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We classify the equilibrium solutions of the Smoluchowski equation for dipolar (ex-
tended) rigid nematic polymers under imposed elongational flow. The Smoluchowski
equation couples the Maier-Saupe short-range interaction, dipole-dipole interaction, and
an external elongational flow. We show that all stable equilibria of rigid, dipolar rod dis-
persions under imposed uniaxial elongational flow field are axisymmetric. This finding of
axisymmetry significantly simplifies any procedure of obtaining experimentally observ-
able equilibria.
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1. Introduction

Nematic liquid crystal polymers are viscoelastic anisotropic materials that have many im-
portant applications [1]. The dynamic behavior of rigid rod nematic liquid crystal poly-
mers is modeled by the Smoluchowski equation [2–4]. Analytical results on pure nematic
equilibria have been obtained in a series of papers [5–11]. In [12] a 2D Smoluchowski
equation under weak shear is analyzed. In [13] a coplanar magnetic field is coupled in
the Smoluchowski equation to investigate the monodomain dynamics for rigid rod and
platelet suspensions. However, dipole-dipole interaction is not included in [13]. Recently,
the authors [14, 15] studied kinetic equilibria of rigid, dipolar rod ensembles for coupled
dipole-dipole and Maier-Saupe short-range potentials. This work is a natural extension of
[14, 15] to include an external elongational flow. For completeness and for reader’s con-
venience, we include all the lemmas and theorems necessary for reaching the conclusions
even though some of the lemmas and theorems have appeared in previous works.

This paper is organized as follows. We first briefly give the mathematical formula-
tion of the Smoluchowski equation for extended (polar) nematics in Section 2. Our main
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theoretical results of the equilibrium solutions of the Smoluchowski equation are pre-
sented in Sections 3, 4, and 5. More specifically, we first show that the first moment of
an equilibrium solution must be aligned with one of the principal axes of the second
moment. Then in Section 4 we exploit free energy to show that an equilibrium solution
whose first moment is not parallel to the imposed external elongational flow field is un-
stable. Finally in Section 5 we prove the most important result of this paper: all stable
equilibrium solutions are axisymmetric. We give concluding remarks in Section 6.

2. The Smoluchowski equation for extended (polar) nematics

In this paper, we study equilibrium solutions of the Smoluchowski equation for rigid
extended (polar) nematics under elongational flow. Here the nematic molecules are mag-
netically polar. For these extended nematics, the molecular interaction includes both the
dipole-dipole interaction and the short-range Maier-Saupe interaction. We assume the
system has an imposed elongational flow field. The potential due to the external elonga-
tional field is given by [16],

Ve =−α0

2
kTEE : mm, (2.1)

where E is the direction of the elongation, α0 > 0 corresponds to the stretching in the E di-
rection (uniaxial elongation) and α0 < 0 corresponds to compressing, k is the Boltzmann
constant, and T is the absolute temperature.

Now let ρ(m, t) denote the probability density function (pdf) for dipolar rod-like ne-
matic molecules in unit direction m at time t. The dynamic evolution of the orientational
pdf for the ensembles of rigid rods with inherent dipoles is governed by the Smoluchowski
equation [3]:

∂ρ

∂t
=D

∂

∂m
·
(

1
kT

∂U

∂m
ρ+

∂ρ

∂m

)
. (2.2)

Here ∂/∂m represents the orientational gradient operator [17], and the total potential is
given by

U(m)=−αkT〈m〉 ·m− bkT〈mm〉 : mm− α0

2
kTEE : mm, (2.3)

where α is the strength of the dipole-dipole interaction, b denotes the strength of the
Maier-Saupe short-range interaction, and

〈
(•)
〉=

∫
‖m‖=1

(•)ρdm (2.4)

is the ensemble average with respect to the pdf ρ, which is a solution of the Smoluchowski
equation (2.2). For simplicity, from now on we assume kT = 1, or equivalently we assume
that all energies are normalized by kT .

The total potential (2.3) can be split into the sum of the internal potential representing
the interaction among polymer rods with themselves and the external potential:

U(m)=Uint(m) +Uext(m), (2.5)
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where the internal and external potentials are given by

Uext(m)=−α0

2
EE : mm,

Uint(m)=U1(m) +U2(m),

U1(m)=−α〈m〉 ·m,

U2(m)=−b〈mm〉 : mm.

