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1. Introduction

In this work, we are interested in the model equations of ferroelectric materials intro-
duced in [1] and discussed in [1–3] for example. We consider time harmonic solutions
to the model as studied in [4]. We first rewrite the equations of the model given in [1]
to precise the boundary conditions we will use. Let (E,H) be the electromagnetic field
acting on the ferroelectric material Ω, which is a bounded and a regular domain of R3.
Let P be the electric polarization induced in Ω. The electric displacement is then given
by D = ε(E + P) where ε > 0 is the electric permittitivity of the vacuum. The Maxwell
equations satisfied by the electromagnetic field are

μ∂tH − curlE = 0,

ε∂t(E+P) + curlH + σE = 0,
(1.1)

where μ > 0 is the magnetic permeability of the vacuum and σ > 0 is the conductivity
constant of the ferroelectric material. The behavior of the electric polarization P is driven
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by the nonlinear Maxwell equation

∂2
t P + λ2 curl2P + a∂tP =−b

(
Eeq(P)−E), (1.2)

where curl2P = curl(curlP), Eeq(P) is the nonlinear equilibrium electric field which will
be given later, and λ2 = 1/εμ. The parameters a and b are some physical positive constants.
This model is obtained as follow (see [1]). Denoting by m the internal magnetization and
by j the current density which is driven by the difference between the equilibrium field
Eeq(P) and the electric field E, then with the internal polarization field P they satisfy the
set of equations

ε
(
∂tP + δ−1j

)= curlm,

μ
(
∂tm +αδ−1m

)=−curlP,
(
∂tj +αδ−1j

)= βδ−1(Eeq(P)−E)
(1.3)

which reduces to the nonlinear Maxwell equation (1.2) satisfied by P. The internal mag-
netization m satisfies the boundary condition m× n = 0, then the second equation of
(1.3) implies that P satisfies

curlP×n= 0 on ∂Ω. (1.4)

In this work, we consider, on ∂Ω, Leontovitch-type boundary conditions for E extend-
ing the one used in [1], that is,

H ×n+βn× (E×n)= 0, curlP×n= 0, (1.5)

where β is some nonnegative function defined on ∂Ω and n is the unit outward normal
to ∂Ω.

The equilibrium field is assumed to be the gradient of a potential function φ(|P|2).
We have Eeq(P) = 2Pφ′(|P|2) where φ : R+ → R is a C2 convex function satisfying the
hypotheses given in [1], more precisely, we assume that there exist 0 < r1 < r0 and C2 > 0
such that

φ(0)= φ(r0
)= 0, φ′

(
r1
)= 0, φ′(0) < 0,

(
sφ′
(
s2
))′ ≤ C2 ∀s≥ 0.

(1.6)

Hence, for all s≥ R > r1, there exists CR > 0 such that φ′(s)≥ CR and for all s≥ 0

∣
∣φ′(s)

∣
∣≤ C∗, 0≤ s2φ(2)(s2

)≤ C∗, (1.7)

where C∗ =max(|φ′(0)|,C2). Examples of such potentials defined on R+ satisfying the
hypotheses are the following: φ1(s)=b(1 + s2)1/2− as− 1 with 0 < a < b, 0 < b < 1, φ2(s)=
s/2− log(1 + s), φ3(s)= as+ 1− (1 + s)α with a > 0 and a < α < 1.
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With these hypotheses, the vector-valued function Eeq(P) = 2Pφ′(|P|2) satisfies the
estimate

∣
∣Eeq(P)−Eeq(Q)

∣
∣≤ C∗|P−Q| (1.8)

for all P,Q ∈R3.
Let us mention other interesting models for ferroelectric materials, see [5–7] for ex-

ample. In the first two papers, the authors consider deformable ferroelectric materials
and give the evolution equation for the spontaneous polarization. The model obtained is
different from the one given in [1], since it includes the deformation of the bodies. In the
second one, a theoretical model is proposed explaining the lamellar morphology of do-
mains of opposite polarization observed in ferroelectric crystals in their polar phases. The
jump conditions for the electric field and polarization vector across domain walls play an
important role in the characterization of the free energy. Many interesting mathematical
problems, as the dimension reduction of domains, are contained in both papers.

