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Here we study the polyharmonic nonlinear elliptic boundary value problem on the unit
ball B in Rn (n ≥ 2) (−� )mu + g(·,u) = 0, in B (in the sense of distributions)

lim x→ξ∈∂B(u(x)/(1−|x|2)
m−1

) = 0(ξ). Under appropriate conditions related to a Kato
class on the nonlinearity g(x, t), we give some existence results. Our approach is based
on estimates for the polyharmonic Green function on B with zero Dirichlet boundary
conditions, including a 3G-theorem, which leeds to some useful properties on functions
belonging to the Kato class.
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1. Introduction

In this paper, we deal with higher-order elliptic Dirichlet problems

(−�)mu+ g(·,u)= 0, in B (in the sense of distributions),

lim
x→ξ∈∂B

u(x)
(
1−|x|2)m−1 = θ(ξ),

(1.1)

where B is the unit ball in Rn (n ≥ 2), m is a positive integer, and θ is a nontrivial non-
negative continuous function on ∂B.

A basic result goes from Boggio in [1], where he gave an explicit formula for the
Green function Gm,n of (−�)m on B with Dirichlet boundary conditions (∂/∂ν) ju = 0,



2 Abstract and Applied Analysis

0≤ j ≤m− 1. Namely, Boggio showed that the Green function is positive and is given by

Gm,n(x, y)= km,n|x− y|2m−n
∫ [x,y]/|x−y|

1

(
v2− 1

)m−1

vn−1
dv, (1.2)

with km,n is a positive constant and [x, y]2 = |x− y|2 + (1−|x|2)(1−|y|2), for x, y in B.
The positivity of Gm,n does not hold for the Green function of the m-polyharmonic

operator in an arbitrary bounded domain (see, e.g., [2]). Only for the case m= 1, we do
not have this restriction.

In [3], Grunau and Sweers established two-sided estimates for Gm,n and so they de-
rived a 3G-theorem result. This was improved in [4], where the authors obtained from
Boggio’s formula more fine estimates on Gm,n. For instance, they gave a new form of the
3G-theorem: There exists C0 > 0 such that for each x, y,z ∈ B,

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

≤ C0

[(
δ(z)
δ(x)

)m
Gm,n(x,z) +

(
δ(z)
δ(y)

)m
Gm,n(y,z)

]
, (1.3)

where δ(x)= 1− |x|. In the case m= 1, the Green function GΩ of an arbitrary bounded
C1,1 domain Ω satisfies (1.3). This has been proved by Kalton and Verbitsky [5] for n≥ 3
and by Selmi [6] for n= 2.

On the other hand, the classical 3G-theorem related to GΩ (see [7, 8]) has been ex-
ploited to introduce the classical Kato class of functions Kn(Ω) (see [9, 7]), which was
widely used in the study of some nonlinear differential equations (see [10, 11]). Sim-
ilarly, in [4] the authors exploited the inequality (1.3) to introduce a new Kato class
K := Km,n(B) (see Definition 1.1), such that K1,n(B) contains properly Kn(B).

Definition 1.1. A Borel measurable function ϕ in B belongs to the class K := Km,n(B) if ϕ
satisfies the following condition:

lim
α→0

(

sup
x∈B

∫

B∩B(x,α)

(
δ(y)
δ(x)

)m
Hm,n(x, y)

∣
∣ϕ(y)

∣
∣dy

)

= 0. (1.4)

In this paper, we will use properties of this class to investigate two existence results for
problem (1.1). Our plan is as follows. In Section 2, we collect some properties of functions
belonging toK . In particular, we derive from the 3G-theorem that for each q ∈ K , we have

αq := sup
x,y∈B

∫

B

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

∣
∣q(z)

∣
∣dz <∞. (1.5)

In Section 3, we are interested in the following polyharmonic problem:

(−�)mu+uϕ(·,u)= f , in B (in the sense of distributions),

lim
x→ξ∈∂B

u(x)
(
1−|x|2)m−1 = θ(ξ),

(1.6)
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where θ is a nontrivial nonnegative continuous function on ∂B and the functions ϕ and
f verify the following assumptions.

