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We will show that under suitable conditions on f and h, there exists a positive number
λ∗ such that the nonhomogeneous elliptic equation −Δu + u = λ( f (x,u) + h(x)) in Ω,
u ∈ H1

0 (Ω), N ≥ 2, has at least two positive solutions if λ ∈ (0,λ∗), a unique positive
solution if λ = λ∗ , and no positive solution if λ > λ∗ , where Ω is the entire space or an
exterior domain or an unbounded cylinder domain or the complement in a strip domain
of a bounded domain. We also obtain some properties of the set of solutions.
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1. Introduction

Let 2∗ = 2N/(N − 2) for N ≥ 3, 2∗ =∞ for N = 2. In this paper, we study the existence,
nonexistence, and multiplicity of solutions of the equation

−Δu+u= λ( f (x,u) +h(x)
)

in Ω, u in H1
0 (Ω), u > 0 in Ω, N ≥ 2, (1.1)λ

where λ > 0,N =m+n≥ 2, n≥ 1, 0∈ ω ⊆Rm is a smooth bounded domain, S= ω×Rn,
D is a smooth bounded domain in RN such that D ⊂⊂ S, Ω= S\D is the exterior of this
domain in the strip.

Associated to (1.1)λ, we consider the functional I , for u∈H1
0 (Ω),

I(u)= 1
2

∫

Ω

(|∇u|2 +u2)dx− λ
∫

Ω
F
(
x,u+)dx− λ

∫

Ω
h(x)udx, (1.1)

where F(x, t)= ∫ t0 f (x,s)ds.
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It is assumed that h(x)∈ L2(Ω)∩Lq0 (Ω) for some q0 > N/2 ifN ≥ 4, q0 = 2 ifN = 2,3,
h(x)≥ 0, h(x) 
≡ 0, and f (x, t) satisfies the following conditions:

( f 1) f (x,·) ∈ C1([0,+∞),R+), f (x, t) ≡ 0 for x ∈ S, t ≤ 0, and limt→0( f (x, t)/t) = 0
uniformly for x ∈ S;

( f 2) there exists a positive constant C such that for all x ∈ S and t ∈R,

0 <
∂

∂t
f (x, t)≤ C(1 + |t|p−2), (1.2)

where 2 < p < 2∗;
( f 3) there exists a number θ ∈ [1/p,1) such that

θt
∂

∂t
f (x, t)≥ f (x, t) > 0 ∀x ∈ S, t > 0; (1.3)

( f 4) there exists f : R→ R such that lim|x|→∞ f (x, t) = f (t) uniformly for bounded
t > 0, f (x, t)≥ f (t), for all x ∈ S, t ≥ 0, and limt→∞( f (x, t)/t)=∞ uniformly for
x ∈ S;

( f 5) f (x,·)∈ C2(0,+∞) and (∂2/∂t2) f (x, t)≥ 0 for all x ∈ S, t ≥ 0.
Given ε > 0, by ( f 1) and ( f 2), there exists a Cε > 0 such that

0≤ f (x,u)≤ εu+Cε|u|p−1, (1.4)

0≤ F(x,u)≤ εu2 +Cε|u|p. (1.5)

If Ω=RN or Ω=RN\D (m= 0 in our case), then the homogeneous case of problem
(1.1)λ (i.e., the case h(x) ≡ 0) has been studied by many authors; see Cao [1] and the
references therein. For the nonhomogeneous case (h(x) 
≡ 0), Zhu-Zhou [2] have studied
the multiplicity of positive solutions of equations similar to (1.1)λ. Recently, Chen [3]
showed that there exists a λ∗ > 0 such that (1.1)λ has exactly two positive solutions if
λ∈ (0,λ∗), and (1.1)λ has no positive solution when λ∈ (λ∗,∞). However, her method
cannot determine whether λ∗ is bounded or infinite (at least for general nonlinearity
f (x,u)). In this paper, one of our results answers the question (see Theorem 1.1). Now,
we state our main results.

Theorem 1.1. Let Ω= S\D or Ω=RN\D or Ω= S or Ω=RN . Suppose h(x)≥ 0, h(x) 
≡
0, h(x)∈ L2(Ω)∩Lq0 (Ω) for some q0 > N/2 if N ≥ 4, q0 = 2 if N = 2,3, and f (x, t) satisfies
( f 1)–( f 5). Then there exists λ∗ > 0, 0 < λ∗ <∞, such that

(i) equation (1.1)λ has at least two positive solutions uλ, Uλ and uλ < Uλ if λ∈ (0,λ∗);
(ii) equation (1.1)λ∗ has a unique positive solution uλ∗ ;

(iii) equation (1.1)λ has no positive solutions if λ > λ∗,
where uλ is the minimal solution of (1.1)λ and Uλ is the second solution of (1.1)λ constructed
in Section 4.

Theorem 1.2. Under the assumptions of Theorem 1.1, then
(i) uλ is strictly increasing with respect to λ, uλ is uniformly bounded in L∞(Ω)∩H1

0 (Ω)
for all λ∈ (0,λ∗] and

uλ −→ 0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+; (1.6)
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(ii) Uλ is unbounded in L∞(Ω)∩H1
0 (Ω) for λ∈ (0,λ∗), that is,

lim
λ→0+

∥
∥Uλ

∥
∥= lim

λ→0+

∥
∥Uλ

∥
∥∞ =∞, (1.7)

where ‖Uλ‖ = (
∫
Ω(|∇U|2 +U2)dx)1/2 and ‖Uλ‖∞ = supx∈Ω |U(x)|.

First of all, we list some properties of f (x, t). The proof can be found in Zhu-Zhou [2,
Lemma 2.1].

Lemma 1.3. Assume ( f 1), ( f 3), and ( f 5) hold, then
(i) t f (x, t)≥ νF(x, t) for all x ∈ S, t > 0 and ν= 1 + θ−1 ∈ (2, p+ 1];

(ii) t−1/θ f (x, t) is monotone nondecreasing and t−1 f (x, t) is strictly monotone increasing
for all x ∈ S, t > 0;

(iii) f (x, t1 + t2) ≥ f (x, t1) + f (x, t2) and f (x, t1 + t2) 
≡ f (x, t1) + f (x, t2) for all x ∈ S,
t1, t2 > 0.

