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1. Introduction, notations, and background

Boundary value problems (BVPs) for differential-operator equations (DOEs) inH-valued
(Hilbert space-valued) function spaces have been studied extensively by many researchers
(see [1–13] and the references therein). BVPs for DOE on E-valued (Banach space valued)
function spaces are studied in [1, 14–17]. The main aim of the present paper is to discuss
the BVPs for regular degenerate DOE with the parameter on E-valued function spaces.
The maximal regularity and Fredholmness of these problems in Banach-valued Lp-spaces
are established. In applications, the nonlocal BVPs for degenerate elliptic partial differen-
tial equations and for systems of elliptic equations with parameters on cylindrical domain
are studied.

Let E be a Banach space and let γ = γ(x), x = (x1,x2, . . . ,xn), be a positive measurable
function on a domain Ω ⊂ Rn. Let Lp,γ(Ω;E) denote the space of strongly measurable
E-valued functions that are defined on Ω with the norm

‖ f ‖Lp,γ = ‖ f ‖Lp,γ(Ω;E) =
(∫ ∥∥ f (x)

∥∥p
Eγ(x)dx

)1/p

, 1≤ p <∞. (1.1)
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For γ(x) ≡ 1, the space Lp,γ(Ω;E) will be denoted by Lp = Lp(Ω;E). Lp1,p2 (Ω) and
Wl

p1,p2
(Ω) will denote a scalar-valued (p1, p2)-integrable function space and Sobolev

space with mixed norms, respectively, [18]. Let Bs
p,q denote a Besov space (see, e.g., [18,

Section 2.3]).
A Banach space E is called the UMD-space (see, e.g., [19, 20]) if the Hilbert operator

(H f )(x)= lim
ε→0

∫
|x−y|>ε

f (y)
x− y

dy (1.2)

is bounded in the space Lp(R,E), p ∈ (1,∞). UMD spaces include, for example, Lp, lp
spaces and Lorentz spaces Lpq, p,q ∈ (1,∞).

Let C be a set of complex numbers and

Sϕ =
{
ξ;ξ ∈ C, |argξ −π| ≤ π−ϕ

}∪{0}, 0 < ϕ≤ π. (1.3)

A linear operator A is said to be positive in a Banach space E, with bound M if D(A) is
dense on E and

∥∥(A− ξI)−1
∥∥
B(E) ≤M

(
1 + |ξ|)−1

(1.4)

with ξ ∈ Sϕ,ϕ∈ (0,π], where M is a positive constant and I is an identity operator in E,
where L(E) is the space of bounded linear operators acting in E. Sometimes instead of
A+ ξI will be written A+ ξ and denoted by Aξ . It is known [33, Section 1.15.1] there exist
fractional powers Aθ of the positive operator A. By the definition of the positive operator
A for all ξ ∈ S(ϕ),

∥∥ξ(A− ξI)−1
∥∥
B(E) ≤M. (1.5)

The operator A(t) is said to be positive in the Banach space E uniformly with respect to t
if D(A(t)) is independent of t, D(A(t)) is dense in E, and

∥∥(A(t)− λI
)−1∥∥≤ M

1 + |λ| (1.6)

for all λ∈ S(ϕ), ϕ∈ (0,π].
Let E(Aθ) denote the space D(Aθ) with graphical norm defined as

‖u‖E(Aθ) =
(‖u‖p +

∥∥Aθu
∥∥p)1/p

, 1≤ p <∞, −∞ < θ <∞. (1.7)

Let E1 and E2 be two Banach spaces. By (E1,E2)θ,p, 0 < θ < 1, 1 ≤ p ≤∞, will be de-
noted an interpolation space for {E1,E2} by the K-method [21, Section 1.3.1].

We denote by D(Rn;E) the space of E-valued C∞-functions with compact support,
equipped with the usual inductive limit topology and S= S(Rn;E) denotes the E-valued
Schwartz space of rapidly decreasing, smooth functions. For E = C we simply write
D(Rn) and S(Rn), respectively. D′(Rn;E)= L(D(Rn),E) denote the space of E-valued dis-
tributions and S′(E) = S′(Rn;E) is a space of linear continued mapping from S(Rn) into



Veli B. Shakhmurov 3

E. Let E1 and E2 be two Banach spaces. The Fourier transform for u∈ S′(Rn;E) is defined
by

F(u)(ϕ)= u
(
F(ϕ)

)
, ϕ∈ S

(
Rn
)
. (1.8)

Let γ such that S(Rn;E1) is dense in Lp,γ(Rn;E1) (see, e.g., Lemma 2.1). A function Ψ ∈
C(Rn;L(E1,E2)) is called a Fourier multiplier from Lp,γ(Rn;E1) to Lq,γ(Rn;E2) if the map
u→Φu= F−1Ψ(ξ)Fu, u∈ S(Rn;E1) is well defined and extends to a bounded linear op-
erator

Φ : Lp,γ
(
Rn;E1

)−→ Lq,γ
(
Rn;E2

)
. (1.9)

We denote the set of all multipliers from Lp,γ(Rn;E1) to Lq,γ(Rn;E2) by M
q,γ
p,γ(E1,E2).

For E1 = E2 = E, we denote the M
q,γ
p,γ(E1,E2) by M

q,γ
p,γ(E). Let M(h)= {Ψh ∈M

q,γ
p,γ(E1,E2),

h ∈ H} be a collection of multipliers in M
q,γ
p,γ(E1,E2). A family of sets M(h) ⊂ B(E1,E2)

depending on h ∈ H is called a uniformly collection of multipliers with respect to h if
there exists a positive constant C independent on h∈H such that

∥∥F−1ΨhFu
∥∥
Lq,γ(Rn,E2) ≤ C‖u‖Lp,γ(Rn,E1) (1.10)

for all h∈H and u∈ S(Rn;E1).
The exposition of the theory of Lp-multipliers of the Fourier transformation, and

some related references, can be found in [33, Sections 2.2.1–2.2.4]. In vector-valued func-
tion spaces, Fourier multipliers have been studied in [14, 22, 23, 25–27, 29].

A set K ⊂ B(E1,E2) is called R-bounded (see, e.g., [14, 22, 28]) if there is a positive
constant C such that for all T1,T2, . . . ,Tm ∈ K and u1,u2, . . . ,um ∈ E1, m∈N,

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tjuj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (1.11)

where {r j} is a sequence of independent symmetric [−1,1]-valued random variables on
[0,1] and N denotes the set of natural numbers. The smallest such constant C is called
the R-bound of K and is denoted by R(K).

A family of setsK(h)⊂ B(E1,E2) depending on parameter h∈H is called uniformly R-
bounded with respect to h if there is a positive constant C such that for all T1,T2, . . . ,Tm ∈
K(h) and u1,u2, . . . ,um ∈ E1, m∈N ,

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tj(h)uj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (1.12)

where the constant C is independent on parameter h (i.e., suph∈H R(K(h)) <∞).
Let Wh = {Ψh ∈M

q
p(E1,E2), h ∈H} be a collection of multipliers in M

q
p(E1,E2). We

say that Wh is a uniform collection of multipliers if there exists a constant M > 0 inde-
pendent on h∈H such that

∥∥F−1ΨhFu
∥∥
Lq(Rn;E2) ≤M‖u‖Lp(Rn;E1) (1.13)

for all h∈H and u∈ S(Rn;E1).
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Let

Un =
{
β = (β1,β2, . . . ,βn

)
,|β| ≤ n

}
, ξβ = ξ

β1

1 ξ
β2

2 , . . . ,ξ
βn
n . (1.14)

Definition 1.1. The Banach space E is said to be a space satisfying a multiplier condition
with respect to p ∈ (1,∞) and weight function γ, when for every Ψ∈ C(n)(Rn/0;B(E)) if
the set

{
ξβD

β
ξΨ(ξ) : ξ ∈ Rn/0, β ∈Un

}
(1.15)

is R-bounded, then Ψ∈M
p,γ
p,γ (E).

A Banach space E is said to be a space satisfying a uniform multiplier condition, when
for Ψh ∈ C(n)(Rn;B(E)) if

sup
h∈H

R
({
ξβD

β
ξΨh(ξ) : ξ ∈Vn, β ∈Un

})
<∞, (1.16)

then Ψh is a uniform collection of multipliers in M
p
p (E) for p ∈ (1,∞).

A Banach space E has a property (α) (see, e.g., [22, 29]) if there exists a constant α such
that

∥∥∥∥∥
N∑

i, j=1

αi jεiε
′
jxi j

∥∥∥∥∥
L2(Ω×Ω′;E)

≤ α

∥∥∥∥∥
N∑

i, j=1

εiε
′
jxi j

∥∥∥∥∥
L2(Ω×Ω′;E)

(1.17)

for all N ∈N, xi, j ∈ E, αi j ∈ {0,1}, i, j = 1,2, . . . ,N , and all choices of independent, sym-
metric, {−1,1}-valued random variables ε1,ε2, . . . ,εN , ε′1,ε′2, . . . ,ε′N on probability spaces
Ω,Ω′. For example, the spaces Lp(Ω), 1≤ p <∞, have the property (α).