(H1) ϕ is a nonnegative measurable function on B× (0,∞).
(H2) For each λ > 0, there exists qλ ∈ K+ with αqλ ≤ 1/2 and such that for each x ∈ B,

the map t→ t(qλ(x)−ϕ(x, t)) is continuous and nondecreasing on [0,λ].
(H3) f is a nonnegative measurable function on B such that the function γ(x) :=

f (x)/(δ(x))m−1 belongs to the class K .
Under these hypotheses, we give an existence result for problem (1.6). In fact, we will
prove that (1.6) has a positive continuous solution u satisfying for x ∈ B that

c
(
V f (x) + ρ(x)

)≤ u(x)≤V f (x) + ρ(x), (1.7)

where c is a positive constant, V f (x) = ∫B Gm,n(x, y) f (y)dy, and the function ρ is de-
fined by ρ(x) = (1− |x|2)m−1h(x) with h being the continuous solution of the Dirichlet
problem�h= 0, on B and h|∂B = θ.

To establish this result, we will exploit the 3G-theorem to prove that if the coefficient
q ∈ K+ is sufficiently small and f is a positive function on B, then the equation

(−�)mu+ qu= f (1.8)

has a positive solution on B. In [12], Grunau and Sweers gave a similar result with oper-
ators perturbed by small lower-order terms:

(−�)mu+
∑

|k|<2m

ak(u)Dku= f . (1.9)

In the case m = 1, problem (1.6) has been studied by Mâagli and Masmoudi in [13],
where they gave an existence and a uniqueness result in a bounded domain Ω.

In Section 4, we fix a positive harmonic function h0 in B, continuous in B and we put
ρ0(x)= (1−|x|2)m−1h0(x). Then we aim at proving an existence result for problem (1.1)
with g satisfying the following assumptions.

(A1) g is a nonnegative Borel measurable function on B× (0,∞), which is continuous
with respect to the second variable.

(A2) g(x, t) ≤ ψ(x, t), where ψ is a positive Borel measurable function in B× (0,∞),
such that the function t 	→ ψ(x, t) is nonincreasing on (0,∞).

(A3) The function q defined on B by q(x)= ψ(x,ρ0(x))/ρ0(x) belongs to the class K .
We will prove the following result. There exists a constant c1 > 0 such that if θ ≥ (1 + c1)h0

on ∂B, then problem (1.1) has a positive continuous solution u satisfying ρ0 ≤ u≤ ρ on
B.

This result is a followup to the one of Athreya [14], who considered the following
problem:

�u= g(u) in D,

u= ϕ on ∂D,
(*)

where D is a simply connected bounded C2-domain and g(u)≤max (1,u−α), for 0 < α <
1. Then he proved that there exists a constant c > 0 such that if ϕ≥ (1 + c)h0 on ∂D, then
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problem (*) has a positive continuous solution u such that u ≥ h0, where h0 is a fixed
positive harmonic function in D.

In order to simplify our statements, we define some convenient notations.

Notations 1.2. (i) B := {x ∈Rn; |x| < 1} with n≥ 2.
(ii) On B2 (i.e., (x, y)∈ B2),

[x, y]2 = |x− y|2 +
(
1−|x|2)(1−|y|2),

δ(x)= 1−|x|.
(1.10)

Note that [x, y]2 ≥ 1 + |x|2|y|2− 2|x||y| = (1−|x||y|)2. So we have

max
(
δ(x),δ(y)

)≤ [x, y]. (1.11)

(iii) �(B) denotes the set of Borel measurable functions in B and �+(B) denotes the
set of nonnegative ones.

(iv) C0(B) := {w continuous on B and lim|x|→1w(x)= 0}.
(v) For f ∈�+(B) , we put

V f (x) :=Vm,n f (x)=
∫

B
Gm,n(x, y) f (y)dy, for x ∈ B. (1.12)

The function V f is called the m-potential of f and it is lower semicontinuous on B.
(vi) Let K+ denote the set of nonnegative functions on the Kato class K .
(vii) For any ϕ∈�(B), we put

‖ϕ‖B := sup
x∈B

∫

B

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣
∣ϕ(y)

∣
∣dy. (1.13)

(viii) Let f and g be two positive functions on a set S.
We call f ∼ g if there is c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x) ∀x ∈ S. (1.14)

We call f � g if there is c > 0 such that

f (x)≤ cg(x) ∀x ∈ S. (1.15)

2. Properties of the Kato class K

We collect in this section some properties of functions belonging to the Kato class K ,
which are useful at stating our existence results.
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Proposition 2.1 (see [4]). Let ϕ be a function in K . Then one has the following assertions.
(i) ‖ϕ‖B <∞.