2. Asymptotic behavior of solutions

Throughout this paper, let x = (y,z) be the generic point of RN with y ∈ Rm, z ∈ Rn,
N =m+n≥ 2, n≥ 1. We denote by C and Ci (i= 1,2, . . .) universal constants, maybe the
constants here should be allowed to depend on n and p, unless some statement is given,
and denote (∂/∂t) f (x, t) and (∂2/∂t2) f (x, t) by f ′(x, t) and f

′′
(x, t), respectively, in what

follows.
We define

‖u‖ =
(∫

Ω

(|∇u|2 +u2)dx

)1/2

,

‖u‖p =
(∫

Ω
|u|pdx

)1/p

, 2≤ p <∞,

‖u‖∞ = sup
x∈Ω

∣
∣u(x)

∣
∣.

(2.1)

Now, we introduce the equation at infinity associated with (1.1)λ on an unbounded cylin-
der domain S,

−Δu+u= λ f (u) in S,

u∈H1
0 (S), N ≥ 2.

(2.1)λ

P. L. Lions has studied the following minimization problem closely related to (2.1)λ:

S∞ = inf
{
I∞(u) : u∈H1

0 (S), u 
≡ 0, I∞
′
(u)= 0

}
> 0, (2.2)

where I∞(u)= (1/2)
∫
S(|∇u|2 + u2)dx− λ∫SF(u+)dx, F(t)= ∫ t0 f (s)ds. For this problem,

also a minimum exists and is realized by a ground state solution w > 0 in S such that

S∞ = I∞(w)= sup
t≥0

I∞(tw). (2.3)
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In order to get the asymptotic behavior of solutions of (1.1)λ and (2.1)λ, we need the
following Lemmas 2.3 and 2.5. First, we quote two regularity lemmas (see Hsu [4] for
the proof). Now, let X be a C1,1 domain in RN (typically the domains considered in the
introduction).

Lemma 2.1. Let f : X×R→R be a Carathéodory function such that for almost every x ∈ X,
there holds

∣
∣ f (x,u)

∣
∣≤ C(|u|+ |u|p−1) uniformly in x ∈ X, (2.4)

where 2 < p < 2∗. If u ∈H1
0 (X) is a weak solution of equation −Δu = f (x,u) + h(x) in X,

where h∈ LN/2(X)∩L2(X), then u∈ Lq(X) for q ∈ [2,∞).

Lemma 2.2. Let g ∈ L2(X)∩Lq(X) for some q ∈ [2,∞) and let u∈H1
0 (X) be a weak solu-

tion of the equation −Δu+u= g in X. Then u∈W2,q(X) satisfies

‖u‖W2,q(X) ≤ C
(‖u‖Lq(X) +‖g‖Lq(X)

)
, (2.5)

where C = C(N ,q,∂X).

By Lemmas 2.1 and 2.2, we obtain the first asymptotic behavior of solution of (1.1)λ.

Lemma 2.3 (asymptotic lemma 1). Let ( f 1), ( f 2) hold and let u be a weak solution of
(1.1)λ, then u(y,z)→ 0 as |z| →∞ uniformly for y ∈ ω. Moreover, there exist positive con-
stants C1 and C2 such that

‖u‖∞ ≤ C1‖u‖q0 + λC2

(
‖u‖p−1

(p−1)q0
+‖h‖q0

)
. (2.6)

Proof. Suppose that u is a solution of (1.1)λ, then −Δu + u = λ( f (x,u) + h(x)) in Ω.
Since h ∈ L2(Ω)∩ Lq0 (Ω) for some q0 > N/2 if N ≥ 4, q0 = 2 if N = 2,3, this implies
h∈ L2(Ω)∩LN/2(Ω) for N ≥ 2. By (1.4) and Lemma 2.1, we conclude that

u∈ Lq(Ω) for q ∈ [2,∞). (2.7)

Hence λ( f (x,u) +h(x))∈ L2(Ω)∩Lq0 (Ω) and by Lemma 2.2, we have

u∈W2,2(Ω)∩W2,q0 (Ω), q0 > N/2 if N ≥ 4, q0 = 2 if N = 2,3. (2.8)

Now, by the Sobolev embedding theorem, we obtain that u ∈ Cb(Ω). It is well known
that the Sobolev embedding constants are independent of domains (see Adams [5]). Thus
there exists a constant C such that for R > 0,

‖u‖L∞(Ω\BR) ≤ C‖u‖W2,q0 (Ω\BR) for N ≥ 2, (2.9)
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where BR = {x = (y,z)∈Ω | |z| ≤ R}. From this, we conclude that u(y,z)→ 0 as |z| →∞
uniformly for y ∈ ω. By Lemma 2.2 and (1.4), we also have that

‖u‖∞ ≤ C‖u‖W2,q0 (Ω)

≤ C
(
‖u‖q0 +

∥
∥λ f (x,u) + λh(x)

∥
∥
q0

)

≤ C1‖u‖q0 + λC2

(
‖u‖p−1

(p−1)q0
+‖h‖q0

)
,

(2.10)

where C1, C2 are constants independent of λ. �

Remark 2.4. Let w be a positive solution of (2.1)λ. If h(x) ≡ 0 and f (x, t) ≡ f (t) for all
x ∈ S, t ∈ R, by Lemma 2.3, then we have that w(y,z) → 0 as |z| → ∞ uniformly for
y ∈ ω.

We use Lemma 2.3, and modify the proof in Hsu [6], we obtain a precise asymptotic
behavior of solutions of (2.1)λ at infinity and the second asymptotic behavior of solutions
of (1.1)λ.

Lemma 2.5 (asymptotic lemma 2). Let w be a positive solution of (2.1)λ, let u be a positive
solution of (1.1)λ and let ϕ be the first positive eigenfunction of the Dirichlet problem−Δϕ=
μ1ϕ in ω, then for any ε > 0 with 0 < ε < 1 +μ1, there exist constants C,Cε > 0 such that

w(y,z)≤ Cεϕ(y)exp
(
−
√

1 +μ1− ε|z|
)

,

w(y,z)≥ Cϕ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2

u(y,z)≥ Cϕ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2.

as |z| −→∞, y ∈ ω, (2.11)

Proof. (i) First, we claim that for any ε > 0 with 0 < ε < 1 +μ1, there exists Cε > 0 such that

w(y,z)≤ Cεϕ(y)exp
(
−
√

1 +μ1− ε|z|
)

as |z| −→∞, y ∈ ω. (2.12)

Without loss of generality, we may assume ε < 1. Now given ε > 0, by ( f 1), ( f 4), and
Remark 2.4, we may choose R0 large enough such that

λ f
(
w(y,z)

)≤ λ f (x,w(y,z)
)≤ εw(y,z) for |z| ≥ R0. (2.13)

