Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2007, Article ID 89180, 13 pages doi:10.1155/2007/89180

Research Article Stability of Functional Inequalities with Cauchy-Jensen Additive Mappings

Young-Sun Cho and Hark-Mahn Kim Received 19 March 2007; Accepted 4 April 2007 Recommended by Stephen L. Clark

We investigate the generalized Hyers-Ulam stability of the functional inequalities associated with Cauchy-Jensen additive mappings. As a result, we obtain that if a mapping satisfies the functional inequalities with perturbation which satisfies certain conditions, then there exists a Cauchy-Jensen additive mapping near the mapping.

Copyright © 2007 Y.-S. Cho and H.-M. Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group *G* and a metric group *G'* with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f : G \to G'$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h : G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G$?

In 1941, Hyers [2] considered the case of approximately additive mappings $f : E \to E'$, where *E* and *E'* are Banach spaces and *f* satisfies *Hyers' inequality*

$$\left|\left|f(x+y) - f(x) - f(y)\right|\right| \le \epsilon \tag{1.1}$$

for all $x, y \in E$. It was shown that the limit $L(x) = \lim_{n \to \infty} (f(2^n x)/2^n)$ exists for all $x \in E$ and that $L : E \to E'$ is the unique additive mapping satisfying

$$\left|\left|f(x) - L(x)\right|\right| \le \epsilon.$$
(1.2)

In 1978, Rassias [3] provided a generalization of Hyers' theorem which allows the *Cauchy difference to be unbounded*.

Let $f : E \to E'$ be a mapping from a normed vector space *E* into a Banach space *E'* subject to the inequality

$$\left\| f(x+y) - f(x) - f(y) \right\| \le \epsilon \left(\|x\|^p + \|y\|^p \right)$$
(1.3)

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and p < 1.

Then, the limit $L(x) = \lim_{n \to \infty} (f(2^n x)/2^n)$ exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

$$||f(x) - L(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$
 (1.4)

for all $x \in E$. If p < 0, then inequality (1.3) holds for $x, y \neq 0$ and (1.4) for $x \neq 0$.

In 1991, Gajda [4], following the same approach as in Rassias [3], gave an affirmative solution to this question for p > 1. It was shown by Gajda [4] as well as by Rassias and Šemrl [5] that one cannot prove a Rassias-type theorem when p = 1. Inequality (1.3) that was introduced for the first time by Rassias [3] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept of stability is known as *generalized Hyers-Ulam stability* or *Hyers-Ulam-Rassias stability* of functional equations (cf. the books of Czerwik [6], Hyers et al. [7]).

Găvruța [8] provided a further generalization of Rassias' theorem. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [9–14]).

Gilányi [15] and Rätz [16] showed that if f satisfies the functional inequality

$$||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||,$$
(1.5)

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$
(1.6)

Gilányi [17] and Fechner [18] proved the generalized Hyers-Ulam stability of the functional inequality (1.3).

Now, we consider the following functional inequalities:

$$\left\| f\left(\frac{x-y}{2}-z\right) + f(y) + 2f(z) \right\| \le \left\| f\left(\frac{x+y}{2}+z\right) \right\| + \phi(x,y,z), \tag{1.7}$$

$$||f(x) + f(y) + 2f(z)|| \le \left||2f\left(\frac{x+y}{2} + z\right)\right|| + \phi(x, y, z),$$
 (1.8)

which are associated with Jordan-von Neumann-type Cauchy-Jensen additive functional equations.

The purpose of this paper is to prove that if f satisfies one of the inequalities (1.7) and (1.8) which satisfies certain conditions, then we can find a Cauchy-Jensen additive mapping near f, and thus we prove the generalized Hyers-Ulam stability of the functional inequalities (1.7) and (1.8).

2. Stability of functional inequality (1.7)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.7) associated with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equation. Throughout this paper, let *G* be a normed vector space and *Y* a Banach space.