In this paper, we are dealing with time harmonic solutions to the model (1.1)-(1.2).
We write H(t,x) = eıtH(x), E(t,x) = eıωtE(x), P(t,x) = eıωtP(x), and F(t,x) = eıωtF(x)
with ω > 0 fixed. The new complex field (E,P) satisfies the set of equations

(
ζ1(ω) + λ2 curl2

)
E = ω2P + ıωF

(
ζ2(ω) + λ2 curl2

)
P =−b(2Pφ′(|P|2)−E), (1.9)

where ζ1(ω) = −ω2 + ıa1, ζ2(ω) = −ω2 + ıωa2 with a1 = σ/ε and a2 = a. The magnetic
fieldH is recovered from the electric field E by the formulaH = curlE/ıωμ. The boundary
conditions on ∂Ω write

curlE×n+ ıωμβn× (E×n)= 0, curlP×n= 0. (1.10)

The main difficulty in this problem is related to the lack of regularity of the polarization
field P to prove the stability of the nonlinear equilibrium field Eeq(P) with respect to
the weak convergence of a sequence Pm. It is easy to prove that a sequence of solutions
(Em,Pm) of (1.9) is such that Pm, curlPm are bounded in L2(Ω). Even if we prove that
divPm is also bounded in L2(Ω), the boundary condition curlPm×n= 0 satisfied by Pm
does not allow to deduce compactness in L2(Ω) of the sequence Pm. Note that, in [8],
the compactness of the sequence (Pm) is obtained in the case of the boundary condition
curlP× n+ βn× (P× n) = 0. To avoid this difficulty, we derive new model equations as
follows.

For a given P ∈ L2(Ω), the Hodge decomposition of P gives the orthogonal decom-
position in L2(Ω), P = ∇ϕ +U where ϕ ∈ H1(Ω) and U ∈ L2(Ω) satisfying divU = 0,
U ·n= 0 on ∂Ω. The scalar potential ϕ is unique up to additive constants (See [9, Corol-
lary 5, page 258]). Hence, curlP× n = curlU × n = 0. The field U may be decomposed
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on Γ= ∂Ω as follows: (see [10, page 75]) U = (U · n)n+UΓ, UΓ = n× (U × n). Thus, U
satisfies the equivalent boundary condition on Γ (see [10, page 77]),

∂UΓ

∂n
+ �

(
UΓ
)= 0, U ·n= 0, (1.11)

where � is the symmetric curvature operator acting in the tangent plane.
In what follows, we are interested only in the regular part U of the polarization field P

and assume that the potential ϕ is constant in Ω. Hence, we have P =U , then

divP = 0 in Ω, P ·n= 0 on ∂Ω. (1.12)

Next, we assume that the source term F satisfies in Ω the condition

divF = 0. (1.13)

By considering the equation satisfied by E in (1.9), we deduce the compatibility condi-
tion ζ1(ω)divE−ω2 divP = 0 which implies divE = 0. Hence, under the divergence free
condition for P, (1.9) shows that (E,P) satisfies in Ω the new problem

(
ζ1(ω) + λ2 curl2

)
E−ω2P = ıωF,

(
ζ2(ω)− λ2Δ

)
P +∇π =−b(Eeq(P)−E),

divP = 0,

curlE×n+ ıωμβn× (E×n)= 0,

curlP×n= 0, P ·n= 0 on ∂Ω,

(1.14)

where π is the Lagrange multiplier associated with the constraint divP = 0 and where we
used the relation −Δ = curl2 +∇div. Combining the condition divP = 0 with the com-
patibility condition divE = 0 and using the second equation of (1.14), we see that the
equilibrium eelectric field should satisfy the condition divEeq(P)= φ(2)(|P|2)P ·∇(|P|2).

In the remainder of the paper, we assume that the ferroelectric domain is the cylin-
der Ωε = ΩT × (0,ε) with thickness ε > 0 and the cross-section ΩT which is an open,
bounded, and regular set of R2. The generic point of Ωε is denoted by x = (xT ,x3) where
xT = (x1,x2) ∈ΩT and 0 ≤ x3 ≤ ε. We also assume that the function β appearing in the
boundary condition satisfied by the electric field E depends on ε and is given by

βε
(
x3
)= β on ∂ΩT × (0,ε), βε(0)= εβ0, βε(ε)= εβ1 in ΩT , (1.15)

where β, βk are positive constants. The boundary ∂Ωε writes as (ΩT ×{x3 = 0})∪ (ΩT ×
{x3 = ε})∪ (∂ΩT × (0,ε)). We denote by (Eε,Pε) the solutions satisfying (1.14) in Ωε.