Let q = (qy ,qz), qy ∈ ∂ω, |qz| = R0, and B a small ball in Ω such that q ∈ ∂B. Since ϕ(y) >
0 for x = (y,z) ∈ B, ϕ(qy) = 0, w(x) > 0 for x ∈ B, w(q) = 0, by the strong maximum
principle (∂ϕ/∂y)(qy) < 0, (∂w/∂x)(q) < 0. Thus

lim
x→q

|z|=R0

w(x)
ϕ(y)

= (∂w/∂x)(q)
(∂ϕ/∂y)

(
qy
) > 0. (2.14)

Note that w(x)ϕ−1(y) > 0 for x = (y,z), y ∈ ω, |z| = R0. Thus w(x)ϕ−1(y) > 0 for x =
(y,z), y ∈ ω, |z|= R0. Since ϕ(y)exp(−√1 +μ1− ε|z|) andw(x) belong toC1(ω× ∂BR0 (0)),
if set

Cε = sup
y∈ω,|z|=R0

(
w(x)ϕ−1(y)exp

(√
1 +μ1− εR0

))
, (2.15)
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then Cε > 0 and

Cεϕ(y)exp
(
−
√

1 +μ1− εR0

)
≥w(x) for y ∈ ω, |z| = R0. (2.16)

Let Φ1(x)= Cεϕ(y)exp(−√1 +μ1− ε|z|) for x ∈Ω. Then for |z| ≥ R0, we have

Δ
(
w−Φ1

)
(x)− (w−Φ1

)
(x)=−λ f (w(x)

)
+
(
ε+

√
1 +μ1− ε(n− 1)

|z|
)
Φ1(x)

≥−εw(x) + εΦ1(x)

= ε(Φ1−w
)
(x).

(2.17)

Hence Δ(w−Φ1)(x)− (1− ε)(w−Φ1)(x)≥ 0 for |z| ≥ R0.
The strong maximum principle implies that w(x)−Φ1(x) ≤ 0 for x = (y,z), y ∈ ω,

|z| ≥ R0, and therefore we get this claim.
(ii) Let

Ψ(y,z)=
(

1 +
1
√|z|

)
ϕ(y)exp

(
−
√

1 +μ1|z|
)
|z|−(n−1)/2 for (y,z)∈Ω. (2.18)

It is very easy to show that

−ΔΨ+Ψ≤ 0 for y ∈ ω, |z| large. (2.19)

Therefore, by means of the maximum principle, there exists a constant C > 0 such that

w(y,z)≥ Cϕ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2

u(y,z)≥ Cϕ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2

as |z| −→∞, y ∈ ω. (2.20)

This completes the proof of Lemma 2.5. �

3. Existence of the minimal solution

We now prove the existence of minimal positive solutions of (1.1)λ.

Lemma 3.1. If ( f 1) and ( f 2) hold, then for any given ρ > 0, there exists λ0 > 0 such that for
λ∈ (0,λ0), one has I(u) > 0 for all u∈ Sρ = {u∈H1

0 (Ω) | ‖u‖ = ρ}. Moreover, for any ε ≥
0, there exists δ > 0 (δ ≤ ρ) such that I(u)≥−ε for all u∈ {u∈H1

0 (Ω) | ρ− δ ≤ ‖u‖ = ρ}.
Proof. By (1.5), the Sobolev embedding theorem, and the Hölder inequality, we have that,
for all u∈ Sρ,

I(u)= 1
2
‖u‖2− λ

∫

Ω
F
(
x,u+)dx− λ

∫

Ω
hudx

≥ 1
2
‖u‖2− λ

∫

Ω

(
ε|u|2 +Cε|u|p

)
dx− λ‖h‖2‖u‖

≥ 1
2
‖u‖2− λC(‖u‖2 +‖u‖p)dx− λ‖h‖2‖u‖

≥ ρ
(

1
2
ρ− λC(ρ+ ρp−1)− λ‖h‖2

)
,

(3.1)
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where C > 0 is a constant which is independent of λ, ρ. Hence by (3.1), there exists λ0 > 0
such that for λ∈ (0,λ0), we have I(u) > 0 for all u∈ Sρ.

Moreover, we can choose λ0 > 0 small enough such that

∂

∂ρ

(
1
2
ρ− λC(ρ+ ρp−1)

)
= 1

2
− λ(1 + (p− 1)ρp−2) > 0 for λ∈ (0,λ0

)
. (3.2)

Then for any ε ≥ 0, there exists δ > 0 (δ ≤ ρ) such that I(u)≥−ε for all u∈ {u∈H1
0 (Ω) |

ρ− δ ≤ ‖u‖ ≤ ρ}. �

Lemma 3.2. Assume ( f 1) and ( f 2) hold. If λ0 is chosen as in Lemma 3.1 and λ ∈ (0,λ0),
then there exists a u0 ∈ Bρ such that u0 is a positive solution of (1.1)λ.

Proof. Since h 
≡ 0 and h ≥ 0, we can choose a function ϕ ∈H1
0 (Ω) such that

∫
Ωhϕ > 0.

For t ∈ (0,+∞), then by (1.5),

I(tϕ)= t2

2

∫

Ω

(|∇ϕ|2 +ϕ2)− λ
∫

IRN+
F
(
x, tϕ+)− λt

∫

Ω
hϕ

≤ t2

2
‖ϕ‖2 + λCt2

∫

Ω

(|ϕ|2 + tp−2|ϕ|p)− λt
∫

Ω
hϕ.

(3.3)

Then for t small enough, I(tϕ) < 0. So α= inf{I(u) | u∈ Bρ}. Clearly α >−∞. By Lemma
3.1, there exists ρ′ such that 0 < ρ′ < ρ and α = inf{I(u) | u ∈ Bρ′ }. By Ekeland’s vari-
ational principle [7], there exists a (PS)α-sequence {uk} ⊂ Bρ′ , that is, I(uk) = α+ o(1)
and I′(uk) = o(1) strongly in H−1(Ω) as k →∞. Then there exists a subsequence {uk}
and u0 ∈ H1

0 (Ω) such that uk ⇀ u0 weakly in H1
0 (Ω), uk → u0 strongly in L

q
loc(Ω) for

2 ≤ q < 2∗ and uk → u0 a.e. in Ω. Since I′(uk) = o(1) strongly in H−1(Ω) as k→∞, and
by ( f 1) and ( f 2), we have I′(u0)= 0 inH−1(Ω), that is, u0 is a weak nonnegative solution
of (1.1)λ; and since h 
≡ 0, by the maximum principle for weak solutions, we have u0 > 0
in Ω. �

By the standard barrier method, we prove the following lemma.