(ii) The function x→ (δ(x))2m−1ϕ is in L1(B).

corollary 2.2. Let q ∈ K+. Then one has

αq := sup
x,y∈B

∫

B

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

q(z)dz <∞ (2.1)

and for each x ∈ B,

V
(
qGm,n(·, y)

)
(x)≤ αqGm,n(x, y). (2.2)

Proof. The result holds by (1.3). �

For ζ in K+, we denote

Mζ := {ϕ∈ K , |ϕ| � ζ}. (2.3)

From (1.3) and Proposition 2.1(i), we derive the following proposition.

Proposition 2.3 (see [15]). For any function ζ ∈ K+, the family of functions

{
1

(
δ(x)

)m−1

∫

B

(
δ(y)

)m−1
Gm,n(x, y)ϕ(y)dy; ϕ∈Mζ

}

(2.4)

is relatively compact in C0(B).

Proposition 2.4. For each q ∈ K+ and h a nonnegative harmonic function in B, one has
for x ∈ B that

∫

B
Gm,n(x, y)

(
1−|y|2)m−1

h(y)q(y)dy ≤ αq
(
1−|x|2)m−1

h(x). (2.5)

Proof. Let h be a nonnegative harmonic function in B. So by Herglotz representation
theorem (see [16, page 29]), there exists a nonnegative measure μ on ∂B such that

h(y)=
∫

∂B
P(y,ξ)μ(dξ), (2.6)

where P(y,ξ) = (1−|y|2)/|y− ξ|n, for y ∈ B and ξ ∈ ∂B. So we need only to verify the
inequality for h(y)= P(y,ξ) uniformly in ξ ∈ ∂B.

From expression (1.2) of Gm,n, it is clear that for each x, y ∈ B, we have

lim
z→ξ

Gm,n(y,z)
Gm,n(x,z)

=
(
1−|y|2)m
(
1−|x|2)m

|x− ξ|n
|y− ξ|n =

(
1−|y|2)m−1

(
1−|x|2)m−1

P(y,ξ)
P(x,ξ)

. (2.7)
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Thus by Fatou lemma, we deduce that for each x ∈ B and ζ ∈ ∂B,

∫

B
Gm,n(x, y)

(
1−|y|2)m−1

(
1−|x|2)m−1

P(y,ξ)
P(x,ξ)

∣
∣q(y)

∣
∣dy

≤ liminf
z→ξ

∫

B
Gm,n(x, y)

Gm,n(y,z)
Gm,n(x,z)

∣
∣q(y)

∣
∣dy ≤ αq,

(2.8)

which completes the proof. �

In the next results, we will give a class of functions included in K and we will precise
estimates of the m-potential of some functions in this class.

Proposition 2.5. Let p >max (n/2m,1). Then for λ < 2m−n/p if n≥ 2m, or λ≤ 2m−n
if n < 2m, one has

Lp(B)
(
δ(·))λ

⊂ K. (2.9)

To prove Proposition 2.5, we use the next two lemmas.

Lemma 2.6 (see [4]). On B2, one has the following.
(i) For n > 2m,

Gm,n(x, y) ∼ |x− y|2m−nmin
(

1,

(
δ(x)δ(y)

)m

|x− y|2m
)

∼

(
δ(x)δ(y)

)m

|x− y|n−2m[x, y]2m
. (2.10)

(ii) For n= 2m,

Gm,n(x, y) ∼ Log
(

1 +

(
δ(x)δ(y)

)m

|x− y|2m
)

∼

(
δ(x)δ(y)

)m

[x, y]2m
Log

(
1 +

[x, y]2

|x− y|2
)
. (2.11)

(iii) For n < 2m,

Gm,n(x, y) ∼

(
δ(x)δ(y)

)m

[x, y]n
. (2.12)

Lemma 2.7. Let λ∈R. Then on B2, one has

1
(
δ(y)

)λ

(
δ(y)
δ(x)

)m
Gm,n(x, y)�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|x− y|n−2m+λ+ if n > 2m,

1
|x− y|λ+ Log

(
3

|x− y|
)

if n= 2m,

(
δ(y)

)2m−n−λ+

if n < 2m,

(2.13)

where λ+ =max(λ,0).
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Proof. Using Lemma 2.6, inequality (1.11), and the fact that |x− y| ≤ [x, y], we deduce
the following.