Let us set some notations. We define the norm of the complex Lebesgue space L2(Ωε)
by setting |F|2ε = (1/ε)

∫ ε
0

∫
ΩT
|F(xT ,x3)|2dxTdx3 and its scalar product by (F;G)ε =

(1/ε)
∫ ε

0

∫
ΩT
F ·G∗dxTdx3 where G∗ stands for the complex conjugate of G. We use the

same notations for the Lebesgue space L2(∂ΩT × (0,ε)). If Ω=ΩT × (0,1), we write | · |
for the norm of L2(Ω) and (·;·) for its scalar product. We denote by (u1,u2,u3) the canon-
ical basis of R3.
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The paper is organized as follows. In Section 2, we prove uniform bounds for the so-
lution of the model equations (1.14). In Section 3, we then introduce a change of variable
with respect to the vertical variable to transform the thin domain Ωε to the cylinder Ω
with thickness 1. We deduce the uniform bounds for the scaled solutions satisfying the
model equations (3.5). In Section 4, we pass to the limit in the weak formulation of (3.5)
and deduce the reduced model. The last section is devoted to some remarks.

2. Uniform bounds

Since Eeq is a Lipschitz perturbation of order 0 of the operator (curl2,curl2), then exis-
tence and uniqueness of the solution (Eε,Pε) of problem (1.14) can be obtained by intro-
ducing, in the Hilbert space � = L2(Ωε)× L2(Ωε), the unbounded operator � with do-
main D(�) = {(E,P) ∈�, (curl2E, curl2P) ∈�, divP = 0 in Ωε, curlE× n+ ıωμβεn×
(E×n)= 0, curlP×n= 0, P ·n= 0 on ∂Ωε}with �(E,P)= (curl2E, curl2P) for (E,P)∈
D(�). Problem (1.14) writes as (�(ω) + λ2�)(E,P)= ıω� + b�(E,P) where �(ω) is the
diagonal block matrix with diagonal ζ1(ω)I and ζ2(ω)I , �(E,P) = (0,Eeq(P)− E), and
� = (F,0). We use classical results (e.g., see [11–13]) to prove existence and uniqueness
of the solution for ω > 0 fixed.

In order to obtain uniform estimates, we multiply the first equation of (1.14) by E∗ε
and the second one by P∗ε and use the Green formula

−(ΔPε;Pε
)
ε =

∣
∣∇Pε

∣
∣2
ε +
∫

Γε
�
(
PΓ,ε
) ·P�Γ,εdσ. (2.1)

We get (notice that (∇πε,Pε)ε = 0)

ζ1(ω)
∣
∣Eε
∣
∣2
ε + λ2

∣
∣curlEε

∣
∣2
ε + ıωλ2μ

∫

∂Ωε
βε
∣
∣Eε×n

∣
∣2
dσ = ω2(Pε;Eε

)
ε + ıω

(
F;Eε

)
ε,

ζ2(ω)
∣
∣Pε
∣
∣2
ε + λ2

∣
∣∇Pε

∣
∣2
ε + λ2

∫

∂Ωε
�
(
PΓ,ε
) ·P∗Γ,εdσ + b

∫

Ωε

∣
∣Pε
∣
∣2
φ′
(∣
∣Pε
∣
∣2
)
dx = b(Eε;Pε

)
ε.

(2.2)

The real parts of each equation write as

−ω2
∣
∣Eε
∣
∣2
ε + λ2

∣
∣curlEε

∣
∣2
ε = ω2�(Pε;Eε

)
ε +�(ıω(F;Eε

)
ε

)
,

−ω2
∣
∣Pε
∣
∣2
ε + λ2

∣
∣∇Pε

∣
∣2
ε +
∫

∂Ωε
�
(
PΓ,ε
) ·P∗Γ,εdσ + b

∫

Ωε

∣
∣Pε
∣
∣2
φ′
(∣
∣Pε
∣
∣2
)
dx = b�(Eε;Pε

)
ε

(2.3)

and the imaginary parts give

a1
∣
∣Eε
∣
∣2
ε +ωμλ2

∫

∂Ωε
βε
∣
∣Eε×n

∣
∣2
dσ = ω2�(Pε;Eε

)
ε +�(ıω(F;Eε

)
ε

)
,

ωa2
∣
∣Pε
∣
∣2
ε = b�

(
Eε;Pε

)
ε.

(2.4)
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Adding the last equalities and using the property �(Pε;Eε)ε +�(Eε;Pε)ε = 0, we get

a1b
∣
∣Eε
∣
∣2
ε + bωμλ2

∫

∂Ωε
βε
∣
∣Eε×n

∣
∣2
dσ + a2ω

3
∣
∣Pε
∣
∣2
ε =�

(
ıωb

(
F;Eε

)
ε

)
. (2.5)

Using the fact that � is independent of ε, then there exists c > 0 which is independent of ε
such that |∫Γε �(PΓ,ε) ·P�Γ,εdσ| ≤ c|PΓ,ε|2ε ≤ c(η|∇Pε|2ε +Cη|Pε|2ε ) for all η > 0. We obtain,
for η small enough, the following result.