Lemma 3.3. If ( f 1) and ( f 2) hold, then there exists λ∗ ∈ (0,+∞] such that
(i) for any λ ∈ (0,λ∗), (1.1)λ has a minimal positive solution uλ and uλ is strictly in-

creasing in λ;
(ii) if λ > λ∗, (1.1)λ has no positive solution.

Proof. Setting Qλ = {0 < λ < +∞ | (1.1)λ is solvable}, by Lemma 3.2, we have Qλ is non-
empty. Denoting λ∗ = supQλ > 0, we claim that (1.1)λ has at least one solution for all
λ∈ (0,λ∗). In fact, for any λ∈ (0,λ∗), by the definition of λ∗, we know that there exists
λ′ > 0 and 0 < λ < λ′ < λ∗ such that (1.1)λ′ has a solution uλ′ > 0, that is,

−Δuλ′ +uλ′ = λ′
(
f
(
x,uλ′

)
+h(x)

)≥ λ( f (x,uλ′
)

+h(x)
)
. (3.4)

Then uλ′ is a supersolution of (1.1)λ. From h(x)≥ 0 and h(x) 
≡ 0, it is easy to see that 0 is
a subsolution of (1.1)λ. By the standard barrier method, there exists a solution uλ > 0 of
(1.1)λ such that 0≤ uλ ≤ uλ′ . Since 0 is not a solution of (1.1)λ and λ′ > λ, the maximum
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principle implies that 0 < uλ < uλ′ . Again using a result of Amann [8, Theorem 9.4], we
can choose a minimal positive solution uλ of (1.1)λ. �

Let uλ be the minimal positive solution of (1.1)λ for λ∈ (0,λ∗), we study the following
eigenvalue problem

−Δv+ v = σλ f ′
(
x,uλ

)
v in Ω,

v ∈H1
0 (Ω), v > 0 in Ω,

(3.5)

then we have the following.

Lemma 3.4. Assume ( f 1)–( f 5) hold, and let the first eigenvalue σλ of (3.5) be defined by

σλ = inf

{∫

Ω

(|∇v|2 + v2)dx | v ∈H1
0 (Ω),

∫

Ω
f ′
(
x,uλ

)
v2dx = 1

}

. (3.6)

Then
(i) σλ is achieved;

(ii) σλ > λ and is strictly decreasing in λ, λ∈ (0,λ∗);
(iii) λ∗ < +∞ and (1.1)λ∗ has a minimal positive solution uλ∗ .

Proof. (i) Indeed, recall assumption ( f 3), by the definition of σλ, we know that 0 < σλ <
+∞. Let {vk} ⊂H1

0 (Ω) be a minimizing sequence of σλ, that is,

∫

Ω
f ′
(
x,uλ

)
v2
kdx = 1,

∫

Ω

(∣∣∇vk
∣
∣2

+ v2
k

)
dx −→ σλ as k −→∞. (3.7)

This implies that {vk} is bounded inH1
0 (Ω), then there exists a subsequence, still denoted

by {vk} and some v0 ∈H1
0 (Ω) such that

vk v0 weakly in H1
0 (Ω),

vk −→ v0 almost everywhere in Ω,

vk −→ v0 strongly in Lsloc(Ω) for 2≤ s < 2∗.

(3.8)

Thus
∫

Ω

(∣∣∇v0
∣
∣2

+ v2
0

)
dx ≤ liminf

∫

Ω

(∣∣∇vk
∣
∣2

+ v2
k

)
dx = σλ. (3.9)

By Lemma 2.3 and ( f 1), we have f ′(x,uλ)→ 0 as |x| →∞, it is standard to show that v0

achieves σλ. Clearly |v0| also achieves σλ. By (3.5) and the maximum principle, we may
assume v0 > 0 in Ω.

(ii) We now prove σλ > λ. Setting λ′ > λ > 0 and λ′ ∈ (0,λ∗), by Lemma 3.3, (1.1)λ′ has
a positive solution uλ′ . Since uλ is the minimal positive solution of (1.1)λ, then uλ′ > uλ as
λ′ > λ. By virtue of (1.1)λ′ and (1.1)λ, we see that

−Δ(uλ′ −uλ
)

+
(
uλ′ −uλ

)= λ′ f (x,uλ′
)− λ f (x,uλ

)
+ (λ′ − λ)h. (3.10)
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Applying the Taylor expansion and noting that λ′ > λ, h(x)≥ 0, and f ′′(x, t)≥ 0, f (x, t) >
0 for all t > 0, we get

−Δ(uλ′ −uλ
)

+
(
uλ′ −uλ

)≥ (λ′ − λ) f
(
x,uλ

)
+ λ′ f ′

(
x,uλ

)(
uλ′ −uλ

)

> λ f ′
(
x,uλ

)(
uλ′ −uλ

)
.

(3.11)

Let v0 ∈H1
0 (Ω) and v0 > 0 solves (3.5). Multiplying (3.11) by v0 and noting (3.5), then we

get

σλ

∫

Ω
f ′
(
x,uλ

)(
uλ′ −uλ

)
v0dx > λ

∫

Ω
f ′
(
x,uλ

)(
uλ′ −uλ

)
v0dx, (3.12)

hence σλ > λ. Now, let vλ be a minimizer of σλ, then
∫

Ω
f ′
(
x,uλ′

)
v2
λdx >

∫

Ω
f ′
(
x,uλ

)
v2
λdx = 1, (3.13)

and there exists t, with 0 < t < 1 such that
∫

Ω
f ′
(
x,uλ′

)(
tvλ
)2
dx = 1. (3.14)

Therefore

σλ′ ≤ t2
∥
∥vλ

∥
∥2
<
∥
∥vλ

∥
∥2 = σλ (3.15)

showing that σλ is strictly decreasing in λ for λ∈ (0,λ∗).
(iii) We show next that λ∗ < +∞. Let λ0 ∈ (0,λ∗) be fixed. For any λ ≥ λ0, we have

σλ > λ and by (3.15), then

σλ0 ≥ σλ > λ (3.16)

for all λ∈ [λ0,λ∗). Thus λ∗ < +∞.
By (3.5) and σλ > λ, we have

∫

Ω

(∣∣∇uλ
∣
∣2

+
∣
∣uλ

∣
∣2)

dx >
∫

Ω
λ f ′

(
x,uλ

)
u2
λdx, (3.17)

and also we have
∫

Ω

(∣∣∇uλ
∣
∣2

+
∣
∣uλ

∣
∣2)

dx−
∫

Ω
λ f
(
x,uλ

)
uλdx−

∫

Ω
λh(x)uλdx = 0. (3.18)

By ( f 3) and (3.17), we have that
∫

Ω

(∣∣∇uλ
∣
∣2

+
∣
∣uλ

∣
∣2)

dx =
∫

Ω
λ f
(
x,uλ

)
uλdx+

∫

Ω
λh(x)uλdx

≤ θ
∫

Ω
λ f ′

(
x,uλ

)
u2
λdx+ λ‖h‖2

∥
∥uλ

∥
∥

≤ θ∥∥uλ
∥
∥2

+ λ‖h‖2
∥
∥uλ

∥
∥.