(2.6)

In this paper, we restrict our study to the case of α > 0, α0 > 0, and b > 0. In particular,
α0 > 0 (uniaxial elongation) will help us eliminate many unstable equilibrium solutions.

3. Equilibrium solutions for extended nematics

An equilibrium solution of (2.2) is given by the Boltzmann distribution [3]

ρeq(m)= 1
Z

exp
[−U(m)

]
, Z =

∫
S

exp
[−U(m)

]
dm. (3.1)

The nonlinear integral equation for the first moment vector 〈m〉 is

〈m〉 =
∫
S

mρeq(m)dm, (3.2)

whereas the nonlinear integral equation for the second moment tensor 〈mm〉 is

〈mm〉 =
∫
S

mmρeq(m)dm. (3.3)

We establish the coordinate system as follows. We select the uniaxial elongation field
E as the z-axis. We select the x-axis and the y-axis to be perpendicular to the z-axis but
otherwise arbitrary. In this Cartesian coordinate system, we have

m= (m1,m2,m3
)
, E= (0,0,1), 〈m〉 = (q1,q2,q3

)
,

U(m)=−α(q1m1 + q2m2 + q3m3
)− b〈mm〉 : mm− α0

2
m2

3.
(3.4)

The nonlinear equations for the first and second moments become

qi =
〈
mi
〉=

∫
S
miρeq(m)dm,

〈mm〉i j =
〈
mimj

〉=
∫
S
mimjρeq(m)dm.

(3.5)

We select the spherical coordinate system (φ,θ) using the y-axis as the pole. In this
spherical coordinate system, we have

(
m1,m2,m3

)= (sinφ sinθ, cosφ, sinφcosθ). (3.6)
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Theorem 3.1. For an equilibrium probability density, UExt satisfies

〈
∂

∂θ
UExt(φ,θ)

�
= 0. (3.7)

Proof. We first prove that

〈
∂

∂θ
U(φ,θ)

�
= 0. (3.8)

This is not surprising. Physically, this quantity is the (negative) total torque on the sys-
tem about the y-axis. Since the system is in equilibrium, the total torque should be zero.
Mathematically, we have

〈
∂

∂θ
U(φ,θ)

�
= 1

Z

∫ π

0

∫ 2π

0

∂

∂θ
U(φ,θ)exp

[−U(φ,θ)
]
dθ sinφdφ

− 1
Z

∫ π

0

∫ 2π

0

∂

∂θ
exp

[−U(φ,θ)
]
dθ sinφdφ = 0.

(3.9)

The second part is to show that

〈
∂

∂θ
U1(φ,θ) +

∂

∂θ
U2(φ,θ)

�
= 0. (3.10)

Again, this is not surprising at all. Physically, this quantity is the torque on the system
from the mutual interaction. If there is a torque on polymer rod A from other polymer
rods, then by Newton’s third law, rod A exerts a torque of the opposite sign on other rods.
Thus, the sum of the torques on all rods from the mutual interaction is zero. Mathemati-
cally, we prove it as follows. We notice that

∂m1

∂θ
=m3,

∂m2

∂θ
= 0,

∂m3

∂θ
=−m1. (3.11)

Using this fact, we immediately obtain

〈
∂

∂θ
U1(φ,θ)

�
= 1

Z

∫ π

0

∫ 2π

0

∂

∂θ
U1(φ,θ)exp

[−U(φ,θ)
]
dθ sinφdφ

= 1
Z

∫
S
−α(q1m3− q3m1

)
exp

[−U(m)
]
dm

=−α〈q1m3− q3m1
〉=−α(q1q3− q3q1

)= 0.

(3.12)
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Here we have adopted the more concise and more convenient way of writing the spherical
integrals in terms of m instead of (φ,θ). For the second part of the internal potential, we
have

−1
b

〈
∂

∂θ
U2(φ,θ)

�
= 1

bZ

∫
S
b〈mm〉 :

∂

∂θ
(mm)exp

[−U(m)
]
dm= 〈mm〉 :

〈
∂

∂θ
(mm)

�

=
〈

m2
1 m1m2 m1m3

m1m2 m2
2 m2m3

m1m3 m2m3 m2
3

〉
:

〈
2m1m3 m2m3 m2

3−m2
1

m2m3 0 −m1m2

m2
3−m2

1 −m1m2 −2m1m3

〉
= 0.