Lemma 2.1. There exists C > 0 which is independent of ε (depending on ω and F) such that

∣
∣Eε
∣
∣
ε +
∣
∣curlEε

∣
∣
ε +
∣
∣
∣
√
βεEε×n

∣
∣
∣
ε
≤ C,

∣
∣Pε
∣
∣
ε +
∣
∣∇Pε

∣
∣
ε +
∣
∣πε

∣
∣
ε ≤ C.

(2.6)

Moreover,

∣
∣ΔPε

∣
∣
ε +
∣
∣curl2Eε

∣
∣
ε ≤ C. (2.7)

3. The scaled problem and convergences

We introduce the change of variable z = x3/ε for xT ∈ΩT fixed. We define the cylinder
Ω =ΩT × (0,1) with generic point (xT ,z). For a given vector-valued function G(xT ,x3)
defined on Ωε we set Gε(xT ,z)= G(xT ,εz) which is defined in Ω. We write Gε = (Gε

T ,gε)
where Gε = (Gε

1,Gε
2) and gε =Gε

3. Denoting ∇T the gradient with respect to the variable
xT we have ∇TGT =∇TGε and ∂x3G= (1/ε)∂zGε. Let g be a scalar function and let GT =
(G1,G2) be a vector-valued function both defined in Ω. We set

curlT g =
(
∂2g,−∂1g

)
, ΔTg = ∂2

1g + ∂2
2g,

CurlGT = ∂1G2− ∂2G1, divT GT = ∂1G1 + ∂2G2.
(3.1)

With the change of variable, we have (1/ε)
∫ ε

0 |G(x3)|2dx3 =
∫ 1

0 |Gε(z)|2dz and the differ-
ential operators become curlG= curlε Gε, divG= divε Gε, ΔG= ΔεGε with

curlε Gε =−1
ε
∂z
(

Gε×u3
)

+ curlT gε +
(

CurlT Gε
T

)
u3,

divε Gε = divT Gε
T +

1
ε
∂zg

ε,

ΔεGε = ΔTGε
T +

1
ε2
∂2
zGε, ∇εgε =

(
∇xT gε,

1
ε
∂zgε

)
.

(3.2)

We rewrite curlε Gε as follows:

curlε Gε = (θε,CurlT Gε
T

)
, θε =

(
∂2g

ε− 1
ε
∂zG

ε
2,

1
ε
∂zG

ε
1− ∂1g

ε
)
. (3.3)

Notice that θε · u3 = 0 a.e. Here we have identified the 2D vectors θε and curlT gε with
the vectors (θε,0) of R3 and (∂2gε,−∂1gε,0), respectively. This identification will be used
throughout this manuscript.
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Let (Eε,Pε) be a solution to problem (1.14) associated with the source term F satisfying
the hypothesis

F = (FT
(
xT
)
,0
)
, divT FT = 0. (3.4)

Using the previous notations, let Eε = (EεT ,eε) and Pε = (PεT , pε) be the scaled solution to
(1.14) and let Πε be the scaled function associated with πε. Then (Eε,Pε) satisfies in Ω the
system of equations

(
ζ1(ω) + λ2 curl2ε

)
Eε = ω2Pε + ıωF

(
xT
)
,

(
ζ2(ω)− λ2Δε

)
Pε +∇εΠ

ε =−b(Eeq
(

Pε
)−Eε

)
,

divε Pε = 0,

curlε Eε×n+ ıωμβεn× (Eε×n)= 0 on ∂Ω,

curlε Pε×n= 0, Pε ·n= 0 on ∂Ω,

(3.5)

where n = (nT ,n3) is the unit outward normal to Ω. We have n = u3 for z = 1, n = −u3

for z = 0, and n= nT = (n1,n2) on ∂ΩT for 0≤ z ≤ 1.
Let θε be the 2D vector appearing in the definition of curlε Eε. We have

θε =
(
∂2e

ε− 1
ε
∂zE

ε
2,

1
ε
∂zE

ε
1− ∂1e

ε
)
. (3.6)

The boundary conditions satisfied by (Eε,Pε) are rewritten as follows. On z = 0 and z = 1,
we have
(
θε×u3

