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We revisit a key function arised in studies of nematic liquid crystal polymers. Previously,
it was conjectured that the function is strictly decreasing and the conjecture was numeri-
cally confirmed. Here we prove the conjecture analytically. More specifically, we write the
derivative of the function into two parts and prove that each part is strictly negative.
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1. Introduction

In our previous study of steady states and dynamics of two-dimensional nematic liquid
crystal polymers under an imposed weak shear [1], we carried out multiscale asymptotic
expansions [2, 3] to reveal the slow time evolution of the polymer orientation distribu-
tion. In the two-dimensional case, the orientation of a polymer rod is represented by
angle θ [4–6]. Let ρ(θ, t) denote the probability density of the orientation of the poly-
mer rod ensemble. Our multiscale asymptotic analysis on the Smoluchowski equation
which governs the evolution of the probability density [1] demonstrates that, to the lead-
ing term, the probability density ρ(θ, t) behaves like a travelling wave with nonuniform
velocity

ρ(θ, t)= ρ(0)(θ−α(t)
)

+ ··· . (1.1)

Here ρ(0)(θ) is a given function and the phase angle α(t) evolves according to

dα(t)
dt

= ε c1
(
sin2(α(t)

)− c2
)
, (1.2)
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where ε is the Peclet number. For a weak shear, the Peclet number is small. c1 is a positive
constant independent of ε and α. The expression of c2 is given by

c2 = h(r)
2g(r)

. (1.3)

From the evolution equation (1.2), we see that the sign of c2 determines the behavior of
polymer orientation distribution: for 0 < c2 < 1, the polymer orientation distribution will
converge to a steady state while for c2 < 0, the polymer orientation distribution will keep
rotating (tumbling). Function g(r) is defined as

g(r)≡
(

1
2π

∫ 2π

0
exp(r cos2θ)dθ

)2

. (1.4)

Function h(r) is defined as

h(r)≡ 1
〈cos2θ〉

(
1− g(r)

(
1−〈cos2θ〉)). (1.5)

Here 〈cos2θ〉 denotes the average of random variable cos2θ defined as

〈cos2θ〉 ≡
∫ 2π

0
cos2θρ(θ,r)dθ, (1.6)

where the probability density used in the average is given by

ρ(θ,r)≡ exp(r cos2θ)dθ
∫ 2π

0 exp(r cos2θ)dθ
. (1.7)

It is clear that 〈cos2θ〉 is a function of r. But for conciseness, we will simply write 〈cos2θ〉
instead of writing 〈cos2θ〉(r). In the discussion here, r is treated as an independent vari-
able for mathematical convenience. From physical considerations, a more meaningful
quantity is,U , the normalized polymer concentration. In [1], we showed that r is a strictly
increasing function of U , so there is a one-to-one correspondence between U and r.

Since function g(r) is always positive, the sign of c2 is completely determined by func-
tion h(r). In [1], by doing expansions at r = 0 and at r =∞, we showed

h(0)= 1,

h′(0)=−1,

h(r)= −1
4πr2

exp(2r) + ··· as r −→ +∞.

(1.8)

In [1], we made a conjecture that h(r) is a strictly decreasing function of r for r > 0. Based
on the conjecture, we concluded that there is a threshold r0 such that h(r) > 0 for r < r0

and h(r) < 0 for r > r0. Because of the one-to-one correspondence between U and r, the
conclusion in r leads to the conclusion that there is a threshold U0 for the normalized
polymer concentration: for U < U0, the polymer orientation distribution will converge
to a steady state while for U >U0, the polymer orientation distribution will keep rotating
(tumbling).
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2. Proof of the conjecture

In [1], the conjecture that h(r) is a strictly decreasing function of r for r > 0 is only numer-
ically confirmed. In this study, we prove this conjecture analytically. We start by writing
function h(r) in a slightly different form:

h(r)= −
(
g(r)− 1

)

〈cos2θ〉 + g(r). (2.1)

We calculate the derivative of ρ(θ,r):

d

dr
ρ(θ,r)= cos2θ exp(r cos2θ)

∫ 2π
0 exp(r cos2θ)dθ

− exp(r cos2θ)
∫ 2π

0 cos2θ exp(r cos2θ)dθ
(∫ 2π

0 exp(r cos2θ)dθ
)2

= (cos2θ−〈cos2θ〉)ρ(θ,r).