(3.13)

Combining (3.8) and (3.10) leads immediately to (3.7). �

Theorem 3.2. For an equilibrium probability density, the z-axis is an eigenvector of the
second moment tensor 〈mm〉.
Proof. Differentiating the external potential, we have

∂

∂θ
Uext(φ,θ)= ∂

∂θ

(
α0

2
m2

3

)
= α0m1m3. (3.14)

Applying Theorem 3.1, we obtain

〈
m1m3

〉= 0. (3.15)

Since the x-axis and the y-axis are selected arbitrarily, exchanging the roles of the x-axis
and the y-axis yields immediately

〈
m2m3

〉= 0. (3.16)

Thus, the second moment tensor 〈mm〉 has the form

〈mm〉 =

⎛
⎜⎜⎝

〈
m2

1

〉 〈
m1m2

〉
0〈

m1m2
〉 〈

m2
2

〉
0

0 0
〈
m2

3

〉

⎞
⎟⎟⎠ . (3.17)

It is obvious that the z-axis is an eigenvector of the the second moment tensor. �

To facilitate the analysis, let us select the x-axis and the y-axis properly in the xy-
subspace to diagonalize the matrix 〈mm〉. If 〈m〉 is not parallel to the z-axis, then we can
select the positive directions of x-axis and y-axis such that q1 > 0 and q2 ≥ 0. In the new
Cartesian coordinate system, we have

U(m)=−α(q1m1 + q2m2 + q3m3
)− b

(
s1m

2
1 + s2m

2
2 + s3m

2
3

)− α0

2
m2

3, (3.18)

where

s j =
〈
m2

j

〉
. (3.19)
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Our next move is to prove two theorems which establish the relationship between the
first moment vector and the second moment tensor.

Theorem 3.3. If an equilibrium solution satisfies q1 > 0, then q3 = 0.

Proof. We prove the theorem by contradiction. Suppose there is a solution satisfying q1 >
0 and q3 �= 0. We are going to show that q1 > 0 and q3 �= 0 lead to (1/q3)〈m1m3〉 > 0, which
contradicts with the result of Theorem 3.2:

1
q3

〈
m1m3

〉= 1
q3Z

∫
S
m1m3 exp

[−U
(
m1,m2,m3

)]
dm

= 1
q3Z

∫
m1>0

m1m3
{

exp
[−U

(
m1,m2,m3

)]− exp
[−U

(−m1,m2,m3
)]}

dm.

(3.20)

In the above, the second factor of the integrand is

g1
(
m1,m2,m3

)≡ exp
[−U

(
m1,m2,m3

)]− exp
[−U

(−m1,m2,m3
)]

= 2sinh
(
αq1m1

)
exp

(
αq3m3

)
exp

[
αq2m2−Uext(m)−U2(m)

]
.
(3.21)

Notice that both Uext(m) and U2(m) are even functions of m1, m2, and m3. Substituting
into (3.20), we get

1
q3

〈
m1m3

〉= 1
q3Z

∫
m1>0

m1m3g
(
m1,m2,m3

)
dm

= 1
q3Z

∫
m1>0,m3>0

m1m3
{
g
(
m1,m2,m3

)− g
(−m1,m2,m3

)}
dm

= 4
Z

∫
m1>0,m3>0

m1m3 sinh
(
αq1m1

) sinh
(
αq3m3

)
q3

× exp
[
αq2m2−Uext(m)−U2(m)

]
dm.

(3.22)

Since the integrand satisfies

m1m3 sinh
(
αq1m1

) sinh
(
αq3m3

)
q3

exp
[
αq2m2−Uext(m)−U2(m)

]
> 0

for m1 > 0, m3 > 0, q1 > 0, q3 �= 0
(3.23)

we have (1/q3)〈m1m3〉 > 0, which contradicts with the result of Theorem 3.2. �

Remark 3.4. Theorem 3.3 tells us that if the first moment vector 〈m〉 is not parallel to the
z-axis, then it must be perpendicular to the z-axis.

Theorem 3.5. If an equilibrium solution satisfies q1 > 0, then q2 = 0.