)(
xT ,1

)=−ıωμβ1εE
ε(xT ,1

)
,

(
θε×u3

)(
xT ,1

)= ıωμβ0εE
ε(xT ,0

)
,

pε
(
xT ,1

)= pε
(
xT ,0

)= 0,

∂zP
ε
T

(
xT ,1

)
+ ε�

(
PεT
(
xT ,1

))=−∂zPεT
(
xT ,0

)
+ ε�

(
PεT
(
xT ,0

))= 0,

(3.7)

and on ∂ΩT × (0,1), we have

CurlT EεT = ıωβEε×nT , CurlT PεT = 0,

∂Pε
Γ

∂nT
+ �

(
Pε
Γ

)= 0, PεT ·nT = 0,
(3.8)

where EεT × nT = Eε1n2 − Eε2n1. Recall that Pε
Γ = nT × (Pε × nT). Applying the uniform

bounds of Lemma 2.1 to the scaled solution (Eε,Pε) and using (3.7), we get the following.

Lemma 3.1. There exists C > 0 which is independent of ε such that

∣
∣Eε
∣
∣+

∣
∣Pε

∣
∣+

∣
∣
∣Πε

∣
∣
∣≤ C,

∣
∣θε
∣
∣+

∣
∣CurlT EεT

∣
∣+

∣
∣∇TPε

∣
∣+

1
ε

∣
∣∂zPε

∣
∣≤ C,

∣
∣curl2ε Eε

∣
∣+

∣
∣ΔεPε

∣
∣≤ C.

(3.9)
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Moreover, the traces of the solution satisfy the estimates

∣
∣EεT |z=k

∣
∣≤ C,

∣
∣θε|z=k

∣
∣≤ Cε, for k = 1,2,

∣
∣Eε×n|∂ΩT×(0,1)

∣
∣≤ C. (3.10)

We will prove the following general result which is useful in the sequel.

Proposition 3.2. Let Uε = (Uε
T ,uε) be a bounded sequence of L2(Ω) such that curlε Uε =

(θε,CurlT Uε
T) is bounded in L2(Ω) and assume that the tangential trace Uε × n is uni-

formly bounded in L2(∂Ω). Then, there exists a subsequence, still denoted, Uε such that
Uε = (Uε

T ,uε)⇀ U = (UT ,u) weakly in L2(Ω), CurlT Uε
T ⇀ CurlT UT weakly in L2(Ω).

Moreover, UT is independent of z and

(
Uε
T ×u3

)
|z=k UT ×u3 weakly in L2(ΩT

)
for k = 0,1,

∫ 1

0
Uε
T ×nTdz UT ×nT weakly in L2(∂ΩT

)
.

(3.11)

Proof. Let U= (UT ,u) be the weak limit in L2(Ω) of a subsequence of Uε. Let ϕ∈�(Ω)
be a test function. The Green formula gives

∫

Ω
curlε Uε ·ϕdx =

∫

Ω
Uε · curlε ϕdx−

∫

∂ΩT×(0,1)
Uε×n ·ϕdσ

−1
ε

∫

ΩT

(
Uε×u3

)
|z=1 ·ϕ|z=1dxT +

1
ε

∫

ΩT

(
Uε×u3

)
|z=0 ·ϕ|z=0dxT.

(3.12)

Firstly, we choose in the Green formula ϕ = εφ with φ = (φ1,φ2,0) = (φT ,0) ∈ �(Ω).
Since curlε ϕ=−∂z(φ×u3) + ε(CurlT φT)u3, then passing to the limit in (3.12), we get

∫

Ω
−U1∂zφ2 + U2∂zφ1dx = 0 (3.13)

which implies that ∂zUT = 0 in the sense of distributions so, UT is independent of the
variable z. Next, let Aj be the weak limit in L2(ΩT) of a subsequence of the traces (Uε ×
u3)|z= j for j = 0,1. To identify A1, we choose in the Green formula ϕ = εzφ with φ =
(φ1(xT),φ2(xT),0)∈ (�(ΩT))3. Passing to the limit in (3.12), we get

∫

ΩT

−U1φ2 + U2φ1dx−
∫

ΩT

A1 ·φdxT = 0 (3.14)
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which shows that A1 = UT × u3. Secondly, we use the test function ϕ = ε(1− z)φ with
φ = (φ1(xT),φ2(xT),0)∈ (�(ΩT))2 in the Green formula (3.12) and pass to the limit, we
get

∫

ΩT

U1φ2−U2φ1dx+
∫

ΩT

A0 ·φdxT = 0. (3.15)

