in $L^{2}(\Omega)$, and $u_{n} \rightarrow u$ a.e. in Ω;
(iii) $\left\|u_{n}-u\right\|_{H^{1}}^{2}=\left\|u_{n}\right\|_{H^{1}}^{2}-\|u\|_{H^{1}}^{2}+o(1)$.

The proof is clear by the routine arguments, and hence is omitted here.
Lemma 2.3 (Brézis-Lieb lemma). Suppose that $u_{n} \rightarrow$ ua.e. in Ω and there exists $c>0$ such that $\left\|u_{n}\right\|_{L^{p}} \leq c$ for $n=1,2, \ldots$. Then
(i) $\left\|u_{n}-u\right\|_{L^{p}}^{p}=\left\|u_{n}\right\|_{L^{p}}^{p}-\|u\|_{L^{p}}^{p}+o(1)$;
(ii) $\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right)-\left|u_{n}\right|^{p-2} u_{n}+|u|^{p-2} u=o(1)$ in $L^{p /(p-1)}(\Omega)$.

For the proof, see Brézis and Lieb [24].
Lemma 2.4. Let $u_{n}-u$ weakly in $H_{0}^{1}(\Omega)$ and

$$
\begin{equation*}
\left(J_{h}^{b}\right)^{\prime}\left(u_{n}\right)=-\Delta u_{n}+u_{n}-b(x)\left|u_{n}\right|^{p-2} u_{n}+h(x)=o(1) \quad \text { in } H^{-1}(\Omega) \tag{2.1}
\end{equation*}
$$

Then
(i) $\left|u_{n}-u\right|^{p-2}\left(u_{n}-u\right)-\left|u_{n}\right|^{p-2} u_{n}+|u|^{p-2} u=o(1)$ in $H^{-1}(\Omega)$;
(ii) $\left(J_{0}^{\infty}\right)^{\prime}\left(w_{n}\right)=-\Delta w_{n}+w_{n}-b^{\infty}\left|w_{n}\right|^{p-2} w_{n}=o(1)$ in $H^{-1}(\Omega)$, where $w_{n}=u_{n}-u$;
(iii) if $\left\{u_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b} then $\left\{w_{n}\right\}$ is a $(P S)_{\left(\beta-J_{h}^{b}(u)\right)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}.

Proof. For (i), (ii), see Bahri and Lions [11]. (iii) Since $u_{n}-u$ weakly in $H_{0}^{1}(\Omega)$ and $\left\{u_{n}\right\}$ is a $(\mathrm{PS})_{\beta}$-sequence for J_{h}^{b} in $H_{0}^{1}(\Omega)$, by Lemmas $2.2,2.3$, and the Sobolev embedding theorem, there exists a subsequence $\left\{u_{n}\right\}$ such that $w_{n}-0$ in $H_{0}^{1}(\Omega)$,

$$
\begin{array}{r}
\left\|w_{n}\right\|_{H^{1}}^{2}=\left\|u_{n}\right\|_{H^{1}}^{2}-\|u\|_{H^{1}}^{2}+o(1), \\
\left\|w_{n}\right\|_{L^{p}}^{p}=\left\|u_{n}\right\|_{L^{p}}^{p}-\|u\|_{L^{p}}^{p}+o(1) . \tag{2.2}
\end{array}
$$

Thus,

$$
\begin{equation*}
J_{0}^{\infty}\left(w_{n}\right)=J_{h}^{b}\left(w_{n}\right)+o(1)=J_{h}^{b}\left(u_{n}\right)-J_{h}^{b}(u)+o(1)=\beta-J_{h}^{b}(u)+o(1) . \tag{2.3}
\end{equation*}
$$

Therefore, by part (ii), $\left\{p_{n}\right\}$ is a $(\mathrm{PS})_{\left(\beta-J_{h}^{b}(u)\right)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}.
We need the following useful results.
Lemma 2.5. Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{1}(\Omega)$. Then $\left\{u_{n}\right\}$ is a $(P S)_{\alpha_{0}^{b}(\Omega)}$-sequence for J_{0}^{b} if and only if $J_{0}^{b}\left(u_{n}\right)=\alpha_{0}^{b}(\Omega)+o(1)$ and $\int_{\Omega}\left|\nabla u_{n}\right|^{2}+u_{n}^{2}=\int_{\Omega} b(x)\left|u_{n}\right|^{p}+o(1)$. In particular, every minimizing sequence $\left\{u_{n}\right\}$ in $\mathbf{M}_{0}^{b}(\Omega)$ of $\alpha_{0}^{b}(\Omega)$ is a $(P S)_{\alpha_{0}^{b}(\Omega)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b}.

The proof is almost the same as that by Wang and Wu in [4, Lemma 7], and is omitted here.

We introduce the Nehari minimization problem for (1.1) as

$$
\begin{equation*}
\alpha_{h}^{b}(\Omega)=\inf _{u \in \mathbf{M}_{h}^{b}(\Omega)} J_{h}^{b}(u) \tag{2.4}
\end{equation*}
$$

where $\mathbf{M}_{h}^{b}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \mid\left\langle\left(J_{h}^{b}\right)^{\prime}(u), u\right\rangle=0\right\}$. Define

$$
\begin{equation*}
\psi(u)=\left\langle\left(J_{h}^{b}\right)^{\prime}(u), u\right\rangle=\|u\|_{H^{1}}^{2}-\int_{\Omega} b(x)|u|^{p}-\int_{\Omega} h(x) u . \tag{2.5}
\end{equation*}
$$

Then we have the following result.
Lemma 2.6. If $\|h\|_{H^{-1}}<(p-2)(1 /(p-1))^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$, then for each $u \in$ $\mathbf{M}_{h}^{b}(\Omega)$,

$$
\begin{equation*}
\left\langle\psi^{\prime}(u), u\right\rangle=\|u\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)|u|^{p} \neq 0 . \tag{2.6}
\end{equation*}
$$

Proof. For $u \in \mathbf{M}_{h}^{b}(\Omega)$, we have

$$
\begin{equation*}
\|u\|_{H^{1}}^{2}-\int_{\Omega} b(x)|u|^{p}-\int_{\Omega} h(x) u=0 \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\langle\psi^{\prime}(u), u\right\rangle & =2\|u\|_{H^{1}}^{2}-p \int_{\Omega} b(x)|u|^{p}-\int_{\Omega} h(x) u \\
& =\|u\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)|u|^{p} . \tag{2.8}
\end{align*}
$$

We claim that if $\|h\|_{H^{-1}}<(p-2)(1 /(p-1))^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$, then $\left\langle\psi^{\prime}(u), u\right\rangle \neq 0$ for all $u \in \mathbf{M}_{h}^{b}(\Omega)$. Let $I: \mathbf{M}_{h}^{b}(\Omega) \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
I(u)=K(p)\left(\frac{\|u\|_{H^{1}}^{2 p-2}}{\int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)}-\int_{\Omega} h(x) u \tag{2.9}
\end{equation*}
$$

where $K(p)=(p-2)(1 /(p-1))^{(p-1) /(p-2)}$. Then we have for $u \in \mathbf{M}_{h}^{b}(\Omega)$,

$$
\begin{align*}
I(u) & =K(p)\left(\frac{\|u\|_{H^{1}}^{2 p-2}}{\int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)}-\int_{\Omega} h(x) u \\
& \geq K(p)\left(\frac{\|u\|_{H^{1}}^{2 p-2}}{\int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)}-\|h\|_{H^{-1}}\|u\|_{H^{1}} \tag{2.10}\\
& =\|u\|_{H^{1}}\left(K(p)\left(\frac{\|u\|_{H^{1}}^{p}}{\int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)}-\|h\|_{H^{-1}}\right)
\end{align*}
$$

since

$$
\begin{equation*}
\left(\frac{\|u\|_{H^{1}}^{p}}{\int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)} \geq\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)} \quad \forall u \in H_{0}^{1}(\Omega) \backslash\{0\} . \tag{2.11}
\end{equation*}
$$