Proof. The proof of this theorem is very similar to the proof of Theorem 3.3. In the proof
of Theorem 3.3, we did not use that the z-axis is the direction of E. We only used the fact
that both Uext(m) and U2(m) are even functions of m1, m2, and m3. So by exchanging the
roles of m2 and m3, we can extend the proof of Theorem 3.3 to Theorem 3.5. �
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Remark 3.6. Theorem 3.5 indicates that if the first moment 〈m〉 is not parallel to the
z-axis, then it must be parallel to either the x-axis or y-axis.

Combining the results of Theorems 3.3 and 3.5, we conclude that the first moment
〈m〉 of the equilibrium solution of (2.2) must be aligned with one of the major axes of
the second moment tensor 〈mm〉.

4. Free energy and stability

In this section we consider the stability of an equilibrium solution. The study of stability
allows us to narrow down the possible solutions that can be observed experimentally. To
investigate the stability of an equilibrium solution, it is useful to exploit the free energy of
the system.

To do so, consider an arbitrary probability density ρ(m), which is not necessarily an
equilibrium probability density. The free energy of the probability density ρ(m) can be
written as [8]

G[ρ]=
∫
S
ρ(m) lnρ(m)dm− α

2

∫∫
S

m′ ·mρ(m′)ρ(m)dm′dm

− b

2

∫∫
S

m′m′ : mmρ(m′)ρ(m)dm′dm− α0

2

∫∫
S
(E ·m)2ρ(m)dm′dm

=
∫
S
ρ(m) lnρ(m)dm− α

2
〈m〉 · 〈m〉− b

2
〈mm〉 : 〈mm〉− α0

2

〈
(E ·m)2〉

≡Gent[ρ] +G1[ρ] +G2[ρ] +Gext[ρ].

(4.1)

In the above expression Gent[ρ] corresponds to the entropic part of the free energy, G1[ρ]
and G2[ρ] are free energy parts associated with the two mutual interactions, and Gext[ρ] is
the free energy part associated with the external field. Here 〈·〉 represents the mean taken
with respect to the probability density ρ(m). For the clarity of analysis below, we intro-
duce two different notations for means taken with respect to two different probability
densities.

(i) 〈·〉eq denotes the mean taken with respect to the equilirium probability den-
sity, whereas 〈·〉 represents the mean taken with respect to a general probability
density (usually a perturbed probability density near the equilirium probability
density).

Recall from Theorem 3.5 that for an equilibrium solution of the Smoluchowski equa-
tion (2.2), if the first moment 〈m〉 is not parallel to the z-axis (which is the direction of
the external elongational flow), then it must be parallel to either the x-axis or y-axis. We
call these solutions with 〈m〉 not parallel to the z-axis nonparallel solutions. Now we show
that nonparallel equilibrium solutions are actually unstable. Therefore, we can exclude
them from our study and focus on the parallel solutions.

Theorem 4.1. If an equilibrium solution satisfies s3 < s1 or s3 < s2, then it is unstable.

Proof. We present the proof for the case of s3 < s1. The proof for the case of s3 < s2 is
similar. �
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In order to prove that an equilibrium solution with s3 < s1 is unstable, we show that the
free energy G[ρ] does not reach a local minimum at ρeq(m). In particular, we construct a
perturbed probability density ρ̃(m) arbitrarily close to the equilibrium probability den-
sity ρeq(m) such that

G
[
ρ̃(m)

]
< G

[
ρeq(m)

]
. (4.2)

We rotate the equilibrium probability density ρeq(m) about the y-axis by ε (a small
angle) and use the result as the perturbed probability density ρ̃(m). Mathematically this is
equivalent to keeping the probability density fixed but rotating the external elongational
flow field about the y-axis by−ε. After the rotation, the external elongational flow field is

Ẽ= (sinε,0,cosε). (4.3)

We have

Gent[ρ̃ ]=Gent
[
ρeq
]
,

G1[ρ̃ ]=G1
[
ρeq
]
,

G2[ρ̃ ]=G2
[
ρeq
]
,

Gext[ρ̃ ]=−α0

2

〈
(E ·m)2〉=−α0

2

〈
(Ẽ ·m)2〉

eq

=−α0

2

〈(
m1 sinε+m3 cosε

)2〉
eq

=−α0

2

(〈
m2

3

〉
eq + ε

〈
m1m3

〉
eq + ε2[〈m2

1

〉
eq−

〈
m2

3

〉
eq

]
+ ···)

=Gext
[
ρeq
]− ε2 α0

2

(
s1− s3

)
+ ··· .