(3.19)
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This implies that

∥
∥uλ

∥
∥≤ λ

1− θ‖h‖2 (3.20)

for all λ ∈ (0,λ∗). By Lemma 3.3(i), the solution uλ is strictly increasing with respect to
λ; we may suppose that

uλ uλ∗ weakly in H1
0 (Ω) as λ−→ λ∗, (3.21)

and by (1.4), we obtain that

∫

Ω

(∇uλ ·∇ϕ+uλϕ
)
dx −→

∫

Ω

(∇uλ∗ ·∇ϕ+uλ∗ϕ
)
dx,

λ
∫

Ω

(
f
(
x,uλ

)
+h
)
ϕdx −→ λ∗

∫

Ω

(
f
(
x,uλ∗

)
+h
)
ϕdx

as λ−→ λ∗ (3.22)

for all ϕ∈H1
0 (Ω). Hence uλ∗ is a minimal positive solution of (1.1)λ∗ . This completes the

proof of Lemma 3.4. �

4. Existence of second solution

When λ∈ (0,λ∗), we know that (1.1)λ has a minimal positive solution uλ by Lemma 3.3,
then we need only to prove that (1.1)λ has another positive solution in the form of Uλ =
uλ + v, where v is a solution of the following equation:

−Δv+ v = λ( f (x,uλ + v
)− f

(
x,uλ

))
in Ω,

v > 0 in Ω, v ∈H1
0 (Ω).

(4.1)

We define the energy functional J :H1
0 (Ω)→R as follows:

J(v)= 1
2

∫

Ω

(|∇v|2 + v2)dx− λ
∫

Ω

(
F
(
x,uλ + v+)−F(x,uλ

)− f
(
x,uλ

)
v+)dx. (4.2)

Using the monotonicity of f and the maximum principle, we know that the nontrivial
critical points of energy functional J are the positive solutions of (4.1).

First, we give an inequality about concerning f and uλ.

Lemma 4.1. If ( f 1) and ( f 2) hold, then for any ε > 0, there exists Cε > 0 such that

f
(
x,uλ + s

)− f
(
x,uλ

)− f ′
(
x,uλ

)
s≤ εs+Cεsp−1, s≥ 0, uniformly∀x ∈ S, (4.3)

where 1 < p < 2∗ − 1 and uλ is the minimal solution of (1.1)λ.



Tsing-San Hsu 11

Proof. By ( f 1), ( f 2), (1.4), and Lemma 2.3, we obtain uλ ∈ L∞(Ω) and

lim
s→0

f
(
x,uλ + s

)− f
(
x,uλ

)− f ′
(
x,uλ

)
s

s
= 0,

0≤ limsup
s→∞

f
(
x,uλ + s

)− f
(
x,uλ

)− f ′
(
x,uλ

)
s

sp−1 ≤ Cε
(4.4)

uniformly for all x ∈ S. Thus, it is clear that Lemma 4.1 holds. �

Lemma 4.2. If ( f 1)–( f 5) hold, then there exist ρ > 0 and α > 0 such that

J(v)≥ α > 0 (4.5)

for all v ∈ Sρ = {u∈H1
0 (Ω) | ‖u‖ = ρ}.

Proof. By Lemma 3.4, it is easy to see that, for all v ∈H1
0 (Ω),

∫

Ω

(|∇v|2 + v2)dx ≥ σλ
∫

Ω
f ′
(
x,uλ

)
v2dx. (4.6)

Again by Lemma 4.1 and the Sobolev embedding theorem, we obtain that

J(v)= 1
2

∫

Ω

(|∇v|2 + v2)dx− λ
∫

Ω

(
F
(
x,uλ + v+)−F(x,uλ

)− f
(
x,uλ

)
v+)dx

= 1
2
‖v‖2− λ

2

∫

Ω
f ′
(
x,uλ

)∣∣v+
∣
∣2
dx

− λ
∫

Ω

∫ v+

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f ′
(
x,uλ

)
s
)
dsdx

≥ 1
2
‖v‖2− λ

2

∫

Ω
f ′
(
x,uλ

)∣∣v+
∣
∣2
dx− 1

2
λε
∫

Ω

∣
∣v+

∣
∣2
dx− 1

p
λCε

∫

Ω

∣
∣v+

∣
∣pdx

≥ 1
2
‖v‖2− λ

2
σ−1‖v‖2− 1

2
λε‖v‖2− λCε‖v‖p

= 1
2
σ−1
λ

(
σλ− λ− λσλε

)‖v‖2− λCε‖v‖p.

(4.7)

Since σλ > λ, we may choose ε > 0 small enough such that σλ − λ− λσλε > 0. If we take
ε = (σλ− λ)/2λσλ, then

J(v)≥ 1
4
σ−1
λ

(
σλ− λ

)‖v‖2−C‖v‖p. (4.8)

Hence, there exist ρ > 0 and α > 0 such that J(v) ≥ α > 0 for all v ∈ Sρ = {u ∈ H1
0 (Ω) |

‖u‖ = ρ}. �

Proposition 4.3. Assume ( f 1)–( f 4) hold. Let {vk} be a (PS)c-sequence of J . Then there
exists a subsequence (still denoted by {vk}) for which the following holds: there exist an
integer l ≥ 0, sequences {xik} ⊆RN , 1≤ i≤ l, k ∈N, of the form (0,zik)∈ S, a solution v of
(4.1), and solutions ui of (2.1)λ, 1≤ i≤ l, such that, for some subsequence {vk}, as k→∞,
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one has

vk v weakly in H1
0 (Ω),

J
(
vk
)−→ J(v) +

l∑

i=1

I∞
(
ui
)
,

vk −
(

v+
l∑

i=1

ui
(
x− xik

)
)

−→ 0 strong in H1
0 (S),

∣
∣xik

∣
∣−→∞,

∣
∣xik − x jk

∣
∣−→∞, 1≤ i 
= j ≤ l,

(4.9)

where one agrees that in the case l = 0 the above holds without ui, xik.