Thus, we getA0 =UT ×u3 andA0 =A1. Finally, let g be the weak limit in L2(∂ΩT × (0,1))
of a subsequence of the traces Uε×nT|∂ΩT×(0,1) . To characterize g, we consider the test func-
tion ϕ=(0,0,φ3(xT)) with φ3∈�(ΩT). Observing that curlε ϕ=curlT φ3=(∂2φ3,−∂1φ3,0)
and passing to the limit in (3.12), since U is independent of the variable z, we deduce that

∫

ΩT

φ3 CurlT UTdxT =
∫

ΩT

UT · curlT φ3dxT −
∫

∂ΩT

(∫ 1

0
gdz

)
φ3dxT. (3.16)

Now, since CurlT UT ∈ L2(ΩT), then UT × nT is well defined, we finally deduce that
∫ 1

0 gdz =UT ×nT . Hence, Proposition 3.2 is proved. �

Applying Proposition 3.2 to the fields Eε = (EεT ,eε) and curlε Eε = (θε,CurlT EεT), we get
the following.

Lemma 3.3. There exist subsequences, still denoted, Eε and θε such that the following weak
convergences in L2(Ω) hold:

EεT ET , eε e, CurlT EεT CurlT ET , θε 0, (3.17)

and ET is independent of z. Moreover, the traces satisfy the convergences

EεT |z=k ET weak, θε|z=k −→ 0 strong,
∫ 1

0
EεT ×nTdz ET ×nT

(3.18)

in L2(ΩT) for k = 1,2 and in L2(∂ΩT), respectively.

Proof. Lemma 3.1 implies the strong convergence of θε|z= j to 0. Next, set Uε = curlε Eε.
As Uε = (θε,CurlT EεT) satisfies the conditions of the previous proposition, then θε ⇀ θ
weakly in L2(Ω) and θ is independent of the variable z. Using again Proposition 3.2, we
get (θε×u3)|z=k⇀ θ×u3 weakly in L2(ΩT) for k = 1,2. Since (θε×u3)|z=k → 0 strongly,
then θ ≡ 0 in Ω. �

Now, we consider the convergences for Pε. We have the following.
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Lemma 3.4. There exists a subsequence, still denoted by Pε such that

Pε −→ P= (PT ,0) strong, ∇TPε ∇T(PT ,0), Πε Π weak,

∂zPε −→ 0, Eeq
(

Pε
)−→ Eeq(PT)= 2PTφ′

(|PT |2
)

strong
(3.19)

in L2(Ω). Moreover, PT and Π are independent of the variable z and e = 0. Finally, PT
satisfies on ∂ΩT the boundary condition PT ·nT = 0.

Proof. Using the bounds in L2(Ω) of ∇εPε and Pε, we deduce that there exists a sub-
sequence such that Pε ⇀ P = (PT , p) weakly in H1(Ω). Moreover, ∂zPε → 0 strongly in
L2(Ω). It follows that P is independent of z. Furthermore, the pressure Πε converges
weakly to Π in L2(Ω). Next, the trace of Pε on ∂Ω converges weakly in H1/2(∂Ω) to
the trace of P. Since we have pε(xT ,1) = pε(xT ,0) = 0 and p is independent of z, then
p = 0. The trace Pε × n⇀ P× n weakly in L2(∂ΩT × (0,1)). We may pass to the limit in
the boundary condition to get P · n = 0 on ∂Ω which gives PT · nT = 0. We rewrite the
Neumann boundary condition in its original form curlε Pε × n = 0. We write curlε Pε =
(θε1,CurlT PεT), where θε1 is defined as in Section 3, then the boundary condition becomes

θε1
(
xT ,1

)= θε1
(
xT ,0

)= 0,

θε1×nT = 0, CurlT PεT = 0, on ∂ΩT .
(3.20)

We apply Proposition 3.2 to Uε = curlε Pε. Since we have ΔεPε = curlε(curlε Pε) because
we have divε Pε = 0, then by Lemma 3.1, it follows that curlε Uε is bounded in L2(Ω).
Applying Proposition 3.2, we deduce that θ1, the weak limit of θε1, is independent of z
where θ1 is the weak limit of θε1. Finally, using the boundary condition satisfied by θε1 at z =
0 and z = 1, we deduce that θ1 = 0. Next, we use the bound in L2(Ω) of ∇εP