Remark 1.2. The result [21] implies that the space lp, p ∈ (1,∞), satisfies multiplier con-
dition with respect to p and the weight functions

γ = |x|α, −1 < α < p− 1, γ =
N∏
k=1

(
1 +

n∑
j=1

∣∣xj∣∣αjk

)βk

, αjk ≥ 0, N ∈N, βk ∈ R.

(1.18)

Moreover, the UMD spaces with (α) properties satisfy the multiplier condition with re-
spect to p ∈ (1,∞) and the weighted function γ = ∏n

k=1 |xk|γk , 0 ≤ γk < p − 1 (see
Theorem 2.2).

It is well known (see [25, 26]) that any Hilbert space satisfies the multiplier condition.
There are, however, Banach spaces which are not Hilbert spaces but satisfy the multiplier
condition, for example, UMD spaces (see [14, 17, 22, 27]).

Definition 1.3. A positive operator A is said to be R-positive in the Banach space E if there
exists ϕ∈ (0,π] such that the set

LA =
{(

1 + |ξ|)(A− ξI)−1 : ξ ∈ Sϕ
}

(1.19)

is R-bounded.
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Note that in a Hilbert space every norm bounded set is R-bounded. Therefore, in a
Hilbert space, all positive operators are R-positive. If A is a generator of a contraction
semigroup on Lq,1≤ q ≤∞ [30], A has bounded imaginary powers with ‖(−Ait)‖B(E) ≤
Ceν|t|, ν < π/2, [31] or if A is generator of a semigroup with Gaussian bound [23] in E ∈
UMD, then those operators are R-positive.

σ∞(E) will denote the space of compact operators in E. Let E0 and E be two Banach
spaces and E0 is continuously and densely embedded into E. Let Ω be a domain on Rn and
l = (l1, l2, . . . , ln). Wl

p,γ(Ω;E0,E) denotes a space that consists of functions u∈ Lp,γ(Ω;E0)

such that it has the generalized derivatives Dlk
k u= (∂lk /∂xlkk )u∈ Lp,γ(Ω;E) with norm

‖u‖Wl
p,γ(Ω;E0,E) = ‖u‖Lp,γ(Ω;E0) +

n∑
k=1

∥∥Dlk
k u
∥∥
Lp,γ(Ω;E) <∞. (1.20)

Let t = (t1, t2, . . . , tn), where t j > 0 are parameters. We define in this space a norm

‖u‖Wl
p,γ,t(Ω;E0,E) = ‖u‖Lp,γ(Ω;E0) +

n∑
k=1

∥∥tkDlk
k u
∥∥
Lp,γ(Ω;E). (1.21)

For E0 = E the space Wl
p,γ(Ω;E0,E) will be denoted by Wl

p,γ(Ω;E).
The weight γ is said to satisfy an Ap condition, that is, γ ∈ Ap, 1 < p <∞, if there is a

positive constant C such that

(
1
|Q|

∫
Q
γ(x)dx

)(
1
|Q|

∫
Q
γ−1/(p−1)(x)dx

)p−1

≤ C (1.22)

for all compacts Q ⊂ Rn.

Condition 1.4. Let γ =∏n
k=1 γk(xk), where γk ∈ Ap and there exist constants C1, C2 such

that

γk
(
y1
)≤ Ckγk

(
y2
)
, γ

1/p
k

(
y2
)
γ
−1/p
k

(
y1
)≤Mk

∣∣y2
∣∣νk/p∣∣y1

∣∣−νk/p,
∣∣γ1/p

k

(
y2
)
γ
−1/p
k

(
y1
)− 1

∣∣≤Dk

∣∣∣∣y2
∣∣νk/p∣∣y1

∣∣−νk/p− 1
∣∣, y1, y2 ∈ R\{0},

0≤ νk < p− 1, k = 1,2, . . . ,n.

(1.23)

2. Background materials

Embedding theorems for vector-valued Sobolev spaces played important role in the
present investigation. Embedding theorems in Hilbert-valued function spaces have been
studied, for example, in [11–13, 32]. This section is concentrated on weighted anisotropic
Banach-valued Sobolev spaces Wl

p,γ(Ω;E0,E) associated with Banach spaces E0, E. Several
conditions are found that ensure the continuity and compactness of embedding opera-
tors that are optimal regular in these spaces in terms of interpolations of E0 and E. In
particular, the most regular class of interpolation spaces Eα between E0, E, depending
on α and order of spaces are found that mixed derivatives Dα are bounded and compact
from Wl

p,γ(Ω;E0,E) to Lp,γ(Ω;Eα). These results generalize and improve the results [11–
13, 32]. Multiplier theorems in the operator-valued Lp spaces are important tools in the
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theory of embedding of function spaces and in BVPs. Since our consideration take place
in weighted case with parameterized estimates, so we have to generalize multiplier theo-
rems [22] for the case of Lp,γ and for multipliers depending on parameters. Lets first show
the following needed lemma.

Lemma 2.1. Let E be a Banach space, 1≤ p <∞, and γ a positive measurable function on
an open subset Ω of Rn, essentially bounded on compact subsets of Ω. Then the space D(Ω;E)
is dense in Lp,γ(Ω;E).

Proof. For u∈ Lp,γ(Ω;E) and n∈N let un : Ω→ E such that

un =
⎧⎪⎨
⎪⎩
u(x) if

∥∥u(x)
∥∥≤ n,

0 if
∥∥u(x)

∥∥ > n.
(2.1)

By the dominated convergence theorem limn→∞‖u− un‖Lp,γ(Ω;E) = 0, hence a com-
pactly supported function can be approximated with bounded compactly supported
functions, that is, with compactly supported function belonging to Lp(Ω;E). From the
standard proof of the denseness theorem in case of spaces without weight, it follows that
if u is a compactly supported function belonging to Lp(Ω;E), then there exists a com-
pact subset K ⊂ Ω, with suppu ⊆ K , and a sequence of functions un ∈ D(Ω;E), with
suppun ⊆ K such that limn→∞‖u−un‖Lp(Ω;E) = 0; since

∥∥u−un
∥∥
Lp,γ(Ω;E) =

(∫
K

∥∥u(x)−un(x)
∥∥pγ(x)dx

)1/p

≤ (sup
x∈K

γ(x)
)1/p∥∥u−un

∥∥
Lp(Ω;E),

(2.2)

we have

lim
n→∞

∥∥u−un
∥∥
Lp,γ(Ω;E) = 0. (2.3)

From [15] we have the proof. �

Theorem 2.2. Let the following conditions hold:
(1) the weighted function γ satisfies Condition 1.4;
(2) Banach spaces E1 and E2 are UMD space with property (α) and let Ψ∈ C(n)(Rn/0;

B(E1,E2)).
If

sup
h∈H

R
({
ξβD

β
ξΨh(ξ) : ξ ∈ Rn/0, β ∈Un

})
<∞, (2.4)

then Ψh(ξ) is a uniformal collection of multipliers in M
p,γ
p,γ (E1,E2).

If n= 1, then the result remains true for all E1,E2 ∈UMD spaces.

In a similar way as [11–13, 15] we obtain the following theorem.
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Theorem 2.3. Suppose the following conditions are satisfied:
(1) E is a Banach space that satisfies the multiplier condition with respect to p and

weighted function γ(x) and A is an R-positive operator in E for ϕ with 0 < ϕ≤ π;
(2) α = (α1,α2, . . . ,αn), l = (l1, l2, . . . , ln) are n-tuples of nonnegative integer numbers

such that κ=|α : l|=∑n
k=1(αk/lk)≤ 1, 1< p <∞, 0 < μ≤1−κ, and t=(t1, t2, . . . , tn),

0 < tk ≤ t0 <∞;
(3) Ω ∈ Rn is a region such that there exists a bounded linear extension operator from

Wl
p,γ(Ω;E(A),E) to Wl

p,γ(Rn;E(A),E). Then the following embedding:

DαWl
p,γ

(
Ω;E(A),E

)⊂ Lp,γ
(
Ω;E

(
A1−κ−μ)) (2.5)

is continuous and there exists a positive constant Cμ such that

n∏
k=1

tαk/lkk

∥∥Dαu
∥∥
Lp,γ(Ω;E(A1−κ−μ)) ≤ Cμ

[
hμ‖u‖Wl

p,γ,t(Ω;E(A),E) +h−(1−μ)‖u‖Lp,γ(Ω;E)
]

(2.6)

for all u∈Wl
p,γ(Ω;E(A),E), and h with 0 < h≤ h0 <∞.