Proof. This result can be derived from the arguments in [9] (see also [10–12]). Here we
omit it. �

Now, let δ be small enough, Dδ a δ-tubular neighborhood of D such that Dδ ⊂⊂ S.
Let η(x) : S→ [0,1] be a C∞ cutoff function such that 0≤ η ≤ 1 and

η(x)=
⎧
⎨

⎩
0, if x ∈D;

1, if x ∈ S\Dδ
.

(4.10)

Let eN = (0,0, . . . ,0,1)∈RN , denote

τ0 = 2 sup
x∈Dδ

|x|+ 1,

wτ(x)=w(x− τeN
)
,

τ ∈ [0,∞), (4.11)

where w is a ground state solution of (2.1)λ.

Lemma 4.4. If ( f 1)–( f 5) hold, then
(i) there exists t0 > 0 such that J(tηwτ) < 0 for t ≥ t0, τ ≥ τ0,
(ii) there exists τ∗ > 0 such that the following inequality holds for τ ≥ τ∗:

0 < sup
t≥0

J
(
tηwτ

)
< I∞(w)= S∞. (4.12)

Proof. (i) By the definition of η and Lemma 1.3(iii), we have

J
(
tηwτ

)= 1
2

∫

Ω

(∣∣∇(tηwτ
)∣∣2

+
(
tηwτ

)2)
dx− λ

∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

))
dsdx

≤ t2

2

∫

Ω

(∣∣∇(ηwτ
)∣∣2

+
(
ηwτ

)2)
dx− λ

∫

S\Dδ
F
(
x, twτ

)
dx.

(4.13)

From Lemma 1.3(ii), we have that F(x,u)/(ν−1uν) is monotone nondecreasing for u > 0,
where ν= 1 + θ−1 > 2. Thus for any given constant C > 0, there exists u0 ≥ 0 such that

F(x,u)≥ Cuν ∀u≥ u0. (4.14)
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Let r0 be a positive constant such that Bm(0;r0) = {y | |y| ≤ r0} ⊂⊂ ω, Bn(0;1) = {z |
|z| ≤ 1}, Ω1 = Bm(0;r0)×Bn(0;1), and Ω1τ = Bm(0;r0)×{z+ τeN | |z| ≤ 1}. By the defi-

nition of τ0, we have that Ω1τ ⊂⊂Ω\Dδ
for all τ ≥ τ0. This also implies that there exists

t0 ≥ 0, as t ≥ t0, we have

F
(
x, twτ

)≥ Ctνwν ∀τ ≥ τ0, ∀x ∈Ω1τ . (4.15)

Therefore as t > t0 and τ ≥ τ0,

J
(
tηwτ

)≤ t2

2

∫

Ω

(∣∣∇(ηwτ
)∣∣2

+
(
ηwτ

)2)
dx− λCtν

∫

Ω1τ

wν
τdx

≤ t2

2

∥
∥ηwτ

∥
∥2− λCtν

∫

Ω1

wνdx.

(4.16)

Since ν > 2, we can choose t0 > 0 large enough such that (i) holds.
(ii) By (i), J is continuous on H1

0 (Ω), J(0) = 0, and Lemma 4.2, we know that there
exists t1 with 0 < t1 < t0 such that

sup
t≥0

J
(
tηwτ

)= sup
t1≤t≤t0

J
(
tηwτ

) ∀τ ≥ τ0. (4.17)

Now, we define ητ(x)= η(x+ τeN ) for all x ∈ S. For τ ≥ τ0, t1 ≤ t ≤ t0, by ( f 4), (1.4),
(2.3), Lemmas 1.3 and 2.5, we have

J
(
tηwτ

)= t2

2

∫

Ω

(∣∣∇(ηwτ
)∣∣2

+
(
ηwτ

)2)
dx− λ

∫

Ω
F
(
x, tηwτ

)
dx

− λ
∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx

≤ t2

2

∫

S
(−Δw+w)

(
η2
τw
)
dx+

t2

2

∫

S

∣
∣∇ητ

∣
∣2|w|2dx− λ

∫

S
F
(
x, twτ

)
dx

+ λ
∫

S

∫ twτ

tηwτ
f (x,s)dsdx− λ

∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx

≤ t2

2

∫

S

(|∇w|2 +w2)dx− λ
∫

S
F
(
twτ

)
dx+

t20
2

∫

Dδ\D
|∇η|2∣∣wτ

∣
∣2
dx

+ λ
∫

Dδ

∫ twτ

0
f (x,s)dsdx− λ

∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx

≤ S∞ +Cε exp
(
− 2

√
1 +μ1− ετ

)
+ λC

∫

Dδ

[(
twτ

)2

2
+

(
twτ

)p

p

]

dx

− λ
∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx

≤ S∞ +Cε exp
(
− 2

√
1 +μ1− ετ

)

− λ
∫

Ω

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx,

(4.18)

where 0 < ε < 1 +μ1 and Cε is independent of τ.
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It follows from Taylor’s expansion that

f
(
x,uλ + s

)= f (x,s) + f ′(x,s)uλ +
1
2
f ′′(x,ξ)u2

λ, ξ ∈ (s,uλ + s
)
. (4.19)

From ( f 5) and the above formula, for t1 ≤ t ≤ t0, we obtain that

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
ds

≥
∫ t1ηwτ

0

(
f ′(x,s)uλ− f

(
x,uλ

))
ds

= [(t1wτ
)−1

f
(
x, t1ηwτ

)−ηu−1
λ f

(
x,uλ

)]
t1wτuλ.