(i) If n > 2m, then for x, y in B, we have

1
(
δ(y)

)λ

(
δ(y)
δ(x)

)m
Gm,n(x, y)�

(
δ(y)

)2m−λ+

|x− y|n−2m[x, y]2m

�
(
δ(y)

)2m−λ+

|x− y|n−2m+λ+ [x, y]2m−λ+

� 1
|x− y|n−2m+λ+ .

(2.14)

(ii) If n= 2m, then for x, y in B, we have

1
(
δ(y)

)λ

(
δ(y)
δ(x)

)m
Gm,n(x, y)�

(
δ(y)

)2m−λ+

[x, y]2m
Log

(
1 +

[x, y]2

|x− y|2
)

�
(
δ(y)

)2m−λ+

|x− y|λ+ [x, y]2m−λ+ Log
(

3
|x− y|

)

� 1
|x− y|λ+ Log

(
3

|x− y|
)
.

(2.15)

(iii) If n < 2m, then for x, y in B, we have

1
(
δ(y)

)λ

(
δ(y)
δ(x)

)m
Gm,n(x, y)�

(
δ(y)

)2m−λ+

[x, y]n
� (δ(y)

)2m−n−λ+

. (2.16)

�

Proof of Proposition 2.5. Let α > 0, p > max (n/2m,1), and q ≥ 1 such that 1/p+ 1/q = 1.
To show the claim, we use the inequalities in Lemma 2.7 and the Hölder inequality. We
distinguish three cases.

Case 1 (n > 2m). Let p > n/2m, f ∈ Lp(B), and λ < 2m−n/p. Then, for x ∈ B, we have

∫

B∩B(x,α)

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy �
∫

B∩B(x,α)

∣
∣ f (y)

∣
∣

|x− y|n−2m+λ+ dy

� ‖ f ‖p
(∫ α

0
rn(1−q)+(2m−λ+)q−1dr

)1/q

� ‖ f ‖pα2m−(n/p)−λ+
,

(2.17)

which tends to zero as α→ 0.
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Case 2 (n= 2m). Let p > 1, f ∈ Lp(B), and λ < n/q. Then, for x ∈ B, we have

∫

B∩B(x,α)

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy �
∫

B∩B(x,α)

∣
∣ f (y)

∣
∣

|x− y|λ+ Log
(

3
|x− y|

)
dy

� ‖ f ‖p
(∫ α

0
rn−1−λ+q

(

Log
(

3
r

))q

dr

)1/q

,

(2.18)

which tends to zero as α→ 0.

Case 3 (n < 2m). Let p > 1, f ∈ Lp(B), and λ≤ 2m−n. Then, for x ∈ B, we have

∫

B∩B(x,α)

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy �
∫

B∩B(x,α)

(
δ(y)

)2m−n−λ+∣
∣ f (y)

∣
∣dy � ‖ f ‖pαn/q,

(2.19)

which tends to zero as α→ 0. This completes the proof. �

In the sequel, we put for f ∈�(B) that

v(x)=
∫

B
Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy, for x ∈ B. (2.20)

Remark 2.8. From Lemma 2.6, we note that for each x, y in B, we have (δ(x)δ(y))m �
Gm,n(x, y). This implies that there exists a constant c > 0 such that for each f ∈�(B), we
have

c
(
δ(x)

)m
∫

B

∣
∣ f (y)

∣
∣

(
δ(y)

)λ−m dy ≤ v(x). (2.21)

In the next proposition, we will give upper estimates on the function v.

Proposition 2.9. Let p > max (n/2m,1) and λ < min (m+ 1− (1/p),2m− n/p). Then
there exists a constant c > 0, such that for each f ∈ Lp(B) and x ∈ B, the following estimates
hold:

v(x)≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c‖ f ‖p
(
δ(x)

)2m−λ−n/p
if m− n

p
< λ <min

(
m+ 1− 1

p
,2m− n

p

)
,

c‖ f ‖p
(
δ(x)

)m
(

Log
(

2
δ(x)

))1/q

if λ=m− n

p
,

c‖ f ‖p
(
δ(x)

)m
if λ < m− n

p
.

(2.22)

To prove Proposition 2.9, we need the following key lemma.
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Lemma 2.10 (see [17]). Let x, y ∈ B. Then one has the following properties.
(1) If δ(x)δ(y)≤ |x− y|2, then max(δ(x),δ(y))≤ ((

√
5 + 1)/2)|x− y|.