Proof. It is sufficient to prove the estimate (2.6). At first we prove the estimate (2.6) for
Ω= Rn. Really, it is easy to see that

∥∥Dαu
∥∥
Lp,γ(Rn;E(A1−κ−μ)) ∼

∥∥F−′(iξ)αA1−κ−μû
∥∥
Lp,γ(Rn;E). (2.7)

Moreover, for u∈Wl
p,γ(Rn;E(A),E), we have

‖u‖Wl
p,γ,t(Rn;E(A),E) = ‖u‖Lp,γ(Rn;E(A)) +

n∑
k=1

∥∥tkDlk
k u
∥∥
Lp,γ(Rn;E)

= ∥∥F−′ û∥∥Lp,γ(Rn;E(A)) +
n∑

k=1

∥∥tkF−′[(iξk)lk û]∥∥Lp,γ(Rn;E)

∼

∥∥F−1Aû
∥∥
Lp,γ(Rn;E) +

n∑
k=1

∥∥tkF−′[(iξk)lk û]∥∥Lp,γ(Rn;E).

(2.8)

Thus the inequality (2.6) for Ω= Rn will be proved if the estimate

n∏
k=1

tαk/lkk

∥∥F−′(iξ)αA1−κ−μû
∥∥
Lq,γ(Rn,E)

≤ Cμ

[
hμ
(∥∥F−′Aû∥∥Lp,γ(Rn,E) +

n∑
k=1

∥∥tkF−′[(iξk)lk û]∥∥Lp,γ(Rn,E)

)

+h−(1−μ)
∥∥F−′ û∥∥Lp,γ(Rn,E)

)]
(2.9)

is provided for a suitable positive constant Cμ. Let

Qt,h(ξ)= hμ
(
A+

n∑
k=1

tk
∣∣ξk∣∣lk

)
+h−(1−μ). (2.10)
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By virtue of (2.8) it is easy to see that inequality (2.9) will follow immediately if we can
prove that the operator-function Ψt,h =

∏n
k=1 t

αk/lk
k (iξ)αA1−κ−μQ−1

t,h (ξ) is a uniform col-

lection of multipliers in M
p,γ
p,γ (E) depend on parameters t and h. To see this, it is sufficing

to show that the sets

{
ξβDβΨt,h(ξ) : ξ ∈ Rn/{0}, β ∈Un

}
(2.11)

are R-bounded in E and the R-bounds do not depend on t and h. In fact, by using a
similar technique as in [14, Lemma 3.1] we have

∣∣ξβ∣∣∥∥DβΨt,h(ξ)
∥∥
B(E) ≤ C, ξ ∈ Rn/{0}, β ∈Un, (2.12)

uniformly with respect to t and h. Due to R-positivity of operator A and by estimate
(2.12) we obtain that the sets

{
AQ−1

t,h (ξ) : ξ ∈ Rn/{0}},

{(
1 +

n∑
k=1

tk
∣∣ξk∣∣lk +h−1

)
Q−1

t,h (ξ) : ξ ∈ Rn/{0}
}

(2.13)

are R bounded uniformly with respect to t and h. Moreover, for u1,u2, . . . ,um ∈ E, m∈N ,
and ξ j = (ξ1 j ,ξ2 j , . . . ,ξnj)∈ Rn/{0}, we have

∥∥∥∥∥
m∑
j=1

r j(y)Ψt,h
(
ξ j
)
uj

∥∥∥∥∥
Lp

=
∥∥∥∥∥

m∑
j=1

r j(y)Φ(t)
(
ξ j
)α
A1−κ−μQ−1

t,h

(
ξ j
)
uj

∥∥∥∥∥
Lp

=
∥∥∥∥∥

m∑
j=1

r j(y)Φ(t)
(
ξ j
)α(

1 +
n∑

k=1

tk
∣∣ξk j∣∣lk +h−1

)−(κ+μ)

×
[(

1 +
n∑

k=1

tk
∣∣ξk j∣∣lk +h−1

)
Q−1

t,h

(
ξ j
)](κ+μ)[

AQ−1
t,h

(
ξ j
)]1−(κ+μ)

uj

∥∥∥∥
Lp

,

(2.14)

where {r j} is a sequence of independent symmetric {−1,1}-valued random variables on
[0,1]. By virtue of Kahane’s contraction principle [14, Lemma 3.5] we obtain from the
above equality

∥∥∥∥∥
m∑
j=1

r j(y)Ψt,h
(
ξ j
)
uj

∥∥∥∥∥
Lp(0,1;E)

≤2M0

∥∥∥∥∥
m∑
j=1

r j(y)

[(
1+

n∑
k=1

tk
∣∣ξk j∣∣lk +h−1

)
Q−1

t,h

(
ξ j
)](κ+μ)

×[AQ−1
t,h

(
ξ j
)]1−(κ+μ)

uj

∥∥∥∥∥
Lp(0,1;E)

.

(2.15)

Then by the above estimate, in view of (2.12), and by product properties of the collection
of R-bounded operators (see, e.g., [14, Proposition 3.4]) we get that the set {Ψt,h(ξ) :
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ξ ∈ Rn/{0}} is R-bounded uniformly with respect to t and h. In a similar way, by using
Kahane’s contraction principle and by product and additional properties of the collection
of R-bounded operators [14, Proposition 3.4], we obtain that the sets

{
ξβDβΨt,h(ξ) : ξ ∈ Rn/{0}, β ∈Un

}
(2.16)

are R-bounded uniformly with respect to t and h. Then we obtain that operator-function
Ψt,h(ξ) is a uniform collection of multipliers inM

q,γ
p,γ(E). Therefore, we obtain the estimate

(2.12). Then by using an extension operator in Wl
p,γ(Ω;E(A),E), we obtain from (2.9)

estimate (2.6). �

Theorem 2.4. Suppose all conditions of Theorem 2.3 are satisfied; Ω is a bounded region
on Rn satisfy the l-horn conditions and A−1 ∈ σ∞(E). Let the weighted function γ satisfy
Condition 1.4. Then for 0 < μ≤ 1−κ, an embedding

DαWl
p,γ

(
Ω;E(A),E

)⊂ Lp,γ
(
Ω;E

(
A1−κ−μ)) (2.17)

is compact.
Indeed putting in (2.6) h= ‖u‖Lp,γ(Ω;E)/‖u‖Wl

p,γ(Ω;E(A),E), the following multiplicative in-
equality is obtained:

∥∥Dαu
∥∥
Lp,γ(Ω;E(A1−κ−μ)) ≤ Cμ‖u‖μLp,γ(Ω;E)‖u‖1−μ

Wl
p,γ(Ω;E(A),E)

. (2.18)

By virtue of [16, Theorem 2], the embedding

Wl
p,γ

(
Ω;E(A),E

)⊂ Lp,γ(Ω;E) (2.19)

is compact. Then from the above estimate we obtain assertion of Theorem 2.4.
By a similar manner as Theorem 2.3, we have the following.

Theorem 2.5. Suppose all conditions of Theorem 2.3 are satisfied. Then for 0 < μ < 1−κ,
the embedding

DαWl
p,γ

(
Ω;E(A),E

)⊂ Lp,γ
(
Ω;
(
E(A),E

)
κ,p

)
(2.20)

is continuous and there exists a positive constant Cμ such that

n∏
k=1

tαk/lkk

∥∥Dαu
∥∥
Lp,γ(Ω;(E(A),E)κ,p) ≤ C‖u‖Wl

p,γ,t(Ω;E(A),E) (2.21)

for all u∈Wl
p,γ(Ω;E(A),E).

Proof. By reasoning as Theorem 2.3, it is sufficient to prove that an operator function
Ψt(ξ)=∏n

k=1 t
αk/lk
k ξα[A +

∑n
k=1 tkξ

lk
k ]−1 is multiplier from Lp,γ(Rn;E) to Lp,γ(Rn; ((E(A),

E)κ,p)). It is shown by taking into account R-positivity of the operator A and by using
the equivalent definition of the interpolation spaces [33, Section 1.14.5]. �

Theorem 2.6 [16]. Let E be a Banach space, let A be a positive operator in E with bound M.
Let m be a positive integer, 1≤ p <∞, and α∈ (1/2p,m+ 1/2p), 0≤ ν < 2pα− 1. Then for
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λ ∈ S(ϕ) the operator −A1/2
λ generates a semigroup e−A

1/2
λ x, which is holomorphic for x > 0.

Moreover, there exists a constant C ∈ R+ (depending only on M, ϕ, m, α, ν, p) such that for
every u∈ (E,E(A))α/m−(1+ν)/2mp,p and λ∈ S(ϕ),

∫∞
0

∥∥(A+ λI)αe−x(A+λI)1/2
u
∥∥pxνdx ≤ C

[‖u‖p(E,E(A))α/m−(1+ν)/2mp,p
+ |λ|pα−(1+ν)/2‖u‖pE

]
.