LEMMA 2.1. Let $f : G \to Y$ be a mapping such that

$$\left\| f\left(\frac{x-y}{2}-z\right) + f(y) + 2f(z) \right\| \le \left\| f\left(\frac{x+y}{2}+z\right) \right\|$$
(2.1)

for all $x, y, z \in G$. Then, f is Cauchy-Jensen additive.

Proof. Letting x, y, z := 0 in (2.1), we get $||4f(0)|| \le ||f(0)||$. So, f(0) = 0.

And by setting y := -x and z := 0 in (2.1), we get $||f(x) + f(-x)|| \le ||f(0)|| = 0$ for all $x \in G$. Hence, f(-x) = -f(x) for all $x \in G$.

Also by letting x := 0, y := 2x, and z := -x in (2.1), we get $||f(2x) + 2f(-x)|| \le ||2f(0)|| = 0$ for all $x \in G$. Thus, f(2x) = 2f(x) for all $x \in G$.

Letting z = (-x - y)/2 in (2.1), we get

$$\left\| f\left(\frac{x-y}{2} + \frac{x+y}{2}\right) + f(y) + 2f\left(\frac{-x-y}{2}\right) \right\| \le \left\| f(0) \right\| = 0$$
 (2.2)

for all $x, y \in G$. Thus, f(x + y) = f(x) + f(y) for all $x, y \in G$, as desired.

THEOREM 2.2. Assume that a mapping $f : G \rightarrow Y$ satisfies the inequality

$$\left\| f\left(\frac{x-y}{2}-z\right) + f(y) + 2f(z) \right\| \le \left\| f\left(\frac{x+y}{2}+z\right) \right\| + \phi(x,y,z)$$

$$(2.3)$$

and that the map ϕ : $G \times G \times G \rightarrow [0, \infty)$ satisfies the condition

$$\Phi(x, y, z) := \sum_{j=0}^{\infty} 3^j \phi\left(\frac{x}{3^j}, \frac{y}{3^j}, \frac{z}{3^j}\right) < \infty$$
(2.4)

for all $x, y, z \in G$. Then, there exists a unique Cauchy-Jensen additive mapping $A : G \to Y$ such that

$$||A(x) - f(x)|| \le \Phi\left(-\frac{x}{3}, x, -\frac{x}{3}\right) + \frac{3}{2}\Phi\left(\frac{x}{3}, \frac{x}{3}, -\frac{x}{3}\right)$$
(2.5)

for all $x \in G$.

Proof. Letting y := x and z := -x in (2.3), we get

$$||2f(x) + 2f(-x)|| \le \phi(x, x, -x) + ||f(0)||$$
(2.6)

for all $x \in G$. And by letting x := -x, y := 3x, and z := -x in (2.3), we get

$$||3f(-x) + f(3x)|| \le \phi(-x, 3x, -x) + ||f(0)||$$
(2.7)

for all $x \in G$. It follows from (2.6) and (2.7) that

$$\left|\left|f(3x) - 3f(x)\right|\right| \le \phi(-x, 3x, -x) + \frac{3}{2}\phi(x, x, -x) + \frac{5}{2}\left|\left|f(0)\right|\right|.$$
(2.8)

Also letting x, y, z := 0 in (2.3), we get $3||f(0)|| \le \phi(0,0,0) = 0$. Hence, we have f(0) = 0. Now, it follows from (2.8) that for all nonnegative integers m and l with m > l

$$\begin{split} \left\| 3^{l} f\left(\frac{x}{3^{l}}\right) - 3^{m} f\left(\frac{x}{3^{m}}\right) \right\| &\leq \sum_{j=l}^{m-1} \left\| 3^{j} f\left(\frac{x}{3^{j}}\right) - 3^{j+1} f\left(\frac{x}{3^{j+1}}\right) \right\| \\ &\leq \sum_{j=l}^{m-1} 3^{j} \left[\phi\left(-\frac{x}{3^{j+1}}, \frac{x}{3^{j}}, -\frac{x}{3^{j+1}}\right) + \frac{3}{2} \phi\left(\frac{x}{3^{j+1}}, \frac{x}{3^{j+1}}, -\frac{x}{3^{j+1}}\right) \right] \end{split}$$