(4.4)

If s3 < s1, then for ε sufficiently small we have Gext[ρ̃ ] < Gext[ρeq]. It follows that G[ρ̃ ] <
G[ρeq] and the equilibrium solution ρeq is unstable.

Theorem 4.2. If the first moment of an equilibrium solution satisfies q1 > 0, then the dipole-
dipole interaction strength α is related to the second moment through the inequality αs1 > 1.

Proof. Suppose, on the contrary, that αs1 ≤ 1.
The parameter q1 has a fixed value in the equilibrium solution ρeq(m). Here we rename

it v and treat it as an independent variable. We consider the probability density

ρ(m,v)= 1
Z

exp
[
α
(
vm1 + q2m2 + q3m3

)
+ b
(
s1m

2
1 + s2m

2
2 + s3m

2
3

)
+
α0

2
m2

3

]
,

Z =
∫
S

exp
[
α
(
vm1 + q2m2 + q3m3

)
+ b
(
s1m

2
1 + s2m

2
2 + s3m

2
3

)
+
α0

2
m2

3

]
dm.

(4.5)

For clarity, let 〈·〉v denote the mean taken with respect to the probability density ρ(m,v).
Note that ρ(m,v)|v=q1 = ρeq(m). Consider the function

F(v)= v− 〈m1
〉
v, (4.6)
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which satisfies F(0) = 0 and F(q1) = 0. We are going to show that αs1 ≤ 1 implies that
F′(v) > 0 for v ∈ (0,q1), which contradicts F(0) = F(q1) = 0. Hence αs1 > 1. We do it in
several steps.
Step 1. Differentiating with respect to v yields

∂

∂v
ρ(m,v)= α

(
m1−

〈
m1
〉
v

)
ρ(m,v),

d

dv

〈
m1
〉
v = α

〈
m1
(
m1−

〈
m1
〉
v

)〉
v = α

(〈
m2

1

〉
v −
〈
m1
〉2
v

)
,

F′(v)= 1−α
〈
m2

1

〉
v +α

〈
m1
〉2
v.

(4.7)

To show F′(v) > 0 for v ∈ (0,q1), we only need to show α〈m2
1〉v < 1 for v ∈ (0,q1). Con-

sider function g(v) = 〈m2
1〉v. Because of the supposition αs1 ≤ 1, we have αg(q1) ≤ 1.

Thus, to show αg(v) < 1 for v ∈ (0,q1), we only need to show g′(v) > 0 for v ∈ (0,q1).
Step 2. g(v) satisfies the property that g′(v0)= 0 implies g′′(v0) > 0. To see this, differen-
tiating g(v) with respect to v yields

g′(v)= 〈m2
1

(
m1−

〈
m1
〉
v

)〉
v. (4.8)

Differentiating a second time respect to v, we get

g′′(v)= 〈m2
1

(
m1−

〈
m1
〉
v

)2〉
v −
〈
m2

1

〉
v

〈
m1
(
m1−

〈
m1
〉
v

)〉
v

= 〈m4
1

〉
v − 2

〈
m3

1

〉
v

〈
m1
〉
v +
〈
m2

1

〉
v

〈
m1
〉2
v −
〈
m2

1

〉2
v +
〈
m2

1

〉
v

〈
m1
〉2
v

= 〈m4
1

〉
v −
〈
m2

1

〉2
v − 2

〈
m2

1

(
m1−

〈
m1
〉
v

)〉
v

〈
m1
〉
v

= var
(
m2

1

)− 2g′(v)
〈
m1
〉
v.

(4.9)

Therefore, if g′(v0)= 0, then we have g′′(v0)= var(m2
1) > 0.

Step 3. When v = 0, the probability density ρ(m,0) is symmetric with respect to m1. So
we have

g′(0)= 〈m3
1

〉∣∣
v=0−

〈
m2

1

〉∣∣
v=0

〈
m1
〉∣∣

v=0 = 0. (4.10)

Using the result of Step 2, we conclude that g′(v) > 0 for v ∈ (0,q1). This leads immedi-
ately to F′(v) > 0 for v ∈ (0,q1), which contradicts F(0)= F(q1)= 0. �

Theorem 4.3. If an equilibrium solution satisfies q3 = 0 and αs3 > 1, then it is unstable.