(2.22)

Proof. By using a similar technique as [8, Lemma 2.2], at first for a ϕ-positive operator A,
where ϕ∈ (π/2,π), and for every u∈ E such that

∫∞
0 ‖xα−(1+ν)/p(A(A+ x)−1)mu‖pxν−1dx<

∞, using integral representation formula of holomorphic semigroup we obtain an esti-
mate

∫∞
0

∥∥Aαe−xAu
∥∥pxνdx ≤ C

∫∞
0

∥∥xα−(1+ν)/p(A(A+ x)−1)mu∥∥p dx
x
. (2.23)

Then by using the above estimate and [8, Lemmas 2.3–2.5] we obtain the assertion of
Theorem 2.6. �

Theorem 2.7. Let the following conditions be satisfied:
(1) 0≤ ν < 1− 1/p, l and s are integer numbers, and 0≤ s≤ l− 1;
(2) θγ = (ps+ 1 + γ)/pl, θ = (ps+ 1)/pl, 0 < t ≤ t0 <∞, x0 = 0, 0 < h≤ h0.
Then, for u∈Wl

p,γ,t(0,b;E0,E) the following inequalities hold:
(a)

tθγ
∥∥u(s)(0)

∥∥
(E0,E)θγ ,p

≤ C
(∥∥tu(l)

∥∥
Lp,γ(0,b;E) +‖u‖Lp,γ(0,b;E0)

)
; (2.24)

(b)

tθ
∥∥u(s)(x0

)∥∥
(E0,E)θ,p

≤ C
(∥∥tu(l)

∥∥
Lp,γ(0,b;E) +‖u‖Lp,γ(0,b;E0)

)
, x0 = 0; (2.25)

(c)

tθγ
∥∥u(s)(0)

∥∥
E ≤ C

[
h1−θγ∥∥tu(l)

∥∥
Lp,γ(0,b;E) +h−θγ‖u‖Lp,γ(0,b;E0)

]
; (2.26)

(d)

tθ
∥∥u(s)(x0

)∥∥
E ≤ C

(
h1−θ∥∥tu(l)

∥∥
Lp,γ(0,b;E) +h−θ‖u‖Lp,γ(0,b;E0)

)
, x0 = 0. (2.27)

Proof. Really, by virtue of [32] for u∈Wl
p,γ(0,b;E0,E), the following inequality holds:

∥∥u(s)(0)
∥∥

(E0,E)θγ ,p
≤ C

(∥∥u(l)
∥∥
Lp,γ(0,b;E) +‖u‖Lp,γ(0,b;E0)

)
. (2.28)

Moreover, in view of [4, Theorem 1.7.7/2] (only by replacing |λ|−l for |λ| ≥ λ0 > 0 with
t) we obtain (a) and (b). Finally, (c) and (d) can be obtained from (a) and (b) by putting
th in place of t.

Then by using the above transformation we get the estimate (c). In a similar way, we
obtain the inequality (d).



Veli B. Shakhmurov 11

Consider a differential-operator equation

Lu= u(m)(x) +
m∑
k=1

akA
ku(m−k)(x)= 0, x ∈ (0,b). (2.29)

Let ω1,ω2, . . . ,ωm be roots of the equation

ωm + a1ω
m−1 + ···+ am = 0,

ωm =min
{

argωj , j = 1, . . . ,d; argωj +π j = d+ 1, . . . ,m
}

,

ωM =max
{

argωj , j = 1, . . . ,d; argωj +π j = d+ 1, . . . ,m
}
.

(2.30)

A system of numbers ω1,ω2, . . . ,ωm is called d-separated if there exists a straight line P
passing through 0 such that no value of the numbers ωj lies on it, and ω1,ω2, . . . ,ωd are
on one side of P while ωd+1, . . . ,ωm are on the other. �

By reasoning as [4, Lemma 5.3.2/1], we have the following.

Lemma 2.8. Let the following conditions be satisfied:
(1) γ(x)= xν, 0≤ ν < 1− 1/p, p ∈ (1,∞), am = 0, and the roots ωj are d-separated;
(2) A is a closed operator in a Banach space E with a dense domain D(A) and

∥∥(A− λI)−1
∥∥≤ C|λ|−1, −π

2
−ωM ≤ argλ≤ π

2
−ωm, |λ| −→∞. (2.31)

Then for a function u (x) to be a solution of (2.29), which belongs to the space Wm
p,ν

(0,b;E(Am),E), it is necessary and sufficient that

u=
[ d∑

k=1

e−xωkAgk +
m∑

k=d+1

e−(b−x)ωkAgk

]
, (2.32)

where

gk ∈
(
E
(
Am

)
,E
)

(1+ν)/mp,p, k = 1, . . . ,d, gk ∈
(
E
(
Am

)
,E
)

1/mp,p, k = d+ 1, . . . ,m.
(2.33)

3. A statement of the problem

In a Banach space E consider a degenerate nonlocal boundary value problem

Lu=−tu[2](x) +Au(x) + t1/2B1(x)u[1](x) +B2(x)u(x)= f (x), x ∈ (0,1), (3.1)

L1u= α0t
θ1u[m1](0) +

M1∑
j=1

tη1 j T1 ju
(
x1 j
)= f1,

L2u= β0t
θ2u[m2](1) +

M2∑
j=1

tη2 j T2 ju
(
x2 j
)= f2,

(3.2)
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where xk j ∈ [0,1], ηk j = 1/2p(1− ν), when xk j = 0 and ηk j = 1/2p, when xk j = 0, more-
over,

θ1 = pm1(1− ν) + 1
2p(1− ν)

, θ2 = pm2 + 1
2p

, u[i] =
(
xν d

dx

)i
u(x),

ν≥ 0, mk ∈ {0,1}, k = 1,2;
(3.3)

α0, β0 are complex numbers, t is a small parameter, and fk ∈ Ek = (E(A),E)θk ,p, k = 1,2,
where A, Bk(x), for x ∈ [0,1], and Tk j are possible unbounded operators in E.

The function u that belongs to a space

W [2]
p,ν
(
0,1;E(A),E

)

=
{
u; u∈ Lp

(
0,1;E(A)

)
, u[2] ∈ Lp(0,1;E), ‖u‖

W [2]
p,ν

(
0.1;E(A),E

)
= ‖Au‖Lp(0,1);E +

∥∥u[2]
∥∥
Lp(0,1;E) <∞

}
(3.4)

and satisfies (3.1) a.e. on (0,1) is said to be solution of (3.1).
Let

W [2]
p,ν
(
0,1;E(A),E,Lk

)= {u;u∈W [2]
p,ν
(
0,1;E(A),E

)
, Lku= 0, k = 1,2

}
. (3.5)

Remark 3.1. Under a substitution

y = (1− ν)−1x1−ν, (3.6)

the spaces Lp(0,1;E) and W [2]
p,ν(0,1;E(A),E) are mapped isomorphically onto the

weighted spaces Lp,γ(0,b;E) and W2
p,γ(0,b;E(A),E), respectively, where

b= 1
1− ν

, γ = (1− ν)ν/(1−ν)yν/(1−ν). (3.7)

Moreover, under the substitution (3.6), the problem (3.1)-(3.2) reduces to a nondegen-
erate BVP

Lu=−tu(2)(y) +Au(y) + t1/2B̃1(x)u(1)(y) + B̃2(y)u(y)= f (y), y ∈ (0,b),

L1u= α0t
θ1u(m1)(0) +

M1∑
j=1

tη1 j T1 ju
(
y1 j
)= f1,

L2u= β0t
θ2u(m2)(b) +

M2∑
j=1

tη2 j T2 ju
(
y2 j
)= f2

(3.8)

in the weighted space Lp,γ(0,b;E), where

B̃k = Bk
(
(1− ν)1/(1−ν)y1/(1−ν)), yk j = (1− ν)−1x1−ν

k j , k = 1,2. (3.9)
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4. Homogeneous equations

Let us first consider a nonlocal boundary value problem

L0(λ, t)u=−tu[2](x) + (A+ λ)u(x)= 0,

L1u= α0t
θ1u[m1](0)= f1, L2u= β0t

θ2u[m2](1)= f2,
(4.1)

where mk ∈ {0,1}; αk, βk, δk j are complex numbers, A is, generally speaking, an un-
bounded operator in E.