(2) If |x− y|2 ≤ δ(x)δ(y), then ((3−√5)/2)δ(x)≤ δ(y)≤ ((3 +
√

5)/2)δ(x).

Proof of Proposition 2.9. Let p > max(n/2m,1) and f ∈ Lp(B). Then we have for x ∈ B
that

v(x)≤
∫

B∩D1

Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy +
∫

B∩D2

Gm,n(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy = I1(x) + I2(x),

(2.23)

where

D1 =
{
y ∈ B : |x− y|2 ≤ δ(x)δ(y)

}
, D2 =

{
y ∈ B : |x− y|2 ≥ δ(x)δ(y)

}
. (2.24)

Let q ≥ 1 such that 1/p+ 1/q = 1. We claim that for x ∈ B,

I1(x)� ‖ f ‖p
(
δ(x)

)2m−λ−n/p
. (2.25)

Indeed, for x ∈ B and y ∈ D1, we have by Lemma 2.10 that |x− y| ≤ ((
√

5 + 1)/2)δ(x).
Hence from the estimates on Gm,n(x, y) in Lemma 2.6, we deduce that for x ∈ B and
y ∈D1,

1
(
δ(y)

)λ Gm,n(x, y) ∼Hm,n(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|x− y|n−2m+λ

if n > 2m,

Log
(

1 +

(
δ(x)

)2m

|x− y|2m
)

if n= 2m,

(
δ(x)

)2m−n
if n < 2m.

(2.26)

Then, by elementary calculus, we deduce using the Hölder inequality that for x ∈ B,

I1(x)� ‖ f ‖p
(∫

(|x−y|≤((
√

5+1)/2)δ(x))∩B

(
Hm,n(x, y)

)q
dy

)1/q

� ‖ f ‖p
(
δ(x)

)2m−λ−(n/p)
.

(2.27)

On the other hand, from the estimates on Gm,n(x, y) in Lemma 2.6, we deduce by Lemma
2.10 and the fact that t/(1 + t)≤ Log(1 + t)≤ t that for x ∈ B and y ∈D2, we have

Gm,n(x, y) ∼

(
δ(x)δ(y)

)m

|x− y|n . (2.28)

So, we obtain by using the Hölder inequality that

I2(x)� ‖ f ‖p
(∫

D2∩B

(
δ(x)

)mq(
δ(y)

)(m−λ)q

|x− y|nq dy

)1/q

. (2.29)

Now, we distinguish the following two cases.
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Case 1. If λ≤m, then we have

I2(x)� ‖ f ‖p
(
δ(x)

)m
(∫

(|x−y|≥((
√

5−1)/2)δ(x))∩B
1

|x− y|(n−m+λ)q dy

)1/q

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(x)

)2m−λ−n/p
if m− n

p
< λ≤m,

(
δ(x)

)m
(

Log
(

2
δ(x)

))1/q

if λ=m− n

p
,

(
δ(x)

)m
if λ < m− n

p
.

(2.30)

Case 2. If λ >m, then we have

I2(x)� ‖ f ‖p
(
δ(x)

)2m−λ−n/p
(∫

D2∩B

(
δ(x)
δ(y)

)(λ−m)q 1
|x− y|n dy

)1/q

. (2.31)

Then, since 0 < (λ −m)q < 1, we have by [17, Corollary 2.8] that the function x →∫
D2∩B(δ(x)/δ(y))(λ−m)q(1/|x− y|n)dy is bounded, and so

I2(x)� ‖ f ‖p
(
δ(x)

)2m−λ−n/p
. (2.32)

This completes the proof. �

Remark 2.11. By taking p = +∞ (i.e., q = 1), in Propositions 2.5 and 2.9, we find again
the results of Bachar et al. in [4, Example 3.9 and Proposition 3.10].

3. First existence result

In this section, we are interested in the existence of positive solutions for problem (1.6).
To this end, we first introduce for q ∈ K+, such that αq ≤ 1/2, the potential kernel Vq f :=
Vm,n,q f as a solution for the pertubed polyharmonic equation (1.8).

We put for x, y ∈ B that

�m,n(x, y)=
∑

k≥0

(−1)k
(
V(q·))k(Gm,n(·, y)

)
(x). (3.1)

Then we have the following comparison result.