Thus, for $\|h\|_{H^{-1}}<K(p)\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$, we have

$$
\begin{equation*}
I(u)>0 \quad \forall u \in \mathbf{M}_{h}^{b}(\Omega) . \tag{2.12}
\end{equation*}
$$

Assume that there is a $w \in \mathbf{M}_{h}^{b}(\Omega)$ such that $\left\langle\psi^{\prime}(w), w\right\rangle=0$, then we have

$$
\begin{gather*}
\|w\|_{H^{1}}^{2}=(p-1) \int_{\Omega} b(x)|w|^{p} \\
\int_{\Omega} h(x) w=\|w\|_{H^{1}}^{2}-\int_{\Omega} b(x)|w|^{p}=(p-2) \int_{\Omega} b(x)|w|^{p} \tag{2.13}
\end{gather*}
$$

From (2.12) and (2.13),

$$
\begin{align*}
0 & <I(w)=K(p)\left(\frac{\|w\|_{H^{1}}^{2 p-2}}{\int_{\Omega} b(x)|w|^{p}}\right)^{1 /(p-2)}-\int_{\Omega} h(x) w \\
& =\left(\frac{1}{p-1}\right)^{(p-1) /(p-2)}(p-2)\left(\frac{(p-1)^{p-1}\left[\int_{\Omega} b(x)|w|^{p}\right]^{p-1}}{\int_{\Omega} b(x)|w|^{p}}\right)^{1 /(p-2)}-(p-2) \int_{\Omega} h(x) w=0, \tag{2.14}
\end{align*}
$$

which is a contradiction. Thus, we can conclude that for

$$
\begin{equation*}
\|h\|_{H^{-1}}<(p-2)\left(\frac{1}{p-1}\right)^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)} \tag{2.15}
\end{equation*}
$$

we have $\left\langle\psi^{\prime}(u), u\right\rangle \neq 0$ for all $u \in \mathbf{M}_{h}^{b}(\Omega)$.
By Lemma 2.6, we write $\mathbf{M}_{h}^{b}(\Omega)=\mathbf{M}_{h}^{b+}(\Omega) \cup \mathbf{M}_{h}^{b-}(\Omega)$, where

$$
\begin{align*}
& \mathbf{M}_{h}^{b+}(\Omega)=\left\{\left.u \in \mathbf{M}_{h}^{b}(\Omega)\left|\|u\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)\right| u\right|^{p}>0\right\}, \\
& \mathbf{M}_{h}^{b-}(\Omega)=\left\{\left.u \in \mathbf{M}_{h}^{b}(\Omega)\left|\|u\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)\right| u\right|^{p}<0\right\}, \tag{2.16}
\end{align*}
$$

and define

$$
\begin{equation*}
\alpha_{h}^{b+}(\Omega)=\inf _{u \in \mathbf{M}_{h}^{b+}(\Omega)} J_{h}^{b}(u), \quad \alpha_{h}^{b-}(\Omega)=\inf _{u \in \mathbf{M}_{h}^{b-}(\Omega)} J_{h}^{b}(u) \tag{2.17}
\end{equation*}
$$

For each $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, we write

$$
\begin{equation*}
t_{\max }=\left(\frac{\|u\|_{H^{1}}^{2}}{(p-1) \int_{\Omega} b(x)|u|^{p}}\right)^{1 /(p-2)}>0 \tag{2.18}
\end{equation*}
$$

Similar as the proof of some results by Tarantello in [23], we have the following two lemmas.

Lemma 2.7. For each $u \in H_{0}^{1}(\Omega) \backslash\{0\}$,

(i) there is a unique $t^{-}=t^{-}(u)>t_{\max }>0$ such that $t^{-} u \in \mathbf{M}_{h}^{b-}(\Omega)$ and $J_{h}^{b}\left(t^{-} u\right)=$ $\max _{t \geq t_{\text {max }}} J_{h}^{b}(t u)$;
(ii) $t^{-}(u)$ is a continuous function for nonzero u;
(iii) $\mathbf{M}_{h}^{b-}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \mid\left(1 /\|u\|_{H^{1}}\right) t^{-}\left(u /\|u\|_{H^{1}}\right)=1\right\}$;
(iv) if $\int_{\Omega} h u>0$, then there is a unique $0<t^{+}=t^{+}(u)<t_{\text {max }}$ such that $t^{+} u \in \mathbf{M}_{h}^{b+}(\Omega)$ and $J_{h}^{b}\left(t^{+} u\right)=\min _{0 \leq t \leq t^{-}} J_{h}^{b}(t u)$.

Lemma 2.8. (i) For each $u \in \mathbf{M}_{h}^{b+}(\Omega), \int_{\Omega} h(x) u>0$ and $J_{h}^{b}(u)<0$. In particular, $\alpha_{h}(\Omega) \leq$ $\alpha_{h}^{+}(\Omega)<0$;
(ii) J_{h}^{b} is coercive and bounded below on $\mathbf{M}_{h}^{b}(\Omega)$.

Proof. (i) For each $u \in \mathbf{M}_{h}^{b+}(\Omega),\|u\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)|u|^{p}>0$ and

$$
\begin{equation*}
\|u\|_{H^{1}}^{2}=\int_{\Omega} b(x)|u|^{p}+\int_{\Omega} h(x) u . \tag{2.19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{\Omega} h(x) u=\|u\|_{H^{1}}^{2}-\int_{\Omega} b(x)|u|^{p}>(p-2) \int_{\Omega} b(x)|u|^{p}>0 \tag{2.20}
\end{equation*}
$$

and hence

$$
\begin{align*}
J_{h}^{b}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega} b(x)|u|^{p}-\frac{1}{2} \int_{\Omega} h(x) u \\
& <\frac{p-2}{2 p} \int_{\Omega} b(x)|u|^{p}-\frac{p-2}{2} \int_{\Omega} b(x)|u|^{p} \tag{2.21}\\
& =-\frac{(p-1)(p-2)}{2 p} \int_{\Omega} b(x)|u|^{p}<0
\end{align*}
$$

(ii) Is similar to the proof of Theorem 1 by Tarantello in [23].

3. Homogeneous problems

First, we present several (PS) conditions in $H_{0}^{1}(\Omega)$ for J_{0}^{b} which are used to prove our main results. As a consequence of Lemma 2.8(ii), for each $(\mathrm{PS})_{\beta}$-sequence $\left\{u_{n}\right\}$ in $H_{0}^{1}(\Omega)$ for J_{0}^{b}, there exist a subsequence $\left\{u_{n}\right\}$ and u_{0} in $H_{0}^{1}(\Omega)$ such that $u_{n} \rightharpoonup u_{0}$ weakly in $H_{0}^{1}(\Omega)$. Then u_{0} is a solution of (1.5) in Ω. Moreover, we have the following lemma.