Theorem 4.1. Let A be a positive operator in a Banach space E for ϕ ∈ (0,π], 0 ≤ ν <
1− 1/p, p ∈ (1,∞), 0 < t ≤ t0 <∞, α0 = 0, β0 = 0. Then the problem (4.1) for fk ∈ Ek,

|argλ| ≤ π − ϕ, for sufficiently large |λ| and t, has a unique solution u belongs to W [2]
p,ν

(0,1;E(A),E), and the coercive uniform estimate

|λ|‖u‖Lp(0,1;E) +
∥∥tu[2]

∥∥
Lp(0,1;E) +‖Au‖Lp(0,1;E) ≤M

2∑
k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
)

(4.2)

holds with respect to parameters t and λ.

Proof. Under the substitution (3.6), the problem (4.1) reduces to a nondegenerate prob-
lem

L0(λ, t)u=−tu(2)(y) + (A+ λ)u(y)= 0, (4.3)

L1u= α0t
η1u(m1)(0)= f1, L2u= β0t

η2u(m2)(b)= f2 (4.4)

in the weighted space Lp,γ(0,b;E). Dividing both sides of (4.3) to t > 0, we obtain a bound-
ary value problem

L0(λ, t)u=−u′′(y) + t−1(A+ λ)u(y)= 0, (4.5)

L1u= α0t
θ1u(m1)(0)= f1, L2u= β0t

θ2u(m2)(b)= f2. (4.6)

Since A is the positive operator in E and 0 < t < t0 <∞, then A/t is positive uniformly
with respect to t, and for all λ∈ Sϕ, we have

∥∥∥∥
(
A

t
− λI

)−1∥∥∥∥≤M
t

1 + t|λ| . (4.7)

By virtue of condition (1) together with estimate (4.7) and by virtue of [4, Lemma
5.4.2/6], there is a holomorphic semigroup e−x(t−1Aλ)1/2

for x > 0, which is strongly contin-
uous for x ≥ 0. Then by virtue of Lemma 2.8 an arbitrary solution of (4.5), for |argλ| ≤
π−ϕ, belonging to W2

p,γ(0,b;E(A),E) has the form

u(y)= [e−yt−1/2A1/2
λ g1 + e−(b−y)t−1/2A1/2

λ g2
]
, (4.8)
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where

Aλ =A+ λI , g1 ∈
(
E(A),E

)
1/2p(1−ν),p, g2 ∈

(
E(A),E

)
1/2p,p. (4.9)

Now taking into account the boundary conditions (4.6), we obtain algebraic linear
equations with respect to g1, g2:

t1/2p(1−ν)α0A
m1/2
λ

[
(−1)m1g1 + e−bt

−1/2A1/2
λ g2

]= f1,

t1/2pβ0A
m2/2
λ

[
(−1)m2e−bt

−1/2A1/2
λ g1 + g2

]= f2.
(4.10)

The system (4.10) can be expressed as the following matrix-operator equation:

D(λ, t)

[
g1

g2

]
=
[
f1
f2

]
, (4.11)

where

D(λ, t)=
⎡
⎣ (−1)m1 t1/2p(1−ν)α0A

m1/2
λ t1/2p(1−ν)α0A

m1/2
λ e−bt−1/2A1/2

λ

(−1)m2 t1/2pβ0A
m2/2
λ e−bt−1/2A1/2

λ t1/2pβ0A
m2/2
λ

⎤
⎦ . (4.12)

Let Q(λ, t) denote a determinant-operator of the matrix-operator D(λ, t). It is clear that

Q(λ, t)= α0β0A
(m1+m2)/2
λ t(2−ν)/2p(1−ν)[(−1)m1 − (−1)m2e−2bt−1/2A1/2

λ
]
. (4.13)

Using the properties of positive operators and holomorphic semigroups (see [4,
Lemma 5.4.2/6]) it is clear to see that for |argλ| ≤ π−ϕ, |λ| →∞ and 0 < t ≤ t0,

∥∥e−2t−1/2A1/2
λ
∥∥ < 1. (4.14)

The above estimate implies

∥∥[(−1)m1 − (−1)m2e−2t−1/2A1/2
λ
]−1∥∥≤ C. (4.15)

Due to the positivity of operator A in E and by (4.15) we obtain that operator Q(λ, t)
is invertible in E2 = E×E and

Q−1(λ, t)= 1
α0β0

t(ν−2)/2p(1−ν)A−(m1+m2)/2
λ Q0, Q0 =

[
(−1)m1 − (−1)m2e−2tb−1/2A1/2

λ
]−1

.

(4.16)

By virtue of estimate (4.15) it is clear that the operator Q−1(λ, t) is bounded uniformly
with respect to the parameter λ, that is,

∥∥Q−1(λ, t)
∥∥≤ Ct(ν−2)/2p(1−ν). (4.17)
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Consequently, the system (4.10) has a unique solution for |argλ| ≤ π −ϕ, sufficiently
large |λ|, and the solution can be expressed in the form

g1 =Q−1
[
t1/2pβ0A

m2/2
λ f1−α0t

1/2p(1−ν)Am1/2
λ e−bt

−1/2A1/2
λ f2

]
,

g2 =Q−1
[

(−1)m1 t1/2p(1−ν)α0A
m1/2
λ f2− (−1)m2 t1/2pβ0A

m2/2
λ e−bt

−1/2A1/2
λ f1

]
.

(4.18)

Substituting (4.16) and (4.18) into (4.8), we obtain a representation of the solution of
the problem (4.5)-(4.6):

u(y)= Q0

α0
t−1/2p(1−ν)A−m1/2

λ

[
e−yt

−1/2A1/2
λ − (−1)m2e−(2b−y)t−1/2A1/2

λ
]
f1

+
Q0

β0
t−1/2pA−m2/2

λ

[
(−1)m1e−(b−y)t−1/2A1/2

λ − e−(y+b)t−1/2A1/2
λ
]
f2.

(4.19)

By virtue of the properties of the golomorphic semigroups [33, Section 1.13.1], in view
of uniformly boundedness of Q0, and by changing of variable, we obtain from (4.20) a
uniformly estimate, with respect to t and λ,

|λ|‖u‖Lp,γ +‖tu′′‖Lp,γ +‖Au‖Lp,γ

≤ C
{
|λ|
[∥∥A−m1/2

λ e−zA
1/2
λ f1

∥∥
Lp,γ

+
∥∥A−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

]

+
∥∥A1−m1/2

λ e−zA
1/2
λ f1

∥∥
Lp,γ

+
∥∥A1−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

}
.

(4.20)

By the properties of resolvent of positive operator A, we have

|λ|
[∥∥A−m1/2

λ e−zA
1/2
λ f1

∥∥
Lp,γ

+
∥∥A−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

]

≤ |λ|∥∥A−1
λ

∥∥[∥∥A1−m1/2
λ e−zA

1/2
λ f1

∥∥
Lp,γ

+
∥∥A1−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

]

≤M
[∥∥A1−m1/2

λ e−zA
1/2
λ f1

∥∥
Lp,γ

+
∥∥A1−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

]
.

(4.21)

By virtue of estimates (4.20), (4.21) and Theorem 2.6 we obtain

|λ|‖u‖Lp,γ +‖tu′′‖Lp,γ +‖Au‖Lp,γ

≤M
[∥∥A1−m1/2

λ e−zA
1/2
λ f1

∥∥
Lp,γ

+
∥∥A1−m2/2

λ e−(b−z)A1/2
λ f2

∥∥
Lp,γ

]

≤M
2∑

k=1

[∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥
]
.

(4.22)

Then by virtue of estimate (4.22) and Remark 3.1 we obtain the estimate (4.2). �
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5. Nonhomogeneous equations

Now consider a nonlocal boundary value problem for a nonhomogeneous equation with
parameters t and λ in the space Lp(0,1;E):

L0(λ, t)u=−tu[2](x) + (A+ λI)u(x)= f (x), x ∈ (0,1),

L1u= α0t
η1u[m1](0)= f1, L2u= β0t

η2u[m2](1)= f2.
(5.1)

Theorem 5.1. Let the following conditions be satisfied:
(1) E is a Banach space that satisfies the multiplier condition with respect to p and

weighted function γ(y)= yν/(1−ν), 0≤ ν < 1− 1/p;
(2) A is an R-positive operator in E for ϕ∈ (0,π];
(3) 0 < t ≤ t0 < ∞ and α0 = 0, β0 = 0. Then the operator u → D0(λ, t)u =

{L0(λ, t)u,L10u,L20u} for |argλ| ≤ π −ϕ and for sufficiently large |λ| is an isomor-

phism from W [2]
p,ν(0,1;E(A),E) onto Lp(0,1;E) +E1 +E2. Moreover, the coercive uni-

form estimate

|λ|‖u‖Lp(0,1;E) +
∥∥tu[2]

∥∥
Lp(0,1:E) +‖Au‖Lp(0,1:E)

≤ C

[
‖ f ‖Lp(0,1:E) +

2∑
k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
)] (5.2)

holds with respect to parameters λ and t.