ε
T to deduce

that CurlT PεT ⇀ CurlT PT and PεT ·nT ⇀ PT ·nT weakly in H1/2(∂Ω). To end the proof of
the lemma, we will prove that Π is independent of z and e = 0. We set σε = ∂z((1/ε)pε).
The condition divε Pε = 0 is rewritten as divT PεT + σε = 0 and from the equation satisfied
by Pε we deduce that −λ2∂zσε + ∂zΠε = εRε where the remainder term Rε is bounded
in L2(Ω). Since σε is bounded in L2(Ω), then passing to the limit we get divPT + σ = 0
and −λ2∂zσ + ∂zΠ = 0. Since PT is independent of z, then so is σ which implies that
∂zΠ = 0. Let us consider the equation satisfied by Eε. We multiply the equation by the
test function ϕ = (0,0,φ) with φ ∈ �(Ω). Since we have curlε ϕ = (∂2φ,−∂1φ,0), then
curlε Eε · curlε ϕ = θε · curlT φ, then we get after an integration by parts (recall that the
third component of F is 0)

∫

Ω

(
ζ1(ω)eε−ω2pε

)
φdx+ λ2

∫

Ω
θε · curlT φdx = 0. (3.21)

Passing to the limit, we obtain ζ1(ω)e−ω2p = 0. Using that p = 0, we get e = 0. �
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4. The reduced problem

Let us introduce the Hilbert spaceH(CurlT ,ΩT)= {U∈L2(ΩT)2,CurlT U ∈ L2(ΩT)}. We
will prove the following main result describing the dimensional reduction of the thin
ferroelectric cylinder.

Theorem 4.1. Let F∈ (L2(ΩT))2 be such that divT F= 0 in ΩT . Then for ω > 0 fixed, there
exists a unique solution (E,P)∈H(CurlT ,ΩT)×H(CurlT ,ΩT) of the reduced problem

ζ1(ω)E + λ2 curlT
(

CurlT E
)

+ ıωμ
(
β1 +β0

)
E−ω2P= ıωF,

CurlT E + ıωμβE×nT = 0, on ∂ΩT ,

ζ2(ω)P− λ2ΔP +∇TΠ=−b
(
Eeq(P)−E

)
,

divT P= 0,

curlT P= 0, P ·nT = 0, on ∂ΩT .

(4.1)

Furthermore, CurlT E,CurlT P ∈ H1(ΩT) and the solution is obtained as the limit of the
sequence (Eε,Pε) of the model problem (3.5).

Proof. To prove this theorem, we pass to the limit in the weak formulation of equation
(3.5). Since the limit solution (E,P) is independent of z and e = p = 0, we choose test
functions of the type ϕ = (ϕ1,ϕ2,0), ψ = (ψ1,ψ2,0) and a scalar function φ which are
independent of the variable z. We suppose that φ,ϕ,ψ ∈ �(ΩT) with divT ψ = 0 and
ψ ·nT = 0 on ∂ΩT . Multiplying the first equation by ϕ∗, the second by ψ∗, and the con-
straint divε Pε = 0 by φ∗ then integrating by parts we get

∫

Ω

(
ζ1(ω)EεT −ω2PεT

) ·ϕ∗dx+ λ2
∫

Ω
CurlT EεT ·CurlT ϕ∗dx

+ ıμωβ
∫

∂ΩT×(0,1)

(
EεT ×nT

)·(ϕ∗ ×nT
)
dσ + ıμωβ0

∫

ΩT

(
EεT×u3

)·(ϕ∗ ×u3
)(
xT ,0

)
dxT

+ ıμωβ1

∫

ΩT

(
EεT ×u3

) · (ϕ∗ ×u3
)(
xT ,1

)
dxT = ıω

∫

Ω
F ·ϕ∗dx,

∫

Ω

(
ζ2(ω)PεT + b

(
Eeq
(
Pε
)−EεT

)) ·ψ∗dx+ λ2
∫

Ω
CurlT PεT ·CurlT ψ∗dx = 0,

∫

Ω
PεT ·∇Tφ

∗dx = 0,

(4.2)

where we set Eeq(Pε)= (Eeq(Pε),eeq(Pε)). We used−ΔεPε = curl2ε Pε, divε Pε = 0, curlε Eε =
(θε,CurlT EεT), curlε ϕ= (0,0,CurlT ϕ), and the same properties for Pε.
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Applying our convergence results proved in Section 3 and passing to the limit in the
weak formulation, we obtain

∫

ΩT

(
ζ1(ω)E−ω2P

) ·ϕ∗dxT + λ2
∫

ΩT

CurlT E ·CurlT ϕ∗dxT

+ ıωμ
(
β1 +β0

)
∫

ΩT

(
E×u3

) · (ϕ∗ ×u3
)
dxT + ıωβμ

∫

∂ΩT

(
E×nT

) · (ϕ∗ ×nT
)
dσ

= ıω
∫

ΩT

F ·ϕ∗dxT ,

∫

ΩT

(
ζ2(ω)P + b

(
Eeq(P)−E

)) ·ψ∗dxT + λ2
∫

ΩT

CurlT P ·CurlT ψ∗dxT = 0,

∫

ΩT

P ·∇Tφ
∗dxT = 0.