Let Ω be any unbounded domain and $\xi \in C^{\infty}([0, \infty))$ such that $0 \leq \xi \leq 1$ and

$$
\xi(t)= \begin{cases}0 & \text { for } t \in[0,1] \tag{3.1}\\ 1 & \text { for } t \in[2, \infty)\end{cases}
$$

Let

$$
\begin{equation*}
\xi_{n}(z)=\xi\left(\frac{2|z|}{n}\right) \tag{3.2}
\end{equation*}
$$

Then we have the following result.
Lemma 3.1. Let $\left\{u_{n}\right\}$ be a $(P S)_{\beta \text {-sequence in }} H_{0}^{1}(\Omega)$ for J_{0}^{b} satisfying $u_{n}-0$ weakly in $H_{0}^{1}(\Omega)$ and let $v_{n}=\xi_{n} u_{n}$. Then there exists a subsequence $\left\{u_{n}\right\}$ such that
(i) $\left\|u_{n}-v_{n}\right\|_{H^{1}}=o(1)$ as $n \rightarrow \infty$;
(ii) $\int_{\Omega} b(x)\left|u_{n}\right|^{p}=\int_{\Omega} b(x)\left|v_{n}\right|^{p}+o(1)=\int_{\Omega} b^{\infty}\left|v_{n}\right|^{p}+o(1)$;
(iii) $\int_{\Omega}\left|\nabla v_{n}\right|^{2}+v_{n}^{2}=\int_{\Omega} b^{\infty}\left|v_{n}\right|^{p}+o(1)$;
(iv) $\left\{v_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}.

Proof. By the fact that

$$
\begin{equation*}
\left\|u_{n}-v_{n}\right\|_{H^{1}}^{2}=\left\|u_{n}\right\|_{H^{1}}^{2}+\left\|v_{n}\right\|_{H^{1}}^{2}-2\left\langle u_{n}, v_{n}\right\rangle_{H^{1}} \tag{3.3}
\end{equation*}
$$

thus it suffices to show that $\left\langle u_{n}, v_{n}\right\rangle_{H^{1}}=\left\|u_{n}\right\|_{H^{1}}^{2}+o(1)=\left\|v_{n}\right\|_{H^{1}}^{2}+o(1)$. Since

$$
\begin{equation*}
\left\langle u_{n}, v_{n}\right\rangle_{H^{1}}=\int_{\Omega} \nabla u_{n} \nabla v_{n}+u_{n} v_{n}=\int_{\Omega} \xi_{n}\left[\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right]+\int_{\Omega} u_{n} \nabla u_{n} \nabla \xi_{n}, \tag{3.4}
\end{equation*}
$$

$\left|\nabla \xi_{n}\right| \leq c / n$ and $\left\{u_{n}\right\}$ is a $(\mathrm{PS})_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b}, it follows that

$$
\begin{equation*}
\int_{\Omega} \xi_{n}^{q} u_{n} \nabla u_{n} \nabla \xi_{n}=o(1) \quad \text { for } q>0 \tag{3.5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left\langle u_{n}, v_{n}\right\rangle_{H^{1}}=\int_{\Omega} \xi_{n}\left[\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right]+o(1) . \tag{3.6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|v_{n}\right\|_{H^{1}}^{2}=\int_{\Omega} \xi_{n}^{2}\left[\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right]+o(1) . \tag{3.7}
\end{equation*}
$$

Given $r \geq 1$, since $\left\{\xi_{n}^{r} u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$, we have

$$
\begin{align*}
o(1) & =\left\langle\left(J_{0}^{b}\right)^{\prime}\left(u_{n}\right), \xi_{n}^{r} u_{n}\right\rangle \\
& =\int_{\Omega}\left(\xi_{n}^{r}\left|\nabla u_{n}\right|^{2}+r \xi_{n}^{r-1} u_{n} \nabla \xi_{n} \nabla u_{n}+\xi_{n}^{r} u_{n}^{2}\right)-\int_{\Omega} b(x) \xi_{n}^{r}\left|u_{n}\right|^{p} . \tag{3.8}
\end{align*}
$$

From (3.5), we can conclude that

$$
\begin{equation*}
\int_{\Omega} \xi_{n}^{r}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right)=\int_{\Omega} b(x) \xi_{n}^{r}\left|u_{n}\right|^{p}+o(1) \tag{3.9}
\end{equation*}
$$

Since $u_{n} \rightarrow 0$ weakly in $H_{0}^{1}(\Omega)$ and $b(x) \rightarrow b^{\infty}$ as $|x| \rightarrow \infty$, there exists a subsequence $\left\{u_{n}\right\}$ such that $u_{n} \rightarrow 0$ strongly in $L_{\mathrm{loc}}^{p}(\Omega)$, or there exists a subsequence $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
\int_{Q(n)} b(x)\left|u_{n}\right|^{p}=o(1), \tag{3.10}
\end{equation*}
$$

where $Q(n)=\Omega \cap B^{N}(0 ; n)$. Clearly,

$$
\begin{equation*}
\int_{\Omega} b(x)\left|u_{n}\right|^{p}=\int_{\Omega} b(x) \xi_{n}^{r}\left|u_{n}\right|^{p}+o(1)=\int_{\Omega} b^{\infty} \xi_{n}^{r}\left|u_{n}\right|^{p}+o(1) . \tag{3.11}
\end{equation*}
$$

By (3.6), (3.7), (3.9), and (3.11),

$$
\begin{align*}
\left\langle u_{n}, v_{n}\right\rangle_{H^{1}} & =\left\|u_{n}\right\|_{H^{1}}^{2}+o(1)=\left\|v_{n}\right\|_{H^{1}}^{2}+o(1), \\
\int_{\Omega} b(x)\left|u_{n}\right|^{p} & =\int_{\Omega} b(x)\left|v_{n}\right|^{p}+o(1)=\int_{\Omega} b^{\infty}\left|v_{n}\right|^{p}+o(1) . \tag{3.12}
\end{align*}
$$

Therefore, $\left\|u_{n}-v_{n}\right\|_{H^{1}}=o(1)$ as $n \rightarrow \infty$. The results of (iii) and (iv), from (i), (ii) and Lemmas 2.4, 2.5.

We need the following compactness results.
Proposition 3.2. Suppose that the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$. If $\left\{u_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b} with

$$
\begin{equation*}
\alpha_{0}^{b}(\Omega) \leq \beta<\min \left\{\alpha_{0}^{\infty}(\Omega)+\alpha_{0}^{b}(\Omega), \alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}, \tag{3.13}
\end{equation*}
$$

then there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0} \neq 0$ such that $u_{n} \rightarrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$ and $J_{0}^{b}\left(u_{0}\right)=\beta$.

Proof. Let $\left\{u_{n}\right\}$ be a $(\mathrm{PS})_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b} with

$$
\begin{equation*}
\alpha_{0}^{b}(\Omega) \leq \beta<\min \left\{\alpha_{0}^{\infty}(\Omega)+\alpha_{0}^{b}(\Omega), \alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \tag{3.14}
\end{equation*}
$$

Since $\left\{u_{n}\right\}$ is bounded, there exist a subsequence $\left\{u_{n}\right\}$ and u_{0} in $H_{0}^{1}(\Omega)$ such that $u_{n} \rightharpoonup u_{0}$ weakly in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u_{0}$ a.e in Ω. Moreover, u_{0} is a solution of (1.5) in Ω. If $u_{0} \equiv 0$, by Lemma 3.1 there exists a subsequence $\left\{u_{n}\right\}$ such that $\left\{\xi_{n} u_{n}\right\}$ is a (PS $)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}, where ξ_{n} is as in (3.2). Let $v_{n}=\xi_{n} u_{n}$, and we obtain

$$
\begin{equation*}
J_{0}^{\infty}\left(v_{n}\right)=\beta+o(1), \quad\left(J_{0}^{\infty}\right)^{\prime}\left(v_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega) \tag{3.15}
\end{equation*}
$$