Proof. By virtue of Remark 3.1, under the substitution (3.2), the problem (5.1) reduces
to the nondependence problem

L0(λ, t)u=−tu(2)(y) + (A+ λI)u(y)= f (y), y ∈ (0,b),

L1u= α0t
θ1u(m1)(0)= f1, L2u= β0t

θ2u(m2)(b)= f2
(5.3)

in the weighted space Lp,γ(0,b;E). It is clear that the problem (5.3) is equivalent to the
problem

L0(λ, t,D)u=−u′′(y) +
1
t

(A+ λI)u(y)= f (y)
t

, x ∈ (0,b),

L1u= α0t
θ1u(m1)(0)= f1, L2u= β0t

θ2u(m2)(b)= f2.

(5.4)

We have proved the uniqueness of the solution of the problem (5.3) in Theorem 4.1.
Let us define

f (y)=
⎧⎪⎨
⎪⎩
f (y) if y ∈ [0,b],

0 if y /∈ [0,b].
(5.5)

We now show that the solution of the problem (5.4) which belongs to the space W2
p,γ

(0,b;E(A)E) can be represented as a sum u(y)= u1(y) + u2(y), where u1 is a restriction
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on [0,b] of the solution u of the equation

L0(λ, t)u= f (y), y ∈ R= (−∞,∞) (5.6)

and u2 is a solution of the problem

L0(λ, t)u= 0, Lk0u= fk −Lk0u1. (5.7)

A solution of (5.6) is given by the formula

u(y)= F−1L−1
0 (λ, t,ξ)F f , (5.8)

where F f is the Fourier transform of the function f , and L0(λ, t,ξ) is a characteristic
operator pencil of (5.6), that is,

L0(λ, t,ξ)= (tξ2 + λ
)
I +A. (5.9)

It follows from the above expression that

|λ|‖u‖Lp,γ(R;E) +‖u‖W2
p,γ,t(R;E(A),E)

= |λ|‖u‖Lp,γ(R;E) +‖Au‖Lp,γ(R;E) +
∥∥tu(2)

∥∥
Lp,γ(R;E)

= ∥∥F−1λL−1
0 (λ, t,ξ)F f

∥∥
Lp,γ(R;E) +

∥∥F−1AL−1
0 (λ, t,ξ)F f

∥∥
Lp,γ(R;E)

+
∥∥tF−1[ξ2L−1

0 (λ, t,ξ)F f
]∥∥

Lp,γ(R;E).

(5.10)

By virtue of the R-positivity of operator A and due to that R-bounds are homogenous
with respect to product by scalar and satisfy the triangle inequality (see, e.g., [14, Proposi-
tion 3.4]) for operator functions H(λ, t,ξ)= λL−1

0 (λ, t,ξ), Hk+1(λ, t,ξ)= (tξ)2kA1−kL−1
0 (λ,

t,ξ), k = 0,1, we have

R
({

ξ
d

dξ
H(λ, t,ξ)

}
: ξ ∈ R \ {0}

)
≤ C,

R
({

ξ
d

dξ
Hk+1(λ, t,ξ)

}
: ξ ∈ R \ {0}

)
≤ C, k = 0,1.

(5.11)

Therefore, we obtain that the operator-valued functions H (λ, t,ξ) and Hk+1(λ, t,ξ) are
uniformly R-bounded multipliers with respect to t,λ and R-bounds are independent of
t and λ. Then in view of Definition 1.1, it follows that the operator-functions H(λ, t,ξ),
Hk+1(λ, t,ξ) are uniformly Fourier multipliers in Lp,γ(R;E). Then, by using the equality
(5.10), we get

|λ|‖u‖Lp,γ +‖Au‖Lp,γ +‖tu′′‖Lp,γ ≤ C‖ f ‖Lp,γ . (5.12)

That is (5.6) have a solution u∈W2
p,γ(R;E(A)E) and u1 ∈W2

p,γ(0,b;E(A)E). By virtue
of Theorem 2.7, we obtain

u(mk)
1 (0)∈ E1, u(mk)

1 (b)∈ E2. (5.13)
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Hence,

L0ku1 ∈ Ek, k = 1,2. (5.14)

Then by virtue of Theorem 4.1 the problem (5.7) has a unique solution u2(x) that
belongs to the space W2

p,γ(0,b;E(A),E) for |argλ| ≤ π −ϕ and for sufficiently large |λ|.
Moreover, for the solution of the problem (5.7), we have

|λ|∥∥u2
∥∥
Lp,γ

+
∥∥tu′′2

∥∥
Lp,γ

+
∥∥Au2

∥∥
Lp,γ

≤ C

[ 2∑
k=1

(∥∥ fk −L0ku1
∥∥
Ek

+ |λ|1−θk∥∥ fk −L0ku1
∥∥
E

)]

≤ C
2∑

k=1

[∥∥ fk∥∥Ek +
∥∥L0ku1

∥∥
Ek

+ |λ|1−θk∥∥ fk∥∥E + |λ|1−θk∥∥L0ku1
∥∥
E

= C

[( 2∑
k=1

∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
)

+α0t
θ1
∥∥u(m1)

1 (0)
∥∥
E1

+α0|λ|1−θ1 tθ1
∥∥u(m1)

1 (0)
∥∥
E +β0t

θ2
∥∥u(m2)

1 (b)
∥∥
E2

+β0|λ|1−θ2 tθ2
∥∥u(m2)

1 (b)
∥∥
E

]
.

(5.15)

From (5.12), we obtain

|λ|∥∥u1
∥∥
Lp,γ(0,b;E) +

∥∥tu(2)
1

∥∥
Lp,γ(0,b:E) +

∥∥Au1
∥∥
Lp,γ(0,b:E) ≤ C‖ f ‖Lp,γ(0,b;E). (5.16)

Therefore, by Theorem 2.7 for y = 0, k = 1 and for y = b, k = 2, we have

tθk
∥∥u(mk)

1 (y)
∥∥
Ek
≤ C

∥∥u1
∥∥
W2

p,γ,t(0,b;E(A),E) ≤ C‖ f ‖Lp,γ . (5.17)

By virtue of Theorem 2.7, for h= |λ|−1 and u∈W2
p,γ(0,b;E(A),E), we get

|λ|1−θk tθk∥∥u(mk)(y)
∥∥
E ≤ C

[‖u‖W2
p,γ,t(0,b;E(A),E) + |λ|‖u‖Lp,γ

]
. (5.18)

From (5.18), we obtain the estimate

|λ|1−θk tθk∥∥u(mk)
1 (y)

∥∥
E ≤ C

[∥∥tu(2)
1

∥∥
Lp,γ

+
∥∥Au1

∥∥
Lp,γ

+ |λ|∥∥u1
∥∥
Lp,γ

]≤ C‖ f ‖Lp,γ (5.19)

uniformly with respect to t and λ. Hence from (5.15), (5.17), and (5.19), we have

|λ|∥∥u2
∥∥
Lp,γ

+
∥∥tu′′2

∥∥
Lp,γ

+
∥∥Au2

∥∥
Lp,γ

≤ C

[
‖ f ‖Lp,γ +

2∑
k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
)]

.
(5.20)

Then the estimates (5.16), (5.20), and Remark 3.1 imply (5.2). �
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6. Coerciveness on the space variable and Fredholmness

Consider the problem (3.1)-(3.2).

Theorem 6.1. Let the following conditions be satisfied:
(1) E is a Banach space that satisfies the multiplier condition with respect to p and

weighted function γ(y) = yν/(1−ν), 0 ≤ ν < 1− 1/p, θ1 =m1/2 + 1/2p(1− ν), θ2 =
m1/2 + 1/2p, p ∈ (1,∞);

(2) A is an R-positive operator in E for ϕ= π and A−1 ∈ σ(E);
(3) α0 = 0, β0 = 0, 0 < t ≤ t0 <∞;
(4) for any ε > 0 and for almost all x ∈ [0,1],

∥∥B1(x)u
∥∥≤ ε

∥∥A1/2u
∥∥+C(ε)‖u‖, u∈ E

(
A1/2),∥∥B2(x)u

∥∥≤ ε‖Au‖+C(ε)‖u‖, u∈D(A),
(6.1)

for u∈ E(A1/2) the function B1(x)u and for u∈D(A) the function B2(x)u are mea-
surable on [0,1] in E;

(5) if mk = 0, then Tk j = 0; if mk = 1, then for u∈ (E(A),E)σ ,p and ε > 0,
∥∥Tk ju

∥∥
Ek
≤ ε‖u‖(E(A),E)σ ,p +C(ε)‖u‖, (6.2)

where σ = 1/2p(1− ν) if xk j = 0, σ = 1/2p if xk j = 0.
Then
(a) the coercive uniform estimate

∥∥tu[2]
∥∥
Lp(0,1:E) +‖Au‖Lp(0,1:E)

≤ C

[
‖Lu‖Lp(0,1;E) +

2∑
k=1

∥∥Lku∥∥(E(A),E)θk ,p +‖u‖Lp(0,1;E)

] (6.3)

holds with respect to the parameter t for the solution u of the problem (3.1)-(3.2);

(b) the operator u→D(t)u= {Lu,L1u,L2u} from W [2]
p,ν(0,1;E(A),E) into

Lp(0,1;E) +
(
E(A),E

)
θ1

+
(
E(A),E

)
θ2

(6.4)

is bounded and Fredholm.