(2.2)

Using this result, we compute the derivative of 〈cos2θ〉:

d

dr
〈cos2θ〉 = 〈cos2θ

(
cos2θ−〈cos2θ〉)〉

= 〈cos22θ
〉−〈cos2θ〉2

= var(cos2θ) > 0,

(2.3)

where var(cos2θ) denotes the variance of random variable cos2θ and is always positive
for finite values of r. The derivative of function g(r) is given by

d

dr
g(r)= 2

4π2

∫ 2π

0
exp(r cos2θ)dθ

∫ 2π

0
cos2θ exp(r cos2θ)dθ

= 2
(

1
2π

∫ 2π

0
exp(r cos2θ)dθ

)2 ∫ 2π
0 cos2θ exp(r cos2θ)dθ
∫ 2π

0 exp(r cos2θ)dθ

= 2g(r)〈cos2θ〉.

(2.4)

Differentiating both sides of (2.1) with respect to r and using (2.3) and (2.4) yield

d

dr
h(r)=−(g(r)− 1

) d

dr

(
1

〈cos2θ〉
)
− dg(r)

dr

1
〈cos2θ〉 +

dg(r)
dr

= (g(r)− 1
)var(cos2θ)

〈cos2θ〉2 − 2g(r) + 2g(r)〈cos2θ〉

= (g(r)− 1− 2g(r)〈cos2θ〉2)var(cos2θ)

〈cos2θ〉2

+ 2g(r)
(
var(cos2θ)− 1 + 〈cos2θ〉)

≡Q1(r)
var(cos2θ)

〈cos2θ〉2 + 2g(r)Q2(r).

(2.5)
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In this study, our goal is to prove dh(r)/dr < 0 for r > 0. Since in (2.5), both g(r) and
var(cos2θ)/〈cos2θ〉2 are always positive, to achieve our goal, we only need to prove the
two theorems below.

Theorem 2.1.

Q1(r)≡ g(r)− 1− 2g(r)〈cos2θ〉2 < 0 for r > 0. (2.6)

Theorem 2.2.

Q2(r)≡ var(cos2θ)− 1 + 〈cos2θ〉 < 0 for r > 0. (2.7)

Remark 2.3. The conclusion that function h(r) is strictly decreasing for r > 0 follows
directly from these two theorems.

To facilitate the proofs of these two theorems, we introduce a functional. Specifically,
the functional maps a function of θ to a function of r defined as [5]

F
[
q(θ)

]
(r)≡

∫ 2π

0
q(θ)exp(r cos2θ)dθ. (2.8)

The derivative of F[q(θ)](r) is given by

d

dr
F
[
q(θ)

]
(r)=

∫ 2π

0
q(θ)cos2θ exp(r cos2θ)dθ

= F
[
q(θ)cos2θ

]
(r).

(2.9)

With the notation of functional, 〈cos2θ〉 and g(r) can be written as

〈cos2θ〉 = F[cos2θ](r)
F[1](r)

,

g(r)= F[1]2(r)
4π2

.

(2.10)

Proof of Theorem 2.1.
Step 1. Using the notation of functional, we express function Q1(r) as

Q1(r)= 1
4π2

(
F[1]2(r)− 4π2− 2F[cos2θ]2(r)

)
. (2.11)

It is straightforward to verify that Q1(0)= 0. Thus, to prove Q1(r) < 0 for r > 0, we only
need to prove dQ1(r)/dr < 0 for r > 0. Taking the derivative of Q1(r) and with the help of
(2.9), we get

d

dr
Q1(r)= 2F[cos2θ](r)

4π2

(
F[1](r)− 2F

[
cos22θ

]
(r)
)
. (2.12)

Using the fact that the functional F[•] is linear and using the identity cos22θ = 1− sin22θ,
we obtain

d

dr
Q1(r)= 2F[cos2θ](r)

4π2

(
2F
[
sin22θ

]
(r)−F[1](r)

)
. (2.13)
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Since F[cos2θ](0)= 0 and dF[cos2θ](r)/dr = F[cos22θ](r) > 0, we have F[cos2θ](r) > 0
for r > 0. As a result, to prove dQ1(r)/dr < 0 for r > 0, we only need to prove 2F[sin22θ]
(r)−F[1](r) < 0 for r > 0.

Step 2. We now prove 2F[sin22θ](r)−F[1](r) < 0 for r > 0.
Using the Taylor expansion

exp(r cos2θ)=
∞∑

n=0

rncosn2θ
n!

, (2.14)

and using the fact that
∫ 2π

0 cos2n+12θdθ = ∫ 2π
0 sin22θcos2n+12θdθ = 0 to get rid of terms of

odd powers in the sum, we write the expression 2F
[
sin22θ

]
(r)−F[1](r) as

2F
[
sin22θ

]
(r)−F[1](r)

=
∞∑

n=0

r2n

(2n)!

∫ 2π

0

(
2sin22θcos2n2θ− cos2n2θ

)
dθ.