Lemma 3.1. Let q ∈ K+ such that αq ≤ 1/2. Then on B2, one has

(
1−αq

)
Gm,n(x, y)≤�m,n(x, y)≤Gm,n(x, y). (3.2)

Proof. Since αq ≤ 1/2, we deduce from (2.2) that

∣
∣�m,n(x, y)

∣
∣≤

∑

k≥0

(
αq
)k
Gm,n(x, y)= 1

1−αq Gm,n(x, y). (3.3)
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On the other hand, we note that for x �= y in B,

�m,n(x, y)=Gm,n(x, y)−V(q�m,n(·, y)
)
(x). (3.4)

Using these facts and (2.2), we obtain that

�m,n(x, y)≥Gm,n(x, y)− αq
1−αq Gm,n(x, y)= 1− 2αq

1−αq Gm,n(x, y)≥ 0. (3.5)

Hence the result follows from (3.4) and (2.2). �

In the sequel, for a given q ∈ K+ such that αq ≤ 1/2, we define the operator Vq on
�+(B) by

Vq f (x)=
∫

B
�m,n(x, y) f (y)dy, x ∈ B. (3.6)

Lemma 3.2. Let q ∈ K+ such that αq ≤ 1/2 and f ∈�+(B). ThenVq f satisfies the following
resolvent equation:

V f =Vq f +Vq(qV f )=Vq f +V
(
qVq f

)
. (3.7)

Proof. From the expression of �m,n, we deduce that for f ∈�+(B) such that V f <∞, we
have

Vq f =
∑

k≥0

(−1)k
(
V(q·))kV f . (3.8)

So we obtain that

Vq(qV f )=
∑

k≥0

(−1)k
(
V(q·))k[V(qV f )

]=−
∑

k≥1

(−1)k
(
V(q·))kV f =V f −Vq f . (3.9)

The second equality holds by integrating (3.4). �

Proposition 3.3. Let q ∈ K+ such that αq ≤ 1/2. Let f ∈ L1
Loc(B) such that V f ∈ L1

Loc(B).
Then Vq f is a solution of the perturbed polyharmonic equation (1.8).

Proof. Using the resolvent equation (3.7), we have

Vq f =V f −V(qVq f
)
. (3.10)

Applying the operator (−Δ)m on both sides of the above equality, we obtain that

(−Δ)m
(
Vq f

)= f − qVq f (in the sense of distributions). (3.11)

This completes the proof. �

Now, we aim at proving an existence result for problem (1.6). We recall that the func-
tion ρ is defined on B by ρ(x)= (1−|x|2)m−1h(x), where h is the continuous solution of
the Dirichlet problem�h= 0, on B and h|∂B = θ.

The main result of this section is the following.
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Theorem 3.4. Assume (H1)–(H3) hold. Then problem (1.6) has a positive continuous solu-
tion u satisfying (1.7).

Proof. Let f ∈ �+(B) satisfy (H3). Then f (x) = (δ(x))m−1γ(x), where γ is in K+. By
Proposition 2.3, we have that V f /(δ(·))m−1 is in C0(B). So if we put β = ‖V f + ρ‖∞,
we have obviously that 0 < β <∞.

Then by (H2), there exists a function q := qβ ∈ K+ such that αq ≤ 1/2 and for each
x ∈ B, the map

t −→ t
(
q(x)−ϕ(x, t)

)
is continuous and nondecreasing on [0,β], (3.12)

which implies in particular that for each x ∈ B and t ∈ [0,β],

0≤ ϕ(x, t)≤ q(x). (3.13)

Let

Λ := {u∈�+(B) :
(
1−αq

)
(V f + ρ)≤ u≤V f + ρ

}
. (3.14)

We define the operator T on Λ by

Tu :=Vq f +
(
ρ−Vq(qρ)

)
+Vq

[(
q−ϕ(·,u)

)
u
]
. (3.15)

We claim that Λ is invariant under T . Indeed, using (3.13) and (3.7), we have for each
u∈Λ that

Tu≤Vq f +
(
ρ−Vq(qρ)

)
+Vq

((
q−ϕ(·,u)

)
(V f + ρ)

)

≤Vq f +
(
ρ−Vq(qρ)

)
+Vq

(
q(V f + ρ)

)≤V f + ρ.
(3.16)

Moreover, from (3.13), (3.2), and Proposition 2.4, we deduce that for each u∈Λ, we have