$$(2.9)$$

for all $x \in G$. It means that a sequence $\{3^n f(x/3^n)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{3^n f(x/3^n)\}$ converges. So, one can define a mapping $A: G \to Y$ by $A(x) := \lim_{n \to \infty} 3^n f(x/3^n)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.9), we get the approximation (2.5) of *f* by *A*.

Next, we claim that the mapping $A : G \to Y$ is Cauchy-Jensen additive. In fact, it follows easily from (2.3) and condition of ϕ that

$$\begin{split} \left\| A\left(\frac{x-y}{2}-z\right) + A(y) + 2A(z) \right\| &= \lim_{n \to \infty} 3^n \left\| f\left(\frac{1}{3^n} \left(\frac{x-y}{2}-z\right)\right) + f\left(\frac{y}{3^n}\right) + 2f\left(\frac{z}{3^n}\right) \right\| \\ &\leq \lim_{n \to \infty} 3^n \left[\left\| f\left(\frac{1}{3^n} \left(\frac{x+y}{2}+z\right)\right) \right\| + \phi\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right) \right] \\ &= A\left(\frac{x+y}{2}+z\right). \end{split}$$

$$(2.10)$$

Thus, the mapping $A: G \rightarrow Y$ is Cauchy-Jensen additive by Lemma 2.1.

Now, let $T:G \to Y$ be another Cauchy-Jensen additive mapping satisfying (2.5). Then we obtain

$$\begin{split} \|A(x) - T(x)\| \\ &= 3^{n} \left\| A\left(\frac{x}{3^{n}}\right) - T\left(\frac{x}{3^{n}}\right) \right\| \\ &\leq 3^{n} \left(\left\| A\left(\frac{x}{3^{n}}\right) - f\left(\frac{x}{3^{n}}\right) \right\| + \left\| T\left(\frac{x}{3^{n}}\right) - f\left(\frac{x}{3^{n}}\right) \right\| \right) \\ &\leq 2 \sum_{j=0}^{\infty} 3^{j} \left[\phi\left(-\frac{x}{3^{n+j+1}}, \frac{x}{3^{n+j}}, -\frac{x}{3^{n+j+1}} \right) + \frac{3}{2} \phi\left(\frac{x}{3^{n+j+1}}, \frac{x}{3^{n+j+1}}, -\frac{x}{3^{n+j+1}} \right) \right] \\ &\leq 2 \sum_{j=n}^{\infty} 3^{j} \left[\phi\left(-\frac{x}{3^{j+1}}, \frac{x}{3^{j}}, -\frac{x}{3^{j+1}} \right) + \frac{3}{2} \phi\left(\frac{x}{3^{j+1}}, \frac{x}{3^{j+1}}, -\frac{x}{3^{j+1}} \right) \right], \end{split}$$
(2.11)

which tends to zero as $n \to \infty$. So, we can conclude that A(x) = T(x) for all $x \in G$. This proves the uniqueness of *A*. Hence, the mapping $A : G \to Y$ is a unique Cauchy-Jensen additive mapping satisfying (2.5).

THEOREM 2.3. Assume that a mapping $f : G \to Y$ satisfies inequality (2.3) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the condition

$$\Phi(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{3^j} \phi(3^j x, 3^j y, 3^j z) < \infty$$
(2.12)

for all $x, y, z \in G$.

Then, there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$||A(x) - f(x)|| \le \frac{1}{3}\Phi(-x, x, -x) + \frac{1}{2}\Phi(x, x, -x) + \frac{5}{4}||f(0)||$$
(2.13)

for all $x \in G$.