(2.15)

Applying integration by parts, we obtain

∫ 2π

0
2sin22θcos2n2θdθ =−

∫ 2π

0
sin2θ

d
(
cos2n+12θ

)

2n+ 1

= 2
2n+ 1

∫ 2π

0
cos2n+22θdθ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 2π

0
cos2n2θdθ, n= 0

<
2

2n+ 1

∫ 2π

0
cos2n2θdθ, n > 1.

(2.16)

Substituting (2.16) into (2.15), we arrive at

2F
[
sin22θ

]
(r)−F[1](r)

<−
∞∑

n=1

r2n

(2n)!

(
2n− 1
2n+ 1

)∫ 2π

0
cos2n2θdθ < 0.

(2.17)

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2.

Step 1. Using the definition var(cos2θ) = 〈cos22θ〉 − 〈cos2θ〉2, the relation 〈cos22θ〉 −
1=−〈sin22θ〉, and the notation of functional, we write function Q2(r) as

Q2(r)=−〈sin22θ
〉−〈cos2θ〉2 + 〈cos2θ〉

= −F
[
sin22θ

]
(r)

F[1](r)
− F[cos2θ]2(r)

F[1]2(r)
+
F[cos2θ](r)
F[1](r)

.
(2.18)
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Applying integration by parts to F[sin22θ](r), we have

F
[
sin22θ

]
(r)=

∫ 2π

0
sin22θ exp(r cos2θ)dθ

= −1
2r

∫ 2π

0
sin2θd

(
exp(r cos2θ)

)

= 1
r

∫ 2π

0
cos2θ exp(r cos2θ)dθ

= 1
r
F[cos2θ](r).

(2.19)

Substituting (2.19) into (2.18), using the fact that the functional F[•] is linear and using
the relation cos2θ = 1− 2sin2θ, we obtain

Q2(r)= F[cos2θ](r)

F[1]2(r)

((
1− 1

r

)
F[1](r)−F[cos2θ](r)

)

= 1
r
·F[cos2θ](r)

F[1]2(r)

(
2F
[
rsin2θ

]
(r)−F[1](r)

)
.

(2.20)

In the proof of Theorem 2.1, we have shown that F[cos2θ](r) > 0 for r > 0. It follows that
to prove Q2(r) < 0 for r > 0, we only need to show 2F[rsin2θ](r)−F[1](r) < 0 for r > 0.
Step 2. We now prove 2F[rsin2θ](r)−F[1](r) < 0 for r > 0.

Using cos2θ = 2cos2θ− 1, we rewrite and expand exp(r cos2θ) as

exp(r cos2θ)= exp(−r)exp
(
2rcos2θ

)

= exp(−r)
∞∑

n=0

(2r)ncos2nθ

n!
.

(2.21)

Using this result, we write 2F
[
rsin2θ

]
(r)−F[1](r) as

2F
[
rsin2θ

]
(r)−F[1](r)

= exp(−r)
[ ∞∑

n=0

(2r)n+1

n!

∫ 2π

0
sin2θcos2nθdθ−

∞∑

n=0

(2r)n

n!

∫ 2π

0
cos2nθdθ

]

= exp(−r)
[ ∞∑

n=0

(2r)n+1

n!

∫ 2π

0
sin2θcos2nθdθ− 2π−

∞∑

m=0

(2r)m+1

(m+ 1)!

∫ 2π

0
cos2(m+1)θdθ

]

= exp(−r)
[ ∞∑

n=0

(2r)n+1

n!

∫ 2π

0

(
sin2θcos2nθ− cos2n+2θ

n+ 1

)
dθ− 2π

]
.

(2.22)

Integrating by parts, we obtain

∫ 2π

0
sin2θcos2nθdθ =−

∫ 2π

0
sinθ

d
(
cos2n+1θ

)

2n+ 1

= 1
2n+ 1

∫ 2π

0
cos2n+2θdθ.

(2.23)
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Substituting (2.23) into (2.22), we arrive at

2F
[
rsin2θ

]
(r)−F[1](r)

= exp(−r)
[
−

∞∑

n=1

(2r)n+1

n!
n

(2n+ 1)(n+ 1)

∫ 2π

0
cos2n+2θdθ− 2π

]
< 0 for r > 0.

(2.24)

This completes the proof of Theorem 2.2. �

3. Concluding remarks

We provide a rigorous proof on the monotonicity of a key function in the study of ne-
matic liquid crystal polymers. This monotonicity has enabled us to establish analytically
the tumbling region of shear-driven nematic liquid crystal polymers [1]. This paper serves
as a theoretical advance in our studies of complex fluids.
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