Proof. This theorem does not specify any condition on q1. Recall the method we used in
selecting the axes: if the equilibrium solution is not parallel to E, then we select the axes
to make q1 > 0 and q2 ≥ 0. Theorem 3.5 tells us that if q1 > 0, then q2 = 0 and q3 = 0. So
we always have q2 = 0. �

We only need to show that the free energy G[ρ] does not attain a local minimum at
ρeq(m). More precisely, we show that there exists a perturbed probability density ρ̃(m)
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arbitrarily close to the equilibrium probability density ρeq(m) such that

G
[
ρ̃(m)

]
< G

[
ρeq(m)

]
. (4.11)

We consider

ρ̃(m)= (1 + εm3
)
ρeq(m). (4.12)

Since 〈m3〉eq = q3 = 0, we have
∫
S ρ̃(m)dm= 1, which means ρ̃(m) is a probability density.

We calculate the four parts of the free energy of the perturbed probability density ρ̃(m).
Because q2 = 0 and q3 = 0, the equilibrium probability density ρeq(m) is symmetric

with respect to m2 and m3. Using the Taylor expansion

(a+Δx) ln(a+Δx)= a lna+ (lna+ 1)Δx+
1

2a
(Δx)2 + ··· (4.13)

we have

Gent[ρ̃ ]=Gent
[
ρeq
]

+ ε2 1
2

〈
m2

3

〉
eq + ··· ,

G1[ρ̃ ]=G1[ρeq]− ε2 α

2

〈
m2

3

〉2
eq.

(4.14)

The symmetry of ρeq(m) gives us

〈
mmm3

〉
eq =

⎛
⎜⎜⎝

0 0
〈
m1m

2
3

〉
eq

0 0 0〈
m1m

2
3

〉
eq 0 0

⎞
⎟⎟⎠ . (4.15)

Substituting into G2[ρ̃ ] yields

G2[ρ̃ ]=G2
[
ρeq
]− ε2b

〈
m1m

2
3

〉2
eq,

Gext[ρ̃ ]=Gext
[
ρeq
]
.

(4.16)

Combining (4.14) and (4.16), we obtain

G[ρ̃ ]−G
[
ρeq
]= ε2 1

2

〈
m2

3

〉
eq− ε2 α

2

〈
m2

3

〉2
eq− ε2b

〈
m1m

2
3

〉2
eq

≤−ε2 1
2
s3
(
αs3− 1

)
.

(4.17)

If αs3 > 1, then for ε sufficiently small we have G[ρ̃ ] < G[ρeq], which means the equilib-
rium solution ρeq is unstable.

Theorem 4.4. If an equilibrium solution satisfies q1 > 0, then it is unstable.
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Proof. Theorem 3.5 tells us that q1 > 0 implies q2 = 0 and q3 = 0. We discuss two cases.
(i) Case 1: s3 < s1. Theorem 4.1 tells us that the equilibrium solution is unstable.

(ii) Case 2: s3 ≥ s1. Using Theorem 4.2, we have αs1 > 1. It follows that αs3 > 1. Using
Theorem 4.3, we conclude that the equilibrium solution is unstable.

Therefore, all nonparallel solutions are unstable. In this way, we have excluded all non-
parallel solutions from our study. �

5. All stable equilibria are axisymmetric

In the previous section we have concluded that all nonparallel solutions are unstable. So
from now on we only consider parallel solutions. It is well known that for pure (nondipo-
lar) nematic rod ensembles where 〈m〉 = 0 [8, 11], the stable equilibria satisfy either
s1 = s2 = s3 (isotropic phase) or s3 > s1 = s2 (prolate uniaxial phase) in the selected coor-
dinate system. In [15] we showed that this is also the case for extended (dipolar) nematics.
In this section we are going to show that in the presence of imposed uniaxial elongational
flow the system still retains this axisymmetry.

Below for the case of extended nematic equilibria in which 〈m〉 may be nonzero,
we will show that if 〈m〉 �= 0 (i.e., q1 = q2 = 0 and q3 > 0 by the selection of the co-
ordinate system and by the result of Theorem 3.1), then a stable equilibrium solution
must be uniaxial. Furthermore, the axis of symmetry must be the major director (i.e.,
the eigenvector of the second moment corresponding to the largest eigenvalue). That is,
〈m2

1〉 = 〈m2
2〉 < 〈m2

3〉.
It should be point out that in [15] we proved five lemmas that paved the roads to reach

axisymmetry. In order to prove axisymmetry for the extended nematics in the presence
of an external elongational flow, we will take full advantage of the well-established results
in [15].