Proof. By Remark 3.1 it is sufficient to consider the problem (3.8) in Lp,γ(0,b;E). The
general case is reduced to the latter if the operator A + λ0I , for some sufficiently large
λ0 > 0, is considered instead of the operator A, and the operator B̃2(x)− λ0I is considered
instead of the operator B̃2(x). Let u ∈W2

p,γ(0,b;E(A),E) be a solution of the problem
(3.8). Then u(y) is a solution of the problem

− d2

dy2
u(y) + (A+ λI)u(y)= f (y) + λu(y)− B̃1(y)

d

dy
u(y)− B̃2(y)u(y),

L10u= f1−
M1∑
j=1

t1/2p(1−ν)T1 ju
(
y1 j
)
, L20u= f2−

M2∑
j=1

t1/2pT2 ju
(
y2 j
)
,

(6.5)
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where Lk0 are defined by (4.3). By Theorem 5.1 for some sufficiently large λ0 > 0, we have
the estimate

∥∥tu(2)
∥∥
Lp,γ

+‖Au‖Lp,γ

≤ C

[∥∥ f + λ0u− t1/2B1u
(1)−B2u

∥∥
Lp,γ

+

∥∥∥∥∥ f1−
M1∑
j=1

t1/2p(1−ν)T1 ju
(
y1 j
)∥∥∥∥∥

E1

+

∥∥∥∥∥ f2−
M2∑
j=1

t1/2pT12u
(
y2 j
)∥∥∥∥∥

E2

]
.

(6.6)

By virtue of condition (4) it follows that for y ∈ (0,b),

∥∥B̃1(y)u(1)
∥∥≤ ε

∥∥A1/2u(1)(y)
∥∥+C(ε)

∥∥u(1)(y)
∥∥,

∥∥B̃2(y)u(y)
∥∥≤ ε

∥∥Au(y)
∥∥+C(ε)

∥∥u(y)
∥∥,

(6.7)

hence
∥∥B̃1u

(1)
∥∥
Lp,γ
≤ ε

∥∥A1/2u(1)
∥∥
Lp,γ

+C(ε)
∥∥u(1)

∥∥
Lp,γ

,

∥∥B̃2u
∥∥
Lp,γ
≤ ε‖Au‖Lp,γ +C(ε)‖u‖Lp,γ , ε > 0.

(6.8)

By virtue of Theorem 2.3, we have

∥∥t1/2A1/2u(1)(y)
∥∥≤ c‖u‖W2

p,γ,t(0,b;E(A),E). (6.9)

Moreover, by virtue of Theorem 2.3 (by choosing A an identity operator in E) there exists
C > 0 such that for 0 < t ≤ t0 and 0 < h≤ h0,

∥∥t1/2Du
∥∥
Lp,γ(0,b;E) ≤ C

(
h1/2

∥∥tu(2)
∥∥
Lp,γ

+h−1/2‖u‖Lp,γ(0,b;E)
)
. (6.10)

Therefore, we can conclude that

∥∥t1/2B̃1u
(1)
∥∥
Lp,γ
≤ ε

∥∥t1/2A1/2u(1)
∥∥
Lp,γ

+C(ε)
∥∥t1/2u(1)

∥∥
Lp,γ

≤ C
(
ε+C(ε)h1/2)‖u‖W2

p,γ,t(0,b;E(A),E) +CC(ε)h−1/2‖u‖Lp,γ(0,b;E).
(6.11)

With a suitable choice of ε and h, C(ε+C(ε)h1/2) can be made arbitrarily small, hence
this proves that for every ε > 0 there exists C(ε) independent of u and t such that

∥∥t1/2B̃1u
(1)
∥∥
Lp,γ
≤ ε‖u‖W2

p,γ,t(0,b;E(A),E) +C(ε)‖u‖Lp,γ(0,b;E). (6.12)

Moreover, it is clear that

∥∥B̃2u
∥∥
Lp,γ
≤ ε‖Au‖Lp,γ +C(ε)‖u‖Lp,γ

≤ ε‖u‖W2
p,γ,t(0,b;E(A),E) +C(ε)‖u‖Lp,γ(0,b;E).

(6.13)
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In (6.6) it remains to estimate the terms

t1/2p(1−ν)
∥∥Tk ju(0)

∥∥
Ek

, t1/2p
∥∥Tk ju

(
yk j
)∥∥

Ek
(6.14)

with yk j = 0; therefore, we have to prove that for every ε > 0 there exists C(ε) such that

t1/2p(1−ν)
∥∥Tk ju

(
yk j)

∥∥
Ek
≤ ε‖u‖W2

p,γ,t(0,b;E(A),E) +C(ε)‖u‖Lp,γ(0,b;E),

t1/2p
∥∥Tk ju

(
yk j
)∥∥

Ek
≤ ε‖u‖W2

p,γ,t(0,b;E(A),E) +C(ε)‖u‖Lp,γ(0,b;E).
(6.15)

By hypothesis (5) for every δ > 0 if yk j = 0, we have

∥∥u(yk j)∥∥Ek ≤ δ
∥∥u(yk j)∥∥(E(A),E)1/2p(1−ν),p

+C(δ)
∥∥u(yk j)∥∥E, (6.16)

and if yk j = 0, we have

∥∥u(yk j)∥∥Ek ≤ δ
∥∥u(yk j)∥∥(E(A),E)(1/2p),p

+C(δ)
∥∥u(yk j)∥∥E. (6.17)

From Theorem 2.7, it follows that

t1/2p(1−ν)
∥∥u(0)

∥∥
(E(A),E)σ ,p

≤ C
[∥∥tu(2)

∥∥
Lp,γ

+‖Au‖Lp,γ

]
, (6.18)

and if yk j = 0,

t1/2p
∥∥u(yk j)∥∥(E(A),E)σ ,p

≤ C
[∥∥tu(2)

∥∥
Lp,γ

+‖Au‖Lp,γ

]
,

t1/2p(1−ν)
∥∥u(0)

∥∥
E ≤ C

[
h1−1/2p(1−ν)

∥∥tu(2)
∥∥
Lp,γ

+h−1/2p(1−ν)‖u‖Lp,γ

]
,

(6.19)

and if yk j = 0,

t1/2p
∥∥u(yk j)∥∥E ≤ C

[
h1−1/2p

∥∥tu(2)
∥∥
Lp,γ

+h−1/2p‖u‖Lp,γ

]
. (6.20)

Therefore, if yk j = 0, we have

t1/2p(1−ν)
∥∥Tk ju

(
yk j
)∥∥

Ek

≤ δt1/2p(1−ν)
∥∥u(yk j)∥∥(E(A),E)1/2p(1−ν),p

+C(δ)t1/2p(1−ν)
∥∥u(yk j)∥∥E

≤ C
(
δ +C(δ)h1−1/2p(1−ν))∥∥tu(2)

∥∥
Lp,γ

+Cδ‖Au‖Lp,γ +CC(δ)h1−1/2p(1−ν)‖u‖Lp,γ .

(6.21)
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By choosing a suitable δ and a suitable h, the quantities (δ + C(δ)h1−1/2p(1−ν)) and
Cδ can be made arbitrary small, hence the requested inequality (6.15) holds for case
yk j = 0. In the same way we can obtained the inequality for case yk j = 0. Then in view of
inequalities (6.12), (6.13), and (6.15) from (6.6), we get (6.3).

(b) The operator D(t) can be rewritten in the form

D(t)=D0
(
λ0, t

)
+L1, (6.22)

where

D0
(
λ0, t

)
u= (L0(λ, t)u,L10,L20

)
(6.23)

are defined by (5.3) and

D1
(
λ0, t

)
u=

(
− λ0u(y) + t1/2B1(y)u(1)(y)

+B2(y)u(y),
M1∑
j=1

t1/2p(1−ν)T1 ju
(
y1 j
)
,
M2∑
j=1

t1/2pT2 ju
(
y2 j
))

.