Since $\Omega_{i} \cap \Omega_{j}$ is bounded for $i \neq j$ and Ω_{l} is also bounded for $m+1 \leq l \leq k$, there exists $n_{0} \in \mathbb{N}$ such that $v_{n}=0$ in $\overline{\Omega\left(n_{0}\right)}$ for $n>2 n_{0}$ and $\Omega_{l} \subset \Omega\left(n_{0}\right)$ for all $l \in\{m+1, m+$ $2, \ldots, k\}$, where $\Omega(n)=\Omega \cap B^{N}(0 ; n)$. Moreover, $v_{n}=v_{n}^{1}+v_{n}^{2}+\cdots+v_{n}^{m}$ and for $i=$ $1,2, \ldots, m$,

$$
v_{n}^{i}(z)= \begin{cases}v_{n}(z) & \text { for } z \in \Omega_{i} \tag{3.16}\\ 0, & \text { for } z \notin \Omega_{i}\end{cases}
$$

Then $v_{n}^{i} \in H_{0}^{1}\left(\Omega_{i}\right)$ and

$$
\begin{equation*}
\int_{\Omega_{i}}\left(\left|\nabla v_{n}^{i}\right|^{2}+\left(v_{n}^{i}\right)^{2}\right)=\int_{\Omega_{i}} b^{\infty}\left|v_{n}^{i}\right|^{p}+o(1) . \tag{3.17}
\end{equation*}
$$

By (3.15), we obtain

$$
\begin{gather*}
\left(J_{0}^{\infty}\right)^{\prime}\left(v_{n}^{i}\right)=o(1) \quad \text { strongly in } H^{-1}\left(\Omega_{i}\right) \text { for } i=1,2, \ldots, m, \\
\beta=J_{0}^{\infty}\left(v_{n}\right)+o(1)=\sum_{i=1}^{m} J_{0}^{\infty}\left(v_{n}^{i}\right)+o(1) . \tag{3.18}
\end{gather*}
$$

Assume that

$$
\begin{equation*}
J_{0}^{\infty}\left(v_{n}^{i}\right)=c_{i}+o(1) \quad \text { for } i=1,2, \ldots, m, \tag{3.19}
\end{equation*}
$$

then $c_{1}+c_{2}+\cdots+c_{m}=\beta$, since all of c_{i} are (PS)-values in $H_{0}^{1}\left(\Omega_{i}\right)$ for J_{0}^{∞} and nonnegative. Thus, there exists $i_{0} \in\{1,2, \ldots, m\}$ such that $c_{i_{0}}$ are positive (PS)-values in $H_{0}^{1}\left(\Omega_{i}\right)$ for J_{0}^{∞} and

$$
\begin{equation*}
\alpha_{0}^{\infty}\left(\Omega_{i_{0}}\right) \leq c_{i_{0}} \leq \beta, \tag{3.20}
\end{equation*}
$$

which contradicts (3.14). Consequently, $u_{0} \not \equiv 0$ and $\beta \geq J_{0}^{b}\left(u_{0}\right) \geq \alpha_{0}^{b}(\Omega)$. Let $p_{n}=u_{n}-$ u_{0}. By Lemma 2.4, $\left\{p_{n}\right\}$ is a $(\mathrm{PS})_{\left(\beta-J_{0}^{b}\left(u_{0}\right)\right)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}. Since $\beta<\alpha_{0}^{\infty}(\Omega)+$ $\alpha_{0}^{b}(\Omega), J_{0}^{b}\left(u_{0}\right) \geq \alpha_{0}^{b}(\Omega)$ and $\alpha_{0}^{b}(\Omega)$ is a smallest positive (PS)-value in $H_{0}^{1}(\Omega)$ for J_{0}^{b}. Thus, $\beta-J_{0}^{b}\left(u_{0}\right)=0$. This implies that $u_{n} \rightarrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$ and $J_{0}^{b}\left(u_{0}\right)=\beta$.

Proposition 3.3. Suppose that the unbounded domain Ω satisfies the condition ($\Omega 3^{\prime}$). If $\left\{u_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b} with

$$
\begin{equation*}
\alpha_{0}^{b}(\Omega) \leq \beta<\min \left\{\alpha_{0}^{\infty}(\Omega)+\alpha_{0}^{b}(\Omega), \lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)\right\}, \tag{3.21}
\end{equation*}
$$

then there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0} \neq 0$ such that $u_{n} \rightarrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$ and $J_{0}^{b}\left(u_{0}\right)=\beta$.
Proof. Let $\left\{u_{n}\right\}$ be a $(\mathrm{PS})_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{b} with

$$
\begin{equation*}
\alpha_{0}^{b}(\Omega) \leq \beta<\min \left\{\alpha_{0}^{\infty}(\Omega)+\alpha_{0}^{b}(\Omega), \lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)\right\} . \tag{3.22}
\end{equation*}
$$

Since $\left\{u_{n}\right\}$ is bounded, there exist a subsequence $\left\{u_{n}\right\}$ and u_{0} in $H_{0}^{1}(\Omega)$ such that $u_{n} \rightharpoonup u_{0}$ weakly in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u_{0}$ a.e in Ω. Moreover, u_{0} is a solution of (1.5) in Ω. If $u_{0} \equiv 0$, by Lemma 3.1 there exists a subsequence $\left\{u_{n}\right\}$ such that $\left\{\xi_{n} u_{n}\right\}$ is a (PS $)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}, where ξ_{n} is as in (3.2). Let $v_{n}=\xi_{n} u_{n}$, we obtain $v_{n} \in H_{0}^{1}\left(\Omega^{c}(n)\right)$ for each n,

$$
\begin{equation*}
J_{0}^{\infty}\left(v_{n}\right)=\beta+o(1), \quad\left(J_{0}^{\infty}\right)^{\prime}\left(v_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega) \tag{3.23}
\end{equation*}
$$

Moreover, there is an $s_{n}>0$ such that $s_{n} v_{n} \in \mathbf{M}^{\infty}\left(\Omega^{c}(n)\right)$ and $s_{n}=1+o(1)$. Then

$$
\begin{equation*}
J_{0}^{\infty}\left(s_{n} v_{n}\right) \geq \alpha_{0}^{\infty}\left(\Omega^{c}(n)\right) . \tag{3.24}
\end{equation*}
$$

By (3.23), (3.24), we obtain

$$
\begin{equation*}
\beta \geq \lim _{n \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(n)\right), \tag{3.25}
\end{equation*}
$$

which contradicts (3.22). Consequently, $u_{0} \not \equiv 0$ and $\beta \geq J_{0}^{b}\left(u_{0}\right) \geq \alpha_{0}^{b}(\Omega)$. Let $p_{n}=u_{n}-$ u_{0}. By Lemma 2.4, $\left\{p_{n}\right\}$ is a $(\mathrm{PS})_{\left(\beta-J_{0}^{b}\left(u_{0}\right)\right)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}. Since $\beta<\alpha_{0}^{\infty}(\Omega)+$ $\alpha_{0}^{b}(\Omega), J_{0}^{b}\left(u_{0}\right) \geq \alpha_{0}^{b}(\Omega)$ and $\alpha_{0}^{b}(\Omega)$ is smallest positive (PS)-value in $H_{0}^{1}(\Omega)$ for J_{0}^{b}. Thus, $\beta-J_{0}^{b}\left(u_{0}\right)=0$. This implies that $u_{n} \rightarrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$ and $J_{0}^{b}\left(u_{0}\right)=\beta$.