First, we recall that in [15] there is no external flow field and the probability density is
given by

ρ1(m)= 1
Z

exp
[
αq3m3 + b

(
s1m

2
1 + s2m

2
2 + s3m

2
3

)]
,

Z =
∫
S

exp
[
αq3m3 + b

(
s1m

2
1 + s2m

2
2 + s3m

2
3

)]
dm,

(5.1)

where the components of the second moment and the first moment are

〈
m2

i

〉= si, (5.2)〈
m3
〉= q3. (5.3)

Under the constraints s1 < s3 and s2 < s3 we proved in [15] that there is no equilibrium
solution such that s1 < s2. This holds for all α ≥ 0 and b ≥ 0. Since the nonexistence of
s1 < s2 (where s1 < s3 and s2 < s3) is true for all α≥ 0 and b ≥ 0, we introduce λ= αq3 as a
parameter and treat α as unknown. Equation (5.3) becomes

〈
m3
〉= λ

α
. (5.4)
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So (5.3) can be satisfied by selecting a suitable value of α. Therefore, (5.2) cannot be
satisfied with s1 < s2 (where s1 < s3 and s2 < s3). Again, this is true for all λ and b ≥ 0.

Let us introduce r j = bsj as unknowns. Notice that the pdf in (5.1) does not depend
on b any more once we know (r1,r2,r3). Equation (5.2) yields

〈
m2

1

〉= r1

b
,

〈
m2

2

〉= r2

b
,

〈
m2

3

〉= r3

b
. (5.5)

It follows that (5.5) cannot be satisfied with r1 < r2 (where r1 < r3 and r2 < r3). This is true
for all λ and b ≥ 0. Further, we introduce

η1 = r1− r3 < 0, η2 = r2− r3 < 0. (5.6)

Using the fact that m2
1 +m2

2 +m2
3 = 1, the pdf in (5.1) can be rewritten as

ρ1(m)= 1
Z

exp
(
λm3 +η1m

2
1 +η2m

2
2

)
,

Z =
∫
S

exp
[
λm3 +η1m

2
1 +η2m

2
2

]
dm.

(5.7)

Note that the parameter b does not appear in (5.7). Similarly, (5.5) turns into

〈
m2

1−m2
3

〉= η1

b
,

〈
m2

2−m2
3

〉= η2

b
. (5.8)

One concludes that (5.8) cannot be satisfied with η1 < η2 < 0. This conclusion holds for
all λ and b ≥ 0. Next, we prove two theorems for the extended nematics without external
fields.

Theorem 5.1. In the region η1 < η2 < 0, it is true for all λ that

η2
〈
m2

1−m2
3

〉−η1
〈
m2

2−m2
3

〉 �= 0. (5.9)

Proof. Suppose, on the contrary, that η2〈m2
1−m2

3〉−η1〈m2
2−m2

3〉 = 0. Then we get

〈
m2

1−m2
3

〉
η1

=
〈
m2

2−m2
3

〉
η2

. (5.10)

Select the value in (5.10) as 1/b and we obtain (5.8), which violates the fact that (5.8)
cannot be satisfied with η1 < η2 < 0.

Note that b does not appear in Theorem 5.1. �

Theorem 5.2. In the region η1 < η2 < 0, it is true for all λ that

η2
〈
m2

1−m2
3

〉−η1
〈
m2

2−m2
3

〉
< 0. (5.11)

Proof. Let us denote η2〈m2
1 −m2

3〉 − η1〈m2
2 −m2

3〉 by H(η1,η2). It is easy to verify that
H(η1,η2) is a continuous function of (η1,η2). From Theorem 5.1, H(η1,η2) is nonzero in
the region η1 < η2 < 0 and thus it does not change its sign in this region.
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Consider the case where η1 < η2 and both η1 and η2 approach −∞. Then 〈m2
3〉 → 1,