Proof. We get by (2.8)

$$\begin{aligned} \left\| \frac{1}{3^{j}} f(3^{j}x) - \frac{1}{3^{m}} f(3^{m}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{3^{j}} f(3^{j}x) - \frac{1}{3^{j+1}} f(3^{j+1}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \left[\left\| \frac{1}{3^{j}} f(3^{j}x) + \frac{1}{3^{j+1}} f(-3^{j+1}x) \right\| + \left\| \frac{1}{3^{j+1}} f(2^{j+1}x) + \frac{1}{3^{j+1}} f(-3^{j+1}x) \right\| \right] \\ &\leq \sum_{j=l}^{m-1} \frac{1}{3^{j+1}} \left[\phi(-3^{j}x, 3^{j+1}x, -3^{j}x) + \frac{3}{2} \phi(3^{j}x, 3^{j}x, -3^{j}x) + \frac{5}{2} \| f(0) \| \right] \end{aligned}$$

$$(2.14)$$

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that a sequence $\{(1/3^n)f(3^nx)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{(1/3^n)f(3^nx)\}$ converges. So, one can define a mapping $A : G \to Y$ by $A(x) := \lim_{n \to \infty} (1/3^n)f(3^nx)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.14), we get (2.13).

The remaining proof goes through by the similar argument to Theorem 2.2. \Box

THEOREM 2.4. Assume that a mapping $f : G \to Y$ satisfies inequality (2.3) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the condition

$$\lim_{n \to \infty} 3^n \phi\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right) = 0$$
(2.15)

for all $x, y, z \in G$. If there exists a number L with $0 \le L < 1$ such that the mapping $x \mapsto \psi(x) := \phi(-x, 3x, -x) + (3/2)\phi(x, x, -x)$ satisfies

$$\psi(x) \le \frac{L}{3}\psi(3x),\tag{2.16}$$

then there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$||f(x) - A(x)|| \le \frac{L \cdot \psi(x)}{3(1-L)}$$
 (2.17)

for all $x \in G$.

Proof. We get by (2.8)

$$\left|\left|f(3x) - 3f(x)\right|\right| \le \psi(x) = \phi(-x, 3x, -x) + \frac{3}{2}\phi(x, x, -x)$$
(2.18)

for all $x \in G$. Hence, we get

$$\begin{aligned} \left\| 3^{l} f\left(\frac{x}{3^{l}}\right) - 3^{m} f\left(\frac{x}{3^{m}}\right) \right\| &\leq \sum_{j=l}^{m-1} \left\| 3^{j} f\left(\frac{x}{3^{j}}\right) - 3^{j+1} f\left(\frac{x}{3^{j+1}}\right) \right\| \\ &\leq \sum_{j=l}^{m-1} 3^{j} \psi\left(\frac{x}{3^{j+1}}\right) \leq \sum_{j=l}^{m-1} \frac{L^{j+1}}{3} \psi(x) \end{aligned}$$

$$(2.19)$$

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that a sequence $\{3^n f(x/3^n)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{3^n f(x/3^n)\}$ converges. So, one can define a mapping $A : G \to Y$ by $A(x) := \lim_{n \to \infty} 3^n f(x/3^n)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.19), we get (2.17).

The remaining proof goes through by the similar argument to Theorem 2.2. \Box

COROLLARY 2.5. Assume that there exist nonnegative numbers θ and a real p > 1 such that a mapping $f : G \rightarrow Y$ satisfies the inequality

$$\left\| f\left(\frac{x-y}{2}-z\right) + f(y) + 2f(z) \right\| \le \left\| f\left(\frac{x+y}{2}+z\right) \right\| + \theta\left(\|x\|^p + \|y\|^p + \|z\|^p\right)$$
(2.20)

for all $x, y, z \in G$.

Then, there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$\left\| \left| f(x) - A(x) \right| \right\| \le \frac{\theta(13 + 2 \cdot 3^p)}{2(3^p - 3)} \|x\|^p$$
(2.21)

for all $x \in G$.