Now, we begin to show the proof of Theorem 1.1: since the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$, we have (1.11), and there exists a ground-state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$. Let $s_{0}>0$ with $s_{0} u_{0} \in \mathbf{M}_{0}^{b}(\Omega)$. Then

$$
\begin{equation*}
s_{0}^{2} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right)=s_{0}^{p} \int_{\Omega} b(x)\left|u_{0}\right|^{p} . \tag{3.26}
\end{equation*}
$$

Since $b(x) \geq b^{\infty}\left(\alpha_{0}^{\infty}(\Omega) / \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}\right)^{(p-2) / 2}$ and $b(x) \rightarrow b^{\infty}$ as $|x|$ $\rightarrow \infty$, we apply (3.26) to obtain

$$
\begin{equation*}
s_{0}<\left(\frac{\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}}{\alpha_{0}^{\infty}(\Omega)}\right)^{1 / 2} \tag{3.27}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\alpha_{0}^{b}(\Omega) & \leq J_{0}^{b}\left(s_{0} u_{0}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) s_{0}^{2} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) \\
& <\frac{\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}}{\alpha_{0}^{\infty}(\Omega)}\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) \tag{3.28}\\
& =\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} .
\end{align*}
$$

By Proposition 3.2, (1.5) has a ground-state solution.
Now, we begin to show the proof of Theorem 1.3: since the domain Ω satisfies the condition ($\Omega 3^{\prime}$), we have (1.11) in Ω, and there exists a ground-state solution u_{0} such that $J_{0}^{\infty}\left(u_{0}\right)=\alpha_{0}^{\infty}(\Omega)$. Let $s_{0}>0$ with $s_{0} u_{0} \in \mathbf{M}_{0}^{b}(\Omega)$. Then

$$
\begin{equation*}
s_{0}^{2} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right)=s_{0}^{p} \int_{\Omega} b(x)\left|u_{0}\right|^{p} . \tag{3.29}
\end{equation*}
$$

Since $b(x) \geq b^{\infty}\left(\alpha_{0}^{\infty}(\Omega) / \lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)\right)^{(p-2) / 2}$ and $b(x) \rightarrow b^{\infty}$ as $|x| \rightarrow \infty$, we apply (3.29) to obtain

$$
\begin{equation*}
s_{0}<\left(\frac{\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)}{\alpha_{0}^{\infty}(\Omega)}\right)^{1 / 2} . \tag{3.30}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\alpha_{0}^{b}(\Omega) & \leq J_{0}^{b}\left(s_{0} u_{0}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) s_{0}^{2} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) \\
& <\frac{\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right)}{\alpha_{0}^{\infty}(\Omega)}\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) \tag{3.31}\\
& =\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right) .
\end{align*}
$$

By Proposition 3.3, (1.5) has a ground-state solution.

4. Nonhomogeneous problems

4.1. Existence of a local minimum. First, we establish the existence of a local minimum. Similar as the proof of Lemma 1.4 by Adachi and Tanaka in [21], we have the following lemma.

Lemma 4.1. If $\|h\|_{H^{-1}}<(p-2)(1 /(p-1))^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$, then
(i) $\mathbf{M}_{h}^{b+}(\Omega) \subset B\left(0 ; r_{0}\right)$;
(ii) $J_{h}^{b}(u)$ is strictly convex in $B\left(0 ; r_{0}\right)$,
where $B\left(0 ; r_{0}\right)=\left\{u \in H^{1}(\Omega) \mid\|u\|_{H^{1}}<r_{0}\right\}$ and $r_{0}=\left[(p-1) b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)}$.
Furthermore, we have the following theorem.
Theorem 4.2. If r_{0} is as in Lemma 4.1, then the functional J_{h}^{b} has a unique critical point $u_{\text {min }}$ in $B\left(0 ; r_{0}\right)$ and it satisfies
(i) $u_{\text {min }} \in \mathbf{M}_{h}^{b+}(\Omega)$ and $J_{h}^{b}\left(u_{\text {min }}\right)=\alpha_{h}^{b+}(\Omega)=\alpha_{h}^{b}(\Omega)$;
(ii) $u_{\text {min }}$ is a positive solution of (1.1).

Proof. Similar as the proof of Theorem 2.1 by Cao and Zhu in [18], there is a $u_{\min } \in$ $\mathbf{M}_{h}^{b+}(\Omega)$ which is a critical point for J_{h}^{b} such that $J_{h}^{b}\left(u_{\min }\right)=\alpha_{h}^{b+}=\alpha_{h}^{b}$, since $\mathbf{M}_{h}^{b+}(\Omega) \subset$ $B\left(0 ; r_{0}\right)$ and $J_{h}^{b}(u)$ is strictly convex in $B\left(0 ; r_{0}\right)$, so that $u_{\text {min }}$ is a unique critical point of J_{h}^{b} in $B\left(0 ; r_{0}\right)$. Since $u_{\text {min }}$ is a unique critical point of J_{h}^{b} in $B\left(0 ; r_{0}\right)$, we have that $u_{\text {min }}$ is a nonnegative solution of (1.1). By the maximum principle, $u_{\min }$ is positive.
4.2. Multiple positive solutions. Throughout this section, we let $u_{\text {min }}$ be the local minimum for J_{h}^{b} in $H_{0}^{1}(\Omega)$ in Theorem 4.2 and

$$
\begin{equation*}
\|h\|_{H^{-1}}<(p-2)\left(\frac{1}{p-1}\right)^{(p-1) /(p-2)}\left[b_{\text {sup }} S^{p}(\Omega)\right]^{1 /(2-p)} \tag{4.1}
\end{equation*}
$$

Then we have the following restricted (PS) conditions.
Proposition 4.3. Suppose that the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$. If $\left\{u_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b} with

$$
\begin{equation*}
\beta<\alpha_{h}^{b}(\Omega)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}, \tag{4.2}
\end{equation*}
$$

then there exist a subsequence $\left\{u_{n}\right\}$ and u in $H_{0}^{1}(\Omega)$ such that $u_{n} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$ and $J_{h}^{b}(u)=\beta$.
Proof. Let $\left\{u_{n}\right\}$ be a $(\mathrm{PS})_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b}. By Lemma 2.8(ii), $\left\{u_{n}\right\}$ is bounded. Then there exist a subsequence $\left\{u_{n}\right\}$ and a nonzero solution u of (1.1) such that $u_{n}-u$ weakly in $H_{0}^{1}(\Omega)$. Suppose that $u_{n} \nrightarrow u$ strongly in $H_{0}^{1}(\Omega)$. Let $w_{n}=u_{n}-u$ for $n=1,2, \ldots$. Then, by Lemma 2.4, $\left\{w_{n}\right\}$ is a $(\mathrm{PS})_{\beta-J_{h}^{b}(u)}$-sequence in $H_{0}^{1}(\Omega)$ for J_{0}^{∞}, since $w_{n}-0$ and $w_{n} \nrightarrow 0$ strongly in $H_{0}^{1}(\Omega)$. Similar as the proof of Proposition 3.2,

$$
\begin{equation*}
\beta-J_{h}^{b}(u) \geq \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \tag{4.3}
\end{equation*}
$$

which is a contradiction. Thus $u_{n} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$.
Proposition 4.4. Suppose that the domain Ω satisfies the condition ($\Omega 3^{\prime}$). If $\left\{u_{n}\right\}$ is a $(P S)_{\beta}$-sequence in $H_{0}^{1}(\Omega)$ for J_{h}^{b} with

$$
\begin{equation*}
\beta<\alpha_{h}(\Omega)+\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right), \tag{4.4}
\end{equation*}
$$

then there exist a subsequence $\left\{u_{n}\right\}$ and u in $H_{0}^{1}(\Omega)$ such that $u_{n} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$ and $J_{h}^{b}(u)=\beta$.