(4.3)

Observe that the condition divT P= 0 shows that curlT(CurlT P)=−ΔP. Our main result
is then proved. �

5. Concluding remarks

Let us conclude this work by the following remarks. If we impose that the regular part
of the polarization P is 0, then P =∇ϕ with ϕ = c on ∂Ω. The equation satisfied by the
polarization field writes in Ω as

(
ζ2(ω) + 2bφ′

(|∇ϕ|2))∇ϕ= bE (5.1)

while the electric field E satisfies the Maxwell equation

ζ1(ω)E+ λ2 curl2E−ω2∇ϕ= ıωF. (5.2)

We set, for X ∈ C, a(|X|2)= 2bφ′(|X|2)−ω2 + ıωa2. We will show that the map

X ∈ C �−→H(X)= a(|X|2)X ∈ C (5.3)

is onto. The equation a(|X|2)X = Y gives |a(r)|2r = t with r = |X|2 and t = |Y |2 or
equivalently as ((2bφ′(r)−ω2)2 +ω2a2

2)r = t. Let

θ(r)= ∣∣a(r)
∣
∣2
r = (2bφ′(r)−ω2)2

r +ω2a2
2r, (5.4)

then we have θ′(r) = (2bφ′(r)−ω2)2 + a2
2ω

2 + 4brφ(2)(r)(2bφ′(r)−ω2). It follows that
θ′(r)= (2bφ′(r)−ω2 + 2brφ(2)(r))2 + a2

2− 4b2r2(φ(2)(r))2. Assuming that 0≤ rφ(2)(r)≤
a2ω/(2b) for all r ≥ 0, we get θ′(r) > 0 for all r ≥ 0. Consequently, θ is invertible and
for all t ≥ 0 there exists a unique r ≥ 0 given by r = θ−1(t). Hence, for all Y ∈ C3, the
equation θ(|X|2) = |Y |2 gives |X|2 = θ−1(|Y |2). Finally, for given Y ∈ C3, the equation
a(|X|2)X = Y admits a unique solution X ∈ C3 given by X = Y/a(θ−1(|Y |2)).
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Now, let E ∈ L2(Ω), then there exists a unique U ∈ L2(Ω) solution to the equation
a(|U|2)U = bE which is given by

U = bE

a
(
θ−1
(
b2|E|2)) . (5.5)

Finally, E should satisfy the nonlinear Maxwell equation

ζ1(ω)E+ λ2 curl2E = ω2bσ
(|E|2)E+ ıωF,

curl
(
σ
(|E|2)E)= 0,

E×n= 0,

(5.6)

with σ(|E|2) = 1/a(θ−1(b2|E|2)). The condition curl(σ(|E|2)E) = 0 allows to show that
σ(|E|2)E is a gradient. We will come back to this problem in a forthcoming work.

In [5, Section 3], and [6, Section 2.2], the authors introduce the following model equa-
tions to describe the dynamic of the time-dependant spontaneous polarization p in a
ferroelectric domain Ω (here we use the Davı́ notations):

ρm∂
2
t p + (D + G)∂tp− σ2Δp= ∂	

∂p
(p) +

∂ϕ

∂p
(F, e,p)− ρe, in Ω× (0,T),

σ2 ∂p
∂n
= t, on ∂Ω× (0,T),

p(0)= p0, ρm∂tp(0)= p1.

(5.7)

The electric field e with p satisfies in R3× (0,T) the electrostatic equations

div(ρp + e)= 0, curle= 0, (5.8)

with the natural jump conditions across the boundary ∂Ω× (0,T). The parameters ap-
pearing in the equation are defined in [5, 6]. It is important to notice that the system
is coupled to some elasticity model describing the dynamic of the deformation F (e.g.,
when we assume that F= I +∇u where u is the mechanical displacement, see [6, Section
3]). Next, the nonhomogeneous boundary condition satisfied by p takes into account the
density of the electric dipoles. This model is more complete than the one introduced in
[1]. If we consider rigid body, then both models are essentially the same. An interesting
question is to study the full model satisfied by (e,p,u).
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Naı̈ma Aı̈ssa: Centre de Mathématiques Appliquées (CMAP), UMR 7641 CNRS,
Ecole Polytechnique, 91128 Palaiseau Cedex, France
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