(4.20)

Since wτ > 0 in S, there exists γ1 > 0 such that

wτ ≥ γ1 in Ω1τ . (4.21)

By the definition of wτ and uλ(x)→ 0 as |x| →∞, we see that for τ large enough,

t1wτ ≥ uλ in Ω1τ , (4.22)

then Lemma 1.3(ii) implies that there exist γ2 > 0 and τ1 > 0 such that, for τ ≥ τ1,

(
t1wτ

)−1
f
(
x, t1wτ

)−u−1
λ f

(
x,uλ

)
> γ2 in Ω1τ . (4.23)

Now by Lemma 2.5, for τ ≥max(τ0,τ1) and t1 ≤ t ≤ t0, we obtain that

∫

Ω1τ

∫ tηwτ

0

(
f
(
x,uλ + s

)− f
(
x,uλ

)− f (x,s)
)
dsdx

≥
∫

Ω1τ

[(
t1wτ

)−1
f
(
x, t1wτ

)−u−1
λ f

(
x,uλ

)]
t1wτuλdx

≥ γ1γ2

∫

Ω1τ

t1uλdx

≥ C2 exp
(
−
√

1 +μ1τ
)

,

(4.24)

where C2 is independent of τ.
Therefore we obtain that

J
(
tηwτ

)≤ S∞ +Cε exp
(
− 2

√
1 +μ1− ετ

)
− λC2 exp

(
−
√

1 +μ1τ
)

, (4.25)

for t ∈ [t1, t0] and τ ≥max(τ0,τ1).
Now, let ε = (1 +μ1)/2, then we can find some τ∗ large enough such that

Cε exp
(
−
√

2
(
1 +μ1

)
τ
)
− λC2 exp

(
−
√

1 +μ1τ
)
< 0, (4.26)

for all τ ≥ τ∗ and we complete the proof. �

Theorem 4.5. If ( f 1)–( f 5) hold, then (4.1) has a positive solution v if λ∈ (0,λ∗).
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Proof. Now, set

Γ= {p ∈ C([0,1],H1
0 (Ω)

) | p(0)= 0, p(1)= t0ηwτ∗
}

,

c = inf
p∈Γ

max
s∈[0,1]

J
(
p(s)

)
. (4.27)

By Lemmas 4.2 and 4.4, we have

0 < α≤ c < S∞. (4.28)

Applying the mountain pass theorem of Ambrosetti-Rabinowitz [13], there exists a (PS)c-
sequence {vk}, k ∈N, such that

J
(
vk
)−→ c,

J ′
(
vk
)−→ 0 strong in H−1(Ω).

(4.29)

By Proposition 4.3, there exist a sequence (still denoted by {vk}), an integer l ≥ 0, se-
quence {xik} in S, 1≤ i≤ l, a solution v of (4.1), and solutions ui of (2.1)λ such that

c = J(v) +
l∑

i=0

I∞
(
ui
)
. (4.30)

By the strong maximum principle, to complete the proof, we only need to prove v 
≡ 0 in
Ω. In fact, we have

c = J(v)≥ α > 0 if l = 0, S∞ > c ≥ J(v) + S∞ if l ≥ 1. (4.31)

This implies v 
≡ 0 in Ω. �

5. Properties of solutions

Denote byA= {(λ,u) | u solves problem (1.1)λ}, the set of solutions of (1.1)λ, λ∈ (0,λ∗].
For each (λ,u)∈A, let σλ(u) denote the number defined by

σλ(u)= inf

{∫

Ω

(|∇v|2 + v2)dx | v ∈H1
0 (Ω),

∫

Ω
f ′(x,u)v2dx = 1

}

, (5.1)

which is the smallest eigenvalue of the following problem:

−Δv+ v2 = σλ(u) f ′(x,u)v in Ω,

v > 0, v ∈H1
0 (Ω).

(5.2)

In this section, we always assume that ( f 1)–( f 5) hold. By Lemma 2.3, we have A ⊂
R×L∞(RN )∩H1

0 (Ω).
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Lemma 5.1. Let u be a solution and uλ be the minimal solution of (1.1)λ for λ ∈ (0,λ∗).
Then

(i) σλ(u) > λ if and only if u= uλ;
(ii) σλ(Uλ) < λ, where Uλ is the second solution of (1.1)λ constructed in Section 4.

Proof. Now, let ψ ≥ 0 and ψ ∈H1
0 (Ω). Since u and uλ slove (1.1)λ, then

∫

Ω
∇ψ ·∇(uλ−u

)
dx+

∫

Ω
ψ
(
uλ−u

)
dx

= λ
∫

Ω

(
f
(
x,uλ

)− f (x,u)
)
ψdx = λ

∫

Ω

(∫ uλ

u
f ′(x, t)dt

)

ψdx

≥ λ
∫

Ω
f ′(x,u)

(
uλ−u

)
ψdx.

(5.3)

Let ψ = (u−uλ)+ ≥ 0 and ψ ∈H1
0 (Ω). If ψ 
≡ 0, then (5.3) implies

−
∫

Ω

(|∇ψ|2 +ψ2)dx ≥−λ
∫

Ω
f ′(x,u)ψ2dx (5.4)

and, therefore, the definition of σλ(u) implies
∫

Ω

(|∇ψ|2 +ψ2)dx ≤ λ
∫

Ω
f ′(x,u)ψ2dx

< σλ(u)
∫

Ω
f ′(x,u)ψ2dx

≤
∫

Ω

(|∇ψ|2 +ψ2)dx,

(5.5)

which is impossible. Hence ψ ≡ 0, and u = uλ in Ω. On the other hand, by Lemma 3.4,
we also have that σλ(uλ) > λ. This completes the proof of (i).

By (i), we get that σλ(Uλ)≤ λ for λ∈ (0,λ∗). We claim that σλ(Uλ)= λ cannot occur.
We proceed by contradiction. Set w =Uλ−uλ; we have

−Δw+w = λ[ f (x,Uλ
)− f

(
x,Uλ−w

)]
, w > 0 in Ω. (5.6)

By σλ(Uλ)= λ, we have that the problem

−Δφ+φ = λ f ′(x,Uλ
)
φ, φ ∈H1

0 (Ω) (5.7)

possesses a positive solution φ1.
Multiplying (5.6) by φ1 and (5.7) by w, integrating and subtracting we deduce that

0=
∫

Ω
λ
[
f
(
x,Uλ

)− f
(
x,Uλ−w

)− f ′
(
x,Uλ

)
w
]
φ1dx

=−1
2

∫

Ω
λ f ′′

(
ξλ
)
w2φ1dx,

(5.8)

where ξλ ∈ (uλ,Uλ). Thus w ≡ 0, that is Uλ = uλ for λ ∈ (0,λ∗). This is a contradiction.
Hence we have that σλ(Uλ) < λ for λ∈ (0,λ∗). �
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Theorem 5.2. Suppose uλ∗ is a solution of (1.1)λ∗ , then σλ∗(uλ∗)= λ∗ and the solution uλ∗
is unique.