The proof is similar to the proof of Proposition 4.3.
Lemma 4.5. Suppose that the domain Ω satisfies the conditions $\left(\Omega 1^{\prime}\right)-\left(\Omega 2^{\prime}\right)$ and the coefficient $b(x)$ satisfies the condition (b1). Let \bar{u} be a positive solution of (1.11) in Ω such that $J_{0}^{\infty}(\bar{u})=\alpha_{0}^{\infty}(\Omega)$ and let $u_{\min }$ be a local minimum in Theorem 4.2. Then

$$
\begin{equation*}
\sup _{t \geq 0} J_{h}^{b}\left(u_{\min }+t \bar{u}\right)<J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} . \tag{4.5}
\end{equation*}
$$

Proof. Since $u_{\min }$ is a positive solution of (1.1). Let $f(s)=s^{p-1}$ for $s \geq 0$ and $F_{b}(u)=$ $\int_{\Omega} b(x) \int_{0}^{u} f(s) d s d x=(1 / p) \int_{\Omega} b(x) u^{p}$, then

$$
\begin{align*}
J_{h}^{b}\left(u_{\min }+t \bar{u}\right)= & J_{h}^{b}\left(u_{\min }\right)+J_{0}^{b}(t \bar{u})+t\left(\int_{\Omega} b(x) u_{0}^{p-1} \bar{u}+h(x) \bar{u}\right)-\int_{\Omega} h(x) t \bar{u} \\
& +\frac{1}{p}\left[\int_{\Omega} b(x) u_{0}^{p}+\int_{\Omega} b(x)|t \bar{u}|^{p}-\int_{\Omega} b(x)\left|u_{0}+t \bar{u}\right|^{p}\right] \tag{4.6}\\
= & J_{h}^{b}\left(u_{\min }\right)+J_{0}^{b}(t \bar{u})-\int_{\Omega} b(x)\left\{\int_{0}^{t \bar{u}}\left[f\left(u_{0}+s\right)-f(s)-f\left(u_{0}\right)\right] d s\right\}
\end{align*}
$$

For $v>0$ and $w>0$, we have

$$
\begin{align*}
f(v+w) & =(v+w)^{p-1} \\
& =(v+w)^{p-2} v+(v+w)^{p-2} w \tag{4.7}\\
& >v^{p-1}+w^{p-1}=f(v)+f(w) .
\end{align*}
$$

Thus, $J_{h}^{b}\left(u_{\min }+t \bar{u}\right) \leq J_{h}^{b}\left(u_{\min }\right)+J_{0}^{b}(t \bar{u})$. Since $J_{0}^{b}(t \bar{u}) \rightarrow-\infty$ as $t \rightarrow \infty$, there is a $t_{0}>0$ such that $J_{h}^{b}\left(u_{\min }+t \bar{u}\right)<J_{h}^{b}\left(u_{0}\right)$ for $t \geq t_{0}$. Hence,

$$
\begin{equation*}
\sup _{t \geq 0} J_{h}^{b}\left(u_{\min }+t \bar{u}\right)=\sup _{0 \leq t \leq t_{0}} J_{h}^{b}\left(u_{\min }+t \bar{u}\right) . \tag{4.8}
\end{equation*}
$$

Let $g_{1}(t)=J_{h}^{b}\left(u_{\min }+t \bar{u}\right)$ for $t \geq 0$. By the continuity of $g_{1}(t)$, given

$$
\begin{equation*}
\varepsilon=\frac{1}{2} \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}>0, \tag{4.9}
\end{equation*}
$$

there exists $t_{1} \in\left(0, t_{0}\right)$ such that

$$
\begin{equation*}
g_{1}(t)<g_{1}(0)+\frac{1}{2} \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \quad \text { for } t \in\left[0, t_{1}\right) \tag{4.10}
\end{equation*}
$$

Then

$$
\begin{align*}
\sup _{0 \leq t \leq t_{1}} J_{h}^{b}\left(u_{\min }+t \bar{u}\right) & \leq J_{h}^{b}\left(u_{\min }\right)+\frac{1}{2} \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \tag{4.11}\\
& <J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}
\end{align*}
$$

Now, we only need to show that

$$
\begin{equation*}
\sup _{t_{1} \leq t \leq t_{0}} J_{h}^{b}\left(u_{\min }+t \bar{u}\right)<J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} . \tag{4.12}
\end{equation*}
$$

Let $g_{2}(t)=J_{0}^{b}(t \bar{u})$ for $t \geq 0$. Then

$$
\begin{align*}
& g_{2}^{\prime}(t)=t \int_{\Omega}\left(|\nabla \bar{u}|^{2}+\bar{u}^{2}\right)-t^{p-1} \int_{\Omega} b(x) \bar{u}^{p} \\
& g_{2}^{\prime \prime}(t)=\int_{\Omega}\left(|\nabla \bar{u}|^{2}+\bar{u}^{2}\right)-(p-1) t^{p-2} \int_{\Omega} b(x) \bar{u}^{p} \tag{4.13}
\end{align*}
$$

There is a unique $\bar{t}=\left[\int_{\Omega}\left(|\nabla \bar{u}|^{2}+\bar{u}^{2}\right) / \int_{\Omega} b(x) \bar{u}^{p}\right]^{1 /(p-2)}$ such that $g_{2}^{\prime}(\bar{t})=0$ and $g_{2}^{\prime \prime}(\bar{t})<0$. Thus, $g_{2}(t)$ has an absolutely maximum at \bar{t}. Since

$$
\begin{equation*}
b(x) \geq b^{\infty}\left(\frac{\alpha_{0}^{\infty}(\Omega)}{\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}}\right)^{(p-2) / 2} \tag{4.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\bar{t} \leq\left(\frac{\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}}{\alpha_{0}^{\infty}(\Omega)}\right)^{1 / 2} \tag{4.15}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\sup _{t \geq 0} J_{0}^{b}(t \bar{u}) & =J_{0}^{b}(\bar{t} \bar{u})=\left(\frac{1}{2}-\frac{1}{p}\right) \bar{t}^{2} \int_{\Omega}\left(|\nabla \bar{u}|^{2}+\bar{u}^{2}\right) \tag{4.16}\\
& \leq \min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} .
\end{align*}
$$

By (4.6), (4.7), and (4.16), we obtain

$$
\begin{align*}
\sup _{t_{1} \leq t \leq t_{0}} & J_{h}^{b}\left(u_{\min }+t \bar{u}\right) \\
\leq & J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} \\
& \quad-\inf _{t_{1} \leq t \leq t_{0}} \int_{\Omega} b(x)\left\{\int_{0}^{t \bar{u}}\left[f\left(u_{\min }+s\right)-f(s)-f\left(u_{\min }\right)\right] d s\right\} \tag{4.17}\\
\quad & <J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} .
\end{align*}
$$

Thus, $\sup _{t \geq 0} J_{h}^{b}\left(u_{\min }+t \bar{u}\right)<J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\}$.
Lemma 4.6. Suppose that the domain Ω satisfies the condition ($\Omega 3^{\prime}$) and the coefficient $b(x)$ satisfies the condition (b2). Let \bar{u} be a positive solution of (1.11) in Ω such that $J_{0}^{\infty}(\bar{u})=$ $\alpha_{0}^{\infty}(\Omega)$ and let $u_{\min }$ be the local minimum in Theorem 4.2. Then

$$
\begin{equation*}
\sup _{t \geq 0} J_{h}^{b}\left(u_{\min }+t \bar{u}\right)<J_{h}^{b}\left(u_{\min }\right)+\lim _{r \rightarrow \infty} \alpha_{0}^{\infty}\left(\Omega^{c}(r)\right) . \tag{4.18}
\end{equation*}
$$

The proof is similar to the proof of Lemma 4.5.