〈m2
1〉 → 0, and 〈m2

2〉 → 0. Therefore,

H
(
η1,η2

)= (η1−η2
)〈
m2

3

〉
+η2

〈
m2

1

〉−η1
〈
m2

2

〉
< 0 (5.12)

as η1 →−∞ and η2 →−∞ (η1 < η2). This completes the proof of Theorem 5.2. �

Now we use the above results to consider the case of α0 > 0, which corresponds to the
coupling of an imposed uniaxial elongational flow. In this case, the pdf is given by

ρ2(m)= 1
Z

exp
[
αq3m3 + b

(
s1m

2
1 + s2m

2
2 + s3m

2
3

)
+
α0

2
m2

3

]
,

Z =
∫
S

exp
[
αq3m3 + b

(
s1m

2
1 + s2m

2
2 + s3m

2
3

)
+
α0

2
m2

3

]
dm.

(5.13)

As before, we introduce

λ= αq3, r j = bsj , η1 = r1− r3− α0

2
, η2 = r2− r3− α0

2
. (5.14)

Then the pdf (5.13) becomes

ρ2(m)= 1
Z

exp
[
λm3 +η1m

2
1 +η2m

2
2

]
,

Z =
∫
S

exp
[
λm3 +η1m

2
1 +η2m

2
2

]
dm.

(5.15)

Note that this pdf is exactly the same as the previous case (5.7) with η1, η2 defined slightly
differently. Consequently, (5.8) is also modified slightly,

〈
m2

1−m2
3

〉= η1 +α0/2
b

,
〈
m2

2−m2
3

〉= η2 +α0/2
b

. (5.16)

Our next theorem generalizes earlier conclusions to include the coupling of external
elongational flow.

Theorem 5.3. In the region η1 < η2 < 0, it is true for all λ and b ≥ 0 that (5.16) cannot be
satisfied.

Proof. We use proof by contradiction. Suppose (5.16) can be satisfied with η1 < η2 < 0 for
some value of b. Then

(
η2 +

α0

2

)〈
m2

1−m2
3

〉−
(
η1 +

α0

2

)〈
m2

2−m2
3

〉= 0, (5.17)

or

η2
〈
m2

1−m2
3

〉−η1
〈
m2

2−m2
3

〉
+
α0

2

〈
m2

1−m2
2

〉= 0. (5.18)

From Theorem 5.2, η2〈m2
1−m2

3〉−η1〈m2
2−m2

3〉 < 0. Therefore, 〈m2
1−m2

2〉 > 0.
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Next, we show 〈m2
1−m2

2〉 < 0 which contradicts the above result. To do so, we rewrite
the pdf (5.15) as

ρ2(m)= 1
Z

exp
[
λm3 +

η1 +η2

2

(
m2

1 +m2
2

)
+
η1−η2

2

(
m2

1−m2
2

)]
, (5.19)

and then

〈
m2

1−m2
2

〉= 1
Z

∫
S

exp
[
λm3 +

η1+η2

2

(
m2

1 +m2
2

)](
m2

1−m2
2

)
exp

[
η1−η2

2

(
m2

1−m2
2

)]
dm.

(5.20)

Switching the role of integration variables m1 and m2 in the integral on the right-hand
side only (note that m1, m2 on the left-hand side are random variables and have different
meanings) yields

〈
m2

1−m2
2

〉= 1
Z

∫
S

exp
[
λm3 +

η1+η2

2

(
m2

2 +m2
1

)](
m2

2−m2
1

)
exp

[
η1−η2

2

(
m2

2−m2
1

)]
dm.

(5.21)

Adding (5.20) and (5.21) and averaging, we obtain

〈
m2

1−m2
2

〉

= 1
Z

∫
S

exp
[
λm3 +

η1 +η2

2

(
m2

2 +m2
1

)](
m2

1−m2
2

)
sinh

[
η1−η2

2

(
m2

1−m2
2

)]
dm < 0,

(5.22)

which contradicts earlier result. �

6. Conclusions

The stable equilibrium solutions of rigid, dipolar rod ensembles (extended nematics)
under imposed elongational field are shown to be axisymmetric. Moreover, the distin-
guished axis of symmetry of stable anisotropic equilibria coincides with the first moment
of the probability density function (pdf), the major director of the second moment of the
pdf (eigenvector associated with the largest eigenvalue), and the imposed elongational
flow field. This finding of axisymmetry provides reduction in the degree of freedom in
the representation of the pdf solution and thereby significantly simplifies any process of
obtaining physically observable equilibria.
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