Proof. Define � :R×H1
0 (Ω)→H−1(Ω) by

�(λ,u)= Δu−u+ λ
(
f (x,u) +h(x)

)
. (5.9)

Since σλ(uλ) > λ for λ ∈ (0,λ∗), we have σλ∗(uλ∗) ≥ λ∗. If σλ∗(uλ∗) > λ∗, the equation
�u(λ∗,uλ∗)φ = 0 has no nontrivial solution. By the standard argument, we can prove
that �u maps R×H1

0 (Ω) onto H−1(Ω). Applying the implicit function theorem to �, we
can find a neighborhood (λ∗ − δ,λ∗ + δ) of λ∗ such that (1.1)λ possesses a solution uλ if
λ ∈ (λ∗ − δ,λ∗ + δ). This is contradictory to the definition of λ∗. Hence we obtain that
σλ∗(uλ∗)= λ∗.

Next, we are going to prove that uλ∗ is unique. In fact, suppose (1.1)λ∗ has another
solution Uλ∗ ≥ uλ∗ . Set w =Uλ∗ −uλ∗ ; we have

−Δw+w = λ∗[ f (w+uλ∗
)− f

(
x,uλ∗

)]
, w > 0 in Ω. (5.10)

By σλ∗(uλ∗)= λ∗, we have that the problem

−Δφ+φ= λ∗ f ′(x,uλ∗
)
φ, φ ∈H1

0 (Ω) (5.11)

possesses a positive solution φ1.
Multiplying (5.10) by φ1 and (5.11) by w, integrating and subtracting we deduce that

0=
∫

Ω
λ∗
[
f
(
w+uλ∗

)− f
(
x,uλ∗

)− f ′
(
x,uλ∗

)
w
]
φ1dx

= 1
2

∫

Ω
λ∗ f ′′

(
ξλ∗
)
w2φ1dx,

(5.12)

where ξλ∗ ∈ (uλ∗ ,uλ∗ +w). Thus w ≡ 0. �

Proposition 5.3. Let uλ be the minimal solution of (1.1)λ. Then uλ is uniformly bounded
in L∞(Ω)∩H1

0 (Ω) for all λ∈ (0,λ∗], and

uλ −→ 0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+. (5.13)

Proof. By (3.20), we have that

∥
∥uλ

∥
∥≤ λ

1− θ‖h‖2 (5.14)

for λ∈ (0,λ∗), and uλ is strictly increasing with respect to λ, we can easily deduce that uλ
is uniformly bounded in L∞(Ω)∩H1

0 (Ω) for λ∈ (0,λ∗] and uλ→ 0 in H1
0 (Ω) as λ→ 0+.

By (2.6) and the fact that uλ is uniformly bounded in L∞(Ω)∩H1
0 (Ω), we have that

∥
∥uλ

∥
∥∞ ≤ C1

∥
∥uλ

∥
∥
q0

+ λC2
(∥∥uλ

∥
∥p−1

(p−1)q0
+‖h‖q0

)

≤ C1
∥
∥uλ

∥
∥(q0−2)/q0

∞
∥
∥uλ

∥
∥2/q0

2 +C3λ

≤ C(λ2/q0 + λ
)
,

(5.15)
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where C is independent of λ, and λ ∈ (0,λ∗]. Hence we obtain that uλ → 0 in L∞(Ω) as
λ→ 0+. �

Proposition 5.4. If λ∈ (0,λ∗), then Uλ is unbounded in L∞(Ω)∩H1
0 (Ω), and

lim
λ→0+

∥
∥Uλ

∥
∥= lim

λ→0+

∥
∥Uλ

∥
∥∞ =∞. (5.16)

Proof. Let ϕλ be a minimizer of σλ(Uλ) for λ∈ (0,λ∗), that is

∫

Ω
f ′
(
x,Uλ

)
ϕ2
λ = 1,

∥
∥ϕλ

∥
∥2 = σλ

(
Uλ
)
. (5.17)

(i) First, we show that {Uλ : λ ∈ (0,λ0)} is unbounded in L∞(Ω) for any λ0 ∈ (0,λ∗).
We proceed by contradiction. Assume to the contrary that there exists C0 > 0 such that

∥
∥Uλ

∥
∥∞ ≤ C0 <∞ ∀λ∈ (0,λ0

)
. (5.18)

By ( f 1) and (5.18), there exists a constantM independent of λ, such that f ′(x,Uλ(x))≤
M for all λ ∈ (0,λ0) and x ∈ Ω. Hence, by (5.17) and σλ(Uλ) < λ for all λ ∈ (0,λ0), we
obtain that

1=
∫

Ω
f ′
(
x,Uλ

)
ϕ2
λ ≤M

∥
∥ϕλ

∥
∥2 =Mσλ

(
Uλ
)
<Mλ. (5.19)

This is a contradiction for all λ < 1/M. Hence, for any λ0 ∈ (0,λ∗), we have that {Uλ : λ∈
(0,λ∗)} is unbounded in L∞(Ω). From this result, it is easy to see that limλ→0+ ‖Uλ‖∞ =∞.

(ii) Now, we show that {Uλ : λ∈ (0,λ0)} is unbounded in H1
0 (Ω) for any λ0 ∈ (0,λ∗).

If not, then there exists a constant M independent of λ, such that

∥
∥Uλ

∥
∥≤M ∀λ∈ (0,λ0

)
. (5.20)

By (5.17), (5.20), ( f 2), the Hölder inequality, the Sobolev embedding theorem, and
σλ(Uλ) < λ for all λ∈ (0,λ∗), we have that

1=
∫

Ω
f ′
(
x,Uλ

)
ϕ2
λ ≤ C1

∫

Ω

(
1 +U

p−2
λ

)
ϕ2
λ ≤ C1

∥
∥ϕλ

∥
∥2

+C1
∥
∥Uλ

∥
∥p−2
p

∥
∥ϕλ

∥
∥2
p

≤ C1
∥
∥ϕλ

∥
∥2

+C2
∥
∥Uλ

∥
∥p−2∥∥ϕλ

∥
∥2 ≤ C3

∥
∥ϕλ

∥
∥2 = C3σλ

(
Uλ
)
< C3λ,

(5.21)

where C1, C2, and C3 are constants independent of λ. Now, let λ→ 0+, then we obtain
a contradiction. Hence {Uλ : λ ∈ (0,λ∗)} is unbounded in H1

0 (Ω) and limλ→0+ ‖Uλ‖ =
+∞. �

Proof of Theorems 1.1 and 1.2. First, we consider the case Ω = S\D. Theorem 1.1 now
follows from Lemmas 3.3, 3.4, and Theorems 4.5, 5.2. Theorem 1.2 follows immediately
from Lemma 3.4, and Propositions 5.3, 5.4. �

With the same argument, we also have that Theorems 1.1 and 1.2 hold for Ω=RN\D
or Ω= S or Ω=RN .
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