Now, we begin to show the proof of Theorem 1.6: for $u \in H_{0}^{1}(\Omega)$ with $\|u\|_{H^{1}}=1$, by Lemma 2.7 there is a unique $t^{-}(u)>0$ such that $t^{-}(u), u \in \mathbf{M}_{h}^{b-}(\Omega)$ and

$$
\begin{equation*}
J_{h}^{b}\left(t^{-}(u) u\right)=\max _{t \geq t_{\max }} J_{h}^{b}(t u) \tag{4.19}
\end{equation*}
$$

By Lemma 2.7(ii) and (iii), we have that $t^{-}(u)$ is a continuous function for nonzero u and

$$
\begin{equation*}
\mathbf{M}_{h}^{b-}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)=1\right.\right\} . \tag{4.20}
\end{equation*}
$$

Let

$$
\begin{align*}
& A_{1}=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)>1\right.\right\} \cup\{0\}, \tag{4.21}\\
& A_{2}=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\} \left\lvert\, \frac{1}{\|u\|_{H^{1}}} t^{-}\left(\frac{u}{\|u\|_{H^{1}}}\right)<1\right.\right\} .
\end{align*}
$$

Then $\mathbf{M}_{h}^{b-}(\Omega)$ disconnects $H_{0}^{1}(\Omega)$ in two connected components A_{1} and A_{2} and $H_{0}^{1}(\Omega) \backslash$ $\mathbf{M}_{h}^{b-}(\Omega)=A_{1} \cup A_{2}$. For each $u \in \mathbf{M}_{h}^{b+}(\Omega)$, we have

$$
\begin{equation*}
1<t_{\max }(u)<t^{-}(u) . \tag{4.22}
\end{equation*}
$$

Since $t^{-}(u)=\left(1 /\|u\|_{H^{1}}\right) t^{-}\left(u /\|u\|_{H^{1}}\right)$, then $\mathbf{M}_{h}^{b+}(\Omega) \subset A_{1}$. In particular, $u_{\text {min }} \in A_{1}$. We claim that there exists $t_{0}>0$ such that $u_{\min }+t_{0} \bar{u} \in A_{2}$. First, we find a constant $c>0$ such that $0<t^{-}\left(\left(u_{\min }+t \bar{u}\right) /\left\|u_{\text {min }}+t \bar{u}\right\|_{H^{1}}\right)<c$ for each $t \geq 0$. Otherwise, there exists a sequence $\left\{t_{n}\right\}$ such that $t_{n} \rightarrow \infty$ and $t^{-}\left(\left(u_{\min }+t_{n} \bar{u}\right) /\left\|u_{\min }+t_{n} \bar{u}\right\|_{H^{1}}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Let $v_{n}=\left(u_{\min }+t_{n} \bar{u}\right) /\left\|u_{\min }+t_{n} \bar{u}\right\|_{H^{1}}$. Since $t^{-}\left(v_{n}\right), v_{n} \in \mathbf{M}_{h}^{b-}(\Omega) \subset \mathbf{M}_{h}^{b}(\Omega)$, and by the Lebesgue dominated convergence theorem,

$$
\begin{align*}
\int_{\Omega} b(x) v_{n}^{p} & =\frac{1}{\left\|u_{\min }+t_{n} \bar{u}\right\|_{H^{1}}^{p}} \int_{\Omega} b(x)\left(u_{\min }+t_{n} \bar{u}\right)^{p} \\
& =\frac{1}{\left\|u_{\min } / t_{n}+\bar{u}\right\|_{H^{1}}^{p}} \int_{\Omega} b(x)\left(\frac{u_{\min }}{t_{n}}+\bar{u}\right)^{p} \longrightarrow \frac{\int_{\Omega} b(x) \bar{u}^{p}}{\|\bar{u}\|_{H^{1}}^{p}} \quad \text { as } n \longrightarrow \infty . \tag{4.23}
\end{align*}
$$

We have

$$
\begin{align*}
J_{h}^{b}\left(t^{-}\left(v_{n}\right) v_{n}\right)= & \frac{1}{2}\left[t^{-}\left(v_{n}\right)\right]^{2}-\frac{1}{p}\left[t^{-}\left(v_{n}\right)\right]^{p} \int_{\Omega} b(x) v_{n}^{p} \tag{4.24}\\
& -t^{-}\left(v_{n}\right) \int_{\Omega} h v_{n} \longrightarrow-\infty \quad \text { as } n \longrightarrow \infty
\end{align*}
$$

But J_{h}^{b} is bounded below on $\mathbf{M}_{h}^{b}(\Omega)$, a contradiction. Let

$$
\begin{equation*}
t_{0}=\frac{\left|c^{2}-\left\|u_{\min }\right\|_{H^{1}}^{2}\right|^{1 / 2}}{\|\bar{u}\|_{H^{1}}}+1 \tag{4.25}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\|u_{\min }+t_{0} \bar{u}\right\|_{H^{1}}^{2} & =\left\|u_{\min }\right\|_{H^{1}}^{2}+t_{0}^{2}\|\bar{u}\|_{H^{1}}^{2}+2 t_{0}\left\langle u_{\min }, \bar{u}\right\rangle \\
& >\left\|u_{\min }\right\|_{H^{1}}^{2}+\left|c^{2}-\left\|u_{\min }\right\|_{H^{1}}^{2}\right|+2 \int_{\Omega} b^{\infty} \bar{u}^{p-1} u_{\min } \tag{4.26}\\
& >c^{2}>\left[t^{-}\left(\frac{u_{\min }+t_{0} \bar{u}}{\left\|u_{\min }+t_{0} \bar{u}\right\|_{H^{1}}}\right)\right]^{2},
\end{align*}
$$

that is, $u_{\text {min }}+t_{0} \bar{u} \in A_{2}$. Define a path $\gamma(s)=u_{\text {min }}+s t_{0} \bar{u}$ for $s \in[0,1]$, then

$$
\begin{equation*}
\gamma(0)=u_{\min } \in A_{1}, \quad \gamma(1)=u_{\min }+t_{0} \bar{u} \in A_{2}, \tag{4.27}
\end{equation*}
$$

and there exists $s_{0} \in(0,1)$ such that $u_{\min }+s_{0} t_{0} \bar{u} \in \mathbf{M}_{h}^{b-}(\Omega)$. Thus, by Lemma 4.5,

$$
\begin{align*}
\alpha_{h}^{-}(\Omega) & \leq J_{h}^{b}\left(u_{\min }+s_{0} t_{0} \bar{u}\right) \leq \max _{s \in[0,1]} J_{h}^{b}(\gamma(s)) \tag{4.28}\\
& <J_{h}^{b}\left(u_{\min }\right)+\min \left\{\alpha_{0}^{\infty}\left(\Omega_{1}\right), \alpha_{0}^{\infty}\left(\Omega_{2}\right), \ldots, \alpha_{0}^{\infty}\left(\Omega_{m}\right)\right\} .
\end{align*}
$$

By the Ekeland variational principle [25], there exists a sequence $\left\{u_{n}\right\}$ in $\mathbf{M}_{h}^{b-}(\Omega)$ such that

$$
\begin{align*}
J_{h}^{b}\left(u_{n}\right) & =\alpha_{h}^{b-}(\Omega)+o(1) \\
\left(J_{h}^{b}\right)^{\prime}\left(u_{n}\right) & =o(1) \quad \text { strongly in } H^{-1}(\Omega) \tag{4.29}
\end{align*}
$$

Then by Proposition 4.3, there exist a subsequence $\left\{u_{n}\right\}$ and $u^{0} \in \mathbf{M}_{h}^{b}(\Omega)$ such that $u_{n} \rightarrow$ u^{0} strongly in $H_{0}^{1}(\Omega), u^{0}$ is a solution of (1.1), and $J_{h}^{b}\left(u^{0}\right)=\alpha_{h}^{b-}(\Omega)$. By the Sobolev imbedding theorem, we have $u_{n} \rightarrow u^{0}$ strongly in $L^{p}(\Omega)$. Thus,

$$
\begin{equation*}
\left\|u^{0}\right\|_{H^{1}}^{2}-(p-1) \int_{\Omega} b(x)\left|u^{0}\right|^{p} \leq 0 \tag{4.30}
\end{equation*}
$$