THEOREM 2.6. Assume that a mapping $f : G \to Y$ satisfies inequality (2.3) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the condition

$$\lim_{n \to \infty} \frac{1}{3^n} \phi(3^n x, 3^n y, 3^n z) = 0$$
(2.22)

for all $x, y, z \in G$. If there exists a number L with $0 \le L < 1$ such that the mapping $x \mapsto \psi(x) := \phi(-x, 3x, -x) + (3/2)\phi(x, x, -x)$ satisfies

$$\psi(3x) \le 3L \cdot \psi(x),\tag{2.23}$$

then there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$\left|\left|f(x) - A(x)\right|\right| \le \frac{\psi(x)}{3(1-L)} + \frac{5}{4}\left|\left|f(0)\right|\right|$$
 (2.24)

for all $x \in G$.

Proof. We get by (2.8)

$$\begin{split} \left\| \frac{1}{3^{l}} f(3^{l}x) - \frac{1}{3^{m}} f(3^{m}x) \right\| &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{3^{j}} f(3^{j}x) - \frac{1}{3^{j+1}} f(3^{j+1}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \frac{1}{3^{j+1}} \left[\psi(3^{j}x) + \frac{5}{2} ||f(0)|| \right] \\ &\leq \sum_{j=l}^{m-1} \left[\frac{L^{j}\psi(x)}{3} + \frac{5}{2 \cdot 3^{j+1}} ||f(0)|| \right] \end{split}$$
(2.25)

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that a sequence $\{(1/3^n)f(3^nx)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{(1/3^n)f(3^nx)\}$ converges. So, one can define a mapping $A : G \to Y$ by $A(x) := \lim_{n \to \infty} (1/3^n)f(3^nx)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.25), we get (2.24).

The remaining proof goes through by the similar argument to Theorem 2.3. \Box

COROLLARY 2.7. Assume that there exist nonnegative numbers θ , δ , and a real p < 1 such that a mapping $f : G \to Y$ satisfies the inequality

$$\left\| f\left(\frac{x-y}{2}-z\right) + f(y) + 2f(z) \right\| \le \left\| f\left(\frac{x+y}{2}+z\right) \right\| + \theta\left(\|x\|^p + \|y\|^p + \|z\|^p\right) + \delta$$
(2.26)

for all $x, y, z \in G$.

Then, there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$\left|\left|f(x) - A(x)\right|\right| \le \frac{\theta(13 + 2 \cdot 3^p) \|x\|^p + 5\delta + 5||f(0)||}{2(3 - 3^p)}$$
(2.27)

for all $x \in G$.

3. Stability of functional inequality (1.8)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.8) associated with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equation.

THEOREM 3.1. Assume that a mapping $f : G \rightarrow Y$ satisfies the inequality

$$||f(x) + f(y) + 2f(z)|| \le \left||2f\left(\frac{x+y}{2} + z\right)\right|| + \phi(x, y, z)$$
 (3.1)

and that the map ϕ : $G \times G \times G \rightarrow [0, \infty)$ satisfies the conditions

- (1) $\rho(x) := \sum_{j=0}^{\infty} (1/2^{j+1}) [\phi(-2^{j+1}x, 0, 2^j x) + \phi_1(2^{j+1}x)] < \infty,$
- (2) $\lim_{n\to\infty} (1/2^n)\phi(2^nx, 2^ny, 2^nz) = 0$ for all $x, y, z \in G$,

where

$$\phi_1(x) := \min\left\{\phi(x, -x, 0) + 4||f(0)||, \frac{1}{2}\phi(x, x, -x) + ||f(0)||\right\}.$$
(3.2)

Then, there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$||A(x) - f(x)|| \le \rho(x)$$
 (3.3)

for all $x \in G$.

Proof. Letting x, y, z := 0 in (3.1), we get $||f(0)|| \le (1/2)\phi(0,0,0)$. And by setting x := 2x, y := 0, and z := -x in (3.1), we get

$$\left\| f(2x) + 2f(-x) \right\| \le 3 \left\| f(0) \right\| + \phi(2x, 0, -x)$$
(3.4)

for all $x \in G$.