Tu≥Vq f +
(
ρ−Vq(qρ)

)≥Vq f +
(
ρ−V(qρ)

)≥ (1−αq
)
(V f + ρ). (3.17)

Next, we will prove that the operator T is nondecreasing on Λ. Indeed, let u,v ∈ Λ such
that u≤ v, then from (3.12), we obtain that

Tv−Tu=Vq
([(

q−ϕ(·,v)
)
v
]− [(q−ϕ(·,u)

)
u
])≥ 0. (3.18)

Now, we consider the sequence (uk) defined by u0 = (1−αq)(V f + ρ) and uk+1 = Tuk for
k ∈N. Since Λ is invariant under T , then u1 = Tu0 ≥ u0, and so from the monotonicity
of T , we deduce that

u0 ≤ u1 ≤ ··· ≤ uk ≤ uk+1 ≤V f + ρ. (3.19)

Hence from (3.12) and the dominated convergence theorem, we deduce that the sequence
(uk) converges to a function u which satisfies

u=Vq f +
(
ρ−Vq(qρ)

)
+Vq

[(
q−ϕ(·,u)

)
u
]
. (3.20)
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That is,

u−Vq(qu)=Vq f +
(
ρ−Vq(qρ)

)−Vq
(
uϕ(·,u)

)
. (3.21)

Applying the operator (I +V(q·)) on both sides of the above equality and using (3.7), we
deduce that u satisfies

u=V f + ρ−V(uϕ(·,u)
)
. (3.22)

Finally, we need to verify that u is a positive continuous solution for problem (1.6). Since
for each x ∈ B, f (x)= (δ(x))m−1γ(x), where γ is in K+, we deduce by Proposition 2.1 that
f ∈ L1

Loc(B) and by Proposition 2.3 we have that V f ∈ L1
Loc(B). Then, since u∼ V f + ρ

and uϕ(·,u)≤ uq, we deduce that either u and uϕ(·,u) are in L1
Loc(B). Now, from (3.22)

we can easily see that V(uϕ(·,u)) ∈ L1
Loc(B). Hence u satisfies (in the sense of distribu-

tions) the elliptic differential equation

(−Δ)mu+uϕ(·,u)= f in B. (3.23)

To prove continuity of u, we recall that V f /(δ(·))m−1 ∈ C0(B). Then, there exists a func-
tion ζ ∈ C(B) such thatV f (x) + ρ(x)= (δ(x))m−1ζ(x), and so we have by Proposition 2.3
that V((δ(·))m−1ζq) is in (δ(·))m−1C0(B). Now, since V(uϕ(·,u)) is lower semicontinu-
ous and for x ∈ B, we have

V
(
uϕ(·,u)

)
(x)≤V(uq)≤V((δ(·))m−1

ζq
)
(x), (3.24)

then we deduce thatV(uϕ(·,u)) is in (δ(·))m−1C0(B). This implies by (3.22) that u is con-
tinuous on B and satisfies obviously limx→ζ∈∂B(u(x)/(1−|x|2)m−1) = θ(ζ), which com-
pletes the proof. �

Example 3.5. Let α, β be two positive constants and q, γ are two functions in K+. Then,
for each θ ∈ C+(∂B), the following polyharmonic problem

(−�)mu+βuα+1q = (1−|x|2)m−1
γ, in B (in the sense of distributions),

lim
x→ξ∈∂B

u(x)
(
1−|x|2)m−1 = θ(ξ),

(3.25)

has a positive continuous solution satisfying (1.7), provided that β is sufficiently small.

4. Second existence result

In this section, assuming that (A1)–(A3) hold, we aim at proving an existence result for
problem (1.1). We recall that h0 is a fixed positive harmonic function in B, continuous
in B. We put ρ0(x) = (1− |x|2)m−1h0(x) and ρ(x) = (1− |x|2)m−1h(x), where h is the
continuous solution of the Dirichlet problem�h= 0, on B and h|∂B=θ .

The main result of this section is the following.

Theorem 4.1. Assume (A1)–(A3) hold. Then there exists a constant c1 > 0 such that if θ ≥
(1 + c1)h0 on ∂B, then problem (1.1) has a positive continuous solution u satisfying for each
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x ∈ B that

ρ0(x)≤ u(x)≤ ρ(x). (4.1)

To prove Theorem 4.1, we need the next lemma.