Then $u^{0} \in \mathbf{M}_{h}^{b-}(\Omega)$ and

$$
\begin{equation*}
J_{h}^{b}\left(u^{0}\right)=\alpha_{h}^{b-}(\Omega) \tag{4.31}
\end{equation*}
$$

This implies that $u_{\min }$ and u^{0} are distinct. Finally, since $h \geq 0$, by Lemma 2.7 there exists $t^{-}\left(\left|u^{0}\right|\right)>0$ such that

$$
\begin{gather*}
t^{-}\left(\left|u^{0}\right|\right)\left|u^{0}\right| \in \mathbf{M}_{h}^{b-}(\Omega), \quad t^{-}\left(\left|u^{0}\right|\right)>t_{\max }\left(\left|u^{0}\right|\right)=t_{\max }\left(u^{0}\right), \\
\alpha_{h}^{b-}(\Omega) \leq J_{h}^{b}\left(t^{-}\left(\left|u^{0}\right|\right)\left|u^{0}\right|\right) \leq J_{h}^{b}\left(t^{-}\left(\left|u^{0}\right|\right) u^{0}\right) \tag{4.32}\\
\leq \max _{t \geq t_{\max }\left(u^{0}\right)} J_{h}^{b}\left(t u^{0}\right)=J_{h}^{b}\left(u^{0}\right)=\alpha_{h}^{b-}(\Omega) .
\end{gather*}
$$

Thus,

$$
\begin{equation*}
J_{h}^{b}\left(t^{-}\left(\left|u^{0}\right|\right)\left|u^{0}\right|\right)=J_{h}^{b}\left(t^{-}\left(\left|u^{0}\right|\right) u^{0}\right)=\alpha_{h}^{b-}(\Omega) \tag{4.33}
\end{equation*}
$$

We concluded that $\int_{\Omega} h u^{0}=\int_{\Omega} h\left|u^{0}\right|$. Let

$$
\begin{equation*}
u_{+}^{0}=\max \left\{u^{0}, 0\right\}, \quad u_{-}^{0}=\max \left\{-u^{0}, 0\right\} \tag{4.34}
\end{equation*}
$$

then $\int_{\Omega} h u_{-}^{0}=0$. Since $h \geq 0$ and $u_{-}^{0} \geq 0$, we have $u_{-}^{0}=0$. Hence, u^{0} is nonnegative. By the maximum principle, u^{0} is positive. We complete the proof of Theorem 1.6.

Remark 4.7. The proof of Theorem 1.7 similar to Theorem 1.6.

Acknowledgment

This work was partially supported by the National Science Council of Taiwan.

References

[1] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1986.
[2] A. Ambrosetti and P. H. Rabinowitz, "Dual variational methods in critical point theory and applications," Journal of Functional Analysis, vol. 14, no. 4, pp. 349-381, 1973.
[3] M. Willem, Minimax Theorems, vol. 24 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1996.
[4] H.-C. Wang and T.-F. Wu, "Symmetry breaking in a bounded symmetry domain," NoDEA. Nonlinear Differential Equations and Applications, vol. 11, no. 3, pp. 361-377, 2004.
[5] H. Berestycki and P.-L. Lions, "Nonlinear scalar field equations. I. Existence of a ground state," Archive for Rational Mechanics and Analysis, vol. 82, no. 4, pp. 313-345, 1983.
[6] W. C. Lien, S. Y. Tzeng, and H.-C. Wang, "Existence of solutions of semilinear elliptic problems on unbounded domains," Differential and Integral Equations, vol. 6, no. 6, pp. 1281-1298, 1993.
[7] K.-J. Chen and H.-C. Wang, "A necessary and sufficient condition for Palais-Smale conditions," SIAM Journal on Mathematical Analysis, vol. 31, no. 1, pp. 154-165, 1999.
[8] M. A. Del Pino and P. L. Felmer, "Local mountain passes for semilinear elliptic problems in unbounded domains," Calculus of Variations and Partial Differential Equations, vol. 4, no. 2, pp. 121-137, 1996.
[9] M. A. Del Pino and P. L. Felmer, "Least energy solutions for elliptic equations in unbounded domains," Proceedings of the Royal Society of Edinburgh. Section A, vol. 126, no. 1, pp. 195-208, 1996.
[10] M. K. Kwong, "Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbb{R}^{N}," Archive for Rational Mechanics and Analysis, vol. 105, no. 3, pp. 243-266, 1989.
[11] A. Bahri and P.-L. Lions, "On the existence of a positive solution of semilinear elliptic equations in unbounded domains," Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, vol. 14, no. 3, pp. 365-413, 1997.
[12] V. Benci and G. Cerami, "Positive solutions of some nonlinear elliptic problems in exterior domains," Archive for Rational Mechanics and Analysis, vol. 99, no. 4, pp. 283-300, 1987.
[13] M. J. Esteban and P.-L. Lions, "Existence and nonexistence results for semilinear elliptic problems in unbounded domains," Proceedings of the Royal Society of Edinburgh. Section A, vol. 93, no. 1-2, pp. 1-14, 1982-1983.
[14] D.-M. Cao, "Positive solution and bifurcation from the essential spectrum of a semilinear elliptic equation on \mathbb{R}^{N}," Nonlinear Analysis, vol. 15, no. 11, pp. 1045-1052, 1990.
[15] A. Bahri and Y. Y. Li, "On a min-max procedure for the existence of a positive solution for certain scalar field equations in \mathbb{R}^{N}," Revista Matemática Iberoamericana, vol. 6, no. 1-2, pp. 1-15, 1990.
[16] T.-F. Wu, "Multiplicity of single-bump solutions for semilinear elliptic equations in multi-bump domains," Nonlinear Analysis, vol. 59, no. 6, pp. 973-992, 2004.
[17] X. P. Zhu, "A perturbation result on positive entire solutions of a semilinear elliptic equation," Journal of Differential Equations, vol. 92, no. 2, pp. 163-178, 1991.
[18] D.-M. Cao and H.-S. Zhou, "Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \mathbb{R}^{N}," Proceedings of the Royal Society of Edinburgh. Section A, vol. 126, no. 2, pp. 443-463, 1996.
[19] L. Jeanjean, "Two positive solutions for a class of nonhomogeneous elliptic equations," Differential and Integral Equations, vol. 10, no. 4, pp. 609-624, 1997.
[20] S. Adachi and K. Tanaka, "Multiple positive solutions for nonhomogeneous elliptic equations," Nonlinear Analysis, vol. 47, no. 6, pp. 3783-3793, 2001.
[21] S. Adachi and K. Tanaka, "Four positive solutions for the semilinear elliptic equation: $-\Delta u+u=$ $a(x) u^{p}+f(x)$ in \mathbb{R}^{N}," Calculus of Variations and Partial Differential Equations, vol. 11, no. 1, pp. 63-95, 2000.
[22] H.-L. Lin, H.-C. Wang, and T.-F. Wu, "A Palais-Smale approach to Sobolev subcritical operators," Topological Methods in Nonlinear Analysis, vol. 20, no. 2, pp. 393-407, 2002.
[23] G. Tarantello, "On nonhomogeneous elliptic equations involving critical Sobolev exponent," Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, vol. 9, no. 3, pp. 281-304, 1992.
[24] H. Brézis and E. Lieb, "A relation between pointwise convergence of functions and convergence of functionals," Proceedings of the American Mathematical Society, vol. 88, no. 3, pp. 486-490, 1983.
[25] I. Ekeland, "On the variational principle," Journal of Mathematical Analysis and Applications, vol. 47, no. 2, pp. 324-353, 1974.

Tsung-Fang Wu: Department of Applied Mathematics, National University of Kaohsiung,
Kaohsiung 811, Taiwan
Email address: tfwu@nuk.edu.tw