(6.24)

We can conclude from Theorem 5.1 that operator D0(λ0, t) has an inverse from Lp

(0,1;E) +E1 +E2 to

W2
p,γ

(
0,b;E(A),E

)
. (6.25)

From estimates (6.12), (6.13), and (6.21) in view of Theorem 2.4 and [4, Lemma 1.2.7/2],
it follows that the operator D1 from W2

p,γ(0,b;E(A),E) into Lp,γ(0,b;E) +E1 +E2 is com-
pact. Then in view of Theorem 5.1 and by the perturbation theory of linear operators
[34, Section 14, Theorem 14.1] it follows that the operator D(t) from W2

p,γ(0,b;E(A),E)
into Lp,γ(0,b;E) +E1 +E2 is Fredholm operator. Then by Remark 3.1 we obtain assertion
of Theorem 6.1. �

7. Nonlocal boundary value problems for degenerate elliptic equations
with parameters

The Fredholm property of boundary value problems for elliptic equations with parame-
ters in smooth domains was studied in [35, 36], also for nonsmooth domains was treated
in [24, 37–39].

Let G⊂ Rm, m≥ 2, be a bounded domain with an (m− 1)-dimensional boundary ∂G
which locally admits rectification. Let us consider a nonlocal boundary value problem
on cylindrical domain Ω = [0,1]×G for a degenerate elliptic differential equation with
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parameters

Lu=−tD[2]
x u(x, y)−

m∑
k, j=1

ak j(y)DkDju(x, y) + t1/2a(x, y)D[1]
x u(x, y)

+
m∑
j=1

aj(x, y)Dju(x, y) + a0(x, y)u(x, y)= f (x, y), (x, y)∈Ω,

L1u= α0t
θ1u[m1](0, y) +

M1∑
j=1

tηj T1 ju
(
x1 j , y

)= f1(y),

L2u= β0t
θ2u[m2](1, y) +

M2∑
j=1

tηj T2 ju
(
x2 j , y

)= f2(y),

L0u=
m∑
j=1

cj(y′)
∂

∂yj
u(x, y′) + c0(y′)u(x, y′)= 0, x ∈ (0,1), y′ ∈ ∂G,

(7.1)

where D[i]u(x)= (xν(d/dx))iu(x), ν≥ 0, Dj =−i(∂/∂yj), mk ∈ {0,1}, αk, βk are complex
numbers, y = (y1, . . . , ym), Tk j are possible unbounded operators in Lq(G), xk j ∈ [0,1];
ηj = 1/2p(1− ν) when xk j = 0 and ηj = 1/2p, when xk j = 0; moreover,

θ1 = pm1(1− ν) + 1
2p(1− ν)

, θ2 = pm2 + 1
2p

. (7.2)

Let r = ordL0.

Theorem 7.1. Let the following conditions be satisfied:
(1) ak j ∈ C(G), aj ,a0 ∈ L∞(G), c0 ∈ C(G), a,cj ∈ C1(G), ∂G∈ C∞;
(2) c0 ∈ C′(G) for r = 1 and c0 ∈ C2(G), c0(y′) = 0, y′ ∈ ∂G, for r = 0;
(3) for y ∈G, σ ∈ Rm, argλ= π, |σ|+ |λ| = 0, λ+

∑m
k, j=1 ak j(y)σkσj = 0;

(4) for the tangent vector σ ′ and the normal vector σ to ∂G at the point y′ ∈ ∂G the
following boundary value problem holds:

[
λ+

m∑
k, j=1

ak j(y′)
(
σ ′k − iσk

d

dτ

)(
σ ′j − iσ j

d

dτ

)]
u(τ)= 0, τ > 0, λ≤ 0,

m∑
j=1

cj(y′)
(
σ ′j − iσ j

d

dτ

)
u(τ) |τ=0= d, r = 1,

(7.3)

u(0)= d for r = 0; (7.4)

it is required that, for r = 1, problem (7.3) (for r = 0 problem (7.3)-(7.4)) has one
and only one solution, tending to zero including all its derivatives as y→∞ for any
numbers d ∈ C;

(5) 0≤ ν≤ 1− 1/p, α0 = 0, β0 = 0, 0 < t ≤ t0 <∞;



24 Abstract and Applied Analysis

(6) if mk = 0, then Tk j = 0; if mk = 1, then for ε > 0, u∈ B
2−1/p(1−ν)
q,p (G;Lu= 0)

∥∥T1 ju
∥∥
B

1−1/p(1−ν)
q,p (G) ≤ ε‖u‖

B
2−1/p(1−ν)
q,p (G) + c(ε)‖u‖Lq(G) (7.5)

and for u∈ B
2−1/p
q,p (G;Lu= 0),

∥∥T2 ju
∥∥
B

1−1/p
q,p (G) ≤ ε‖u‖B2−1/p

q,p (G) + c(ε)‖u‖Lq(G), (7.6)

where r < 1− 1/p(1− ν)− 1/p, q ∈ (1,∞), p ∈ (1,∞).
Then
(a) the coercive uniform estimate for the solution u∈W [2]

q,p,ν(Ω) of the problem (7.1)

∥∥tD[2]
x u

∥∥
Lq,p(Ω) +

m∑
k=1

∥∥D2
ku
∥∥
Lq,p(Ω) +‖u‖Lq,p(Ω)

≤ C
[‖Lu‖Lq,p(Ω) +

∥∥L1u
∥∥
B

2−m1−1/p(1−ν)
q,p (G) +

∥∥L2u
∥∥
B

2−m2−1/p
q,p (G) +‖u‖Lq,p(Ω)

] (7.7)

holds with respect to the parameter t;
(b) the operator u→Q(t)u= {Lu,L1u,L2u} from W [2]

q,p,ν(Ω;L0u= 0) into

Lq,p(Ω)×B
2−m1−1/p(1−ν)
q,p

(
G,L0u= 0

)×B
2−m2−1/p
q,p

(
G,L0u= 0

)
(7.8)

is bounded uniformly with respect to the parameter t and Fredholm.

Proof. Let E = Lq(G). Then by virtue of Theorem 2.2 the condition (1) of Theorem 6.1
is satisfied. Consider the following operator A which is defined by the equalities:

D(A)=W2
q

(
G;L0u= 0

)
, Au=−

m∑
k, j=1

ak j(y)DkDju(y). (7.9)

For x ∈ [0,1], also consider operators

B1(x)u= a(x, y)u(y), B2(x)u=
m∑
j=1

aj(x, y)Dju(y) + a0(x, y)u(x, y). (7.10)

Then the problem (7.1) can be rewritten in the form

−tD[2]u(x) +Au(x) + t1/2B1(x)D[1]u(x) +B2(x)u(x)= f (x), x ∈ (0,1),

L1u= α0t
θ1u[m1](0) +

M1∑
j=1

tηj T1 ju
(
x1 j
)= f1,

L2u= β0t
θ2u[m2](1) +

M2∑
j=1

tηj T2 ju
(
x2 j
)= f2,

(7.11)

where u(x) = u(x,·), f (x) = f (x,·) are functions with values in the Banach space E =
Lq(G), fk = fk(·).
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Let us apply Theorem 6.1 to the problem (7.11). In view of Theorem 2.2 condition (1)
of Theorem 6.1 holds. By virtue of [14, Theorem 8.2] the operator A+μI for sufficiently
large μ≥ 0 is R-positive in Lq. Moreover, it is known that an embedding W2

q (G)⊂ Lq(G)
is compact (see, e.g., Triebel [33, Theorem 3.2.5]), then due to the positivity of A+ μI in
Lq(G) we obtain that (A+ μI)−1 ∈ σ∞(Lq(G)). Therefore, the condition (2) of Theorem
6.1 is fulfilled. Condition 3 of Theorem 6.1 coincides with condition (5). By virtue of
condition (1) of Theorem 7.1 the operators B1(x) in Lq(G) and B2(x) from W1

q (G) to
Lq(G) are bounded. By virtue of condition (1), we have

∥∥B1(x)u
∥∥
Lq
≤ sup|a|‖u‖Lq . (7.12)

On the other hand, since the embedding W1
q (G) ⊂ Lq(G) is compact, then the operator

B1(x) from W1
q (G) into Lq(G) and, consequently, from E(A1/2) into Lq(G), is compact.

Then by reasoning as [4, Lemma 1.2.1] we obtain that the operator B1(x) satisfies the
condition (4) of Theorem 6.1. In a similar way we prove that the operator B2(x)− μI
satisfies the condition (4) of Theorem 6.1 too. Using interpolation properties of Sobolev
spaces (see, e.g., [21, Section 4]), it is clear to see that condition (5) of Theorem 6.1 is
fulfilled too. By virtue of [21, Section 4.3.3], we have

(
E(A),E

)
θk ,p =

(
W2

q

(
G,L0

)
,Lq(G)

)
θk ,p = B2(1−θk)

q,p
(
G;L0

)
. (7.13)

Hence, the condition (5) of Theorem 6.1 follows from the condition (6). �
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