Lemma 4.2. Assume that (A2)-(A3) hold. Then one has

c1 := sup
x∈Rn+

1
ρ0(x)

∫

Rn+
Gm,n(x, y)ψ

(
y,ρ0(y)

)
dy <∞. (4.2)

Proof. By (A3), the function q defined on B by q(x)= ψ(x,ρ0(x))/ρ0(x) is in K+. Then we
deduce by Proposition 2.4 that

1
ρ0(x)

∫

Rn+
Gm,n(x, y)ψ

(
y,ρ0(y)

)
dy =

∫

Rn+
Gm,n(x, y)

(
1−|y|2)m−1

(
1−|x|2)m−1

h0(y)
h0(x)

q(y)dy ≤ αq.
(4.3)

The result holds from Corollary 2.2. �

In the sequel, we suppose
(A4)

θ(x)≥ (1 + c1
)
h0(x), ∀x ∈ ∂B. (4.4)

Proof of Theorem 4.1. We will use a fixed point argument. Let

Λ= {v ∈ C(B) : ρ0 ≤ u≤ ρ
}
. (4.5)

Since h= θ on ∂B and h0 is continuous in B, then we obtain by (A4) that h ≥ (1 + c1)h0

on B. So Λ is a well-defined nonempty closed bounded and convex set in C(B).
We define the operator T on Λ by

Tu(x)= ρ(x)−
∫

B
Gm,n(x, y)g

(
y,u(y)

)
dy. (4.6)

Since for u∈Λ and y ∈ B, we have by (A2) that

g
(
y,u(y)

)≤ ψ(y,ρ0(y)
)= ρ0(y)q(y)� q(y), (4.7)

then the function y 	→ g(y,u(y)) is in Mq. Hence by (A3), Proposition 2.3, and the fact
that ρ∈ C(B), we deduce that TΛ is relatively compact in C(B).

Moreover by hypothesis (A2), we have for x ∈ B that

∫

Rn+
Gm,n(x, y)g

(
y,u(y)

)
dy ≤

∫

Rn+
Gm,n(x, y)ψ

(
y,ρ0(y)

)
dy ≤ c1ρ0(x). (4.8)

Then since by (A4), ρ ≥ (1 + c1)ρ0, we obtain that TΛ⊂Λ.
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Next, let us prove the continuity of T in the uniform norm. Let (uk)k be a sequence
in Λ which converges uniformly to u∈ Λ, then since g is continuous with respect to the
second variable, we deduce by the dominated convergence theorem that

∀x ∈ B, Tuk(x)−→ Tu(x) as k −→∞. (4.9)

Now since TΛ is relatively compact in C(B), then

∥
∥Tuk −Tu

∥
∥∞ −→ 0 as k −→∞. (4.10)

Finally the Schauder fixed point theorem implies the existence of u∈Λ such that Tu= u.
That is, for x ∈ B, we have

u(x)= ρ(x)−
∫

B
Gm,n(x, y)g

(
y,u(y)

)
dy. (4.11)

Using (A2), (A3), and Proposition 2.1, we deduce that y→ g(y,u(y)) is in L1
Loc(Rn

+). So u
satisfies (in the sense of distributions) the elliptic differential equation

(−Δ)mu= g(·,u) in B. (4.12)

Furthermore, since h|∂B=θ , then we deduce by Proposition 2.3 that limx→ξ∈∂B(u(x)/
(1−|x|2)m−1)= θ(ξ). This completes the proof. �

Example 4.3. Let p > n/2m, λ < 2m−n/p, and α > 0. Let f ∈ Lp(B) and let h0 be a positive
harmonic function in B, which is bounded and continuous in B. Then we have for x ∈ B
that δ(x)� h0(x).

Now, let g be a nonnegative Borel measurable function on B× (0,∞), which is contin-
uous with respect to the second variable and satisfies

g(x, t)� t−α f (x)
(
δ(x)

)λ−mα , (4.13)

then there exists a constant c1 > 0 such that if θ ≥ (1 + c1)h0 on ∂B, problem (1.1) has a
continuous positive solution satisfying (4.1).

References

[1] T. Boggio, “Sulle funzione di Green d’ordine m,” Rendiconti del Circolo Matemàtico di Palermo,
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Campus Universitaire, Tunis 2092, Tunisia
Email address: habib.maagli@fst.rnu.tn
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