Also by letting y := -x and z := 0 or by letting y := x and z := -x in (3.1), we get

$$\left|\left|f(x) + f(-x)\right|\right| \le \phi_1(x) = \min\left\{\phi(x, -x, 0) + 4\left|\left|f(0)\right|\right|, \frac{1}{2}\phi(x, x, -x) + \left|\left|f(0)\right|\right|\right\}$$
(3.5)

for all $x \in G$. Hence, we get by (3.4) and (3.5)

$$\begin{split} \left| \frac{1}{2^{i}} f(2^{l}x) - \frac{1}{2^{m}} f(2^{m}x) \right| \\ &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}} f(2^{j}x) - \frac{1}{2^{j+1}} f(2^{j+1}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \left[\left\| \frac{1}{2^{j}} f(2^{j}x) + \frac{1}{2^{j+1}} f(-2^{j+1}x) \right\| + \left\| \frac{1}{2^{j+1}} f(2^{j+1}x) + \frac{1}{2^{j+1}} f(-2^{j+1}x) \right\| \right] \\ &\leq \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} \left[\phi(-2^{j+1}x, 0, 2^{j}x) + \phi_{1}(2^{j+1}x) \right] \end{split}$$
(3.6)

 \square

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that a sequence $\{(1/2^n)f(2^nx)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{(1/2^n)f(2^nx)\}$ converges. So, one can define a mapping $A : G \to Y$ by $A(x) := \lim_{n \to \infty} (1/2^n)f(2^nx)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.6), we get (3.3).

The remaining proof is similar to that of Theorem 2.3.

THEOREM 3.2. Assume that a mapping $f : G \to Y$ satisfies inequality (3.1) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the conditions

(1) $\rho(x) := \sum_{j=0}^{\infty} 2^{j} \phi(x/2^{j}, 0, -x/2^{j+1}) + 2^{j+1} \phi_{2}(x/2^{j+1}) < \infty,$

(2) $\lim_{n\to\infty} 2^n \phi(x/2^n, y/2^n, z/2^n) = 0$ for all $x, y, z \in G$,

where

$$\phi_2(x) := \min\left\{\phi(x, -x, 0), \frac{1}{2}\phi(x, x, -x)\right\}.$$
(3.7)

Then, there exists a unique Cauchy-Jensen additive mapping $A: G \rightarrow Y$ such that

$$\left\| \left| A(x) - f(x) \right| \right\| \le \rho(x) \tag{3.8}$$

for all $x \in G$.

Proof. Letting x, y, z := 0 in (3.1), we get $||f(0)|| \le (1/2)\phi(0, 0, 0) = 0$. So f(0) = 0.

Now, it follows from (3.4) and (3.5) that for all nonnegative integers m and l with m > l,

$$\begin{aligned} \left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\| \\ &\leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\| \\ &\leq \sum_{j=l}^{m-1} \left[\left\| 2^{j} f\left(\frac{x}{2^{j}}\right) + 2^{j+1} f\left(-\frac{x}{2^{j+1}}\right) \right\| + \left\| 2^{j+1} f\left(-\frac{x}{2^{j+1}}\right) + 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\| \right] \\ &\leq \sum_{j=l}^{m-1} \left[2^{j} \phi\left(\frac{x}{2^{j}}, 0, -\frac{x}{2^{j+1}}\right) + 2^{j+1} \phi_{2}\left(\frac{x}{2^{j+1}}\right) \right] \end{aligned}$$

$$(3.9)$$

for all $x \in G$. It means that a sequence $\{2^n f(x/2^n)\}$ is a Cauchy sequence for all $x \in G$. Since *Y* is complete, the sequence $\{2^n f(x/2^n)\}$ converges. So, one can define a mapping $A: G \to Y$ by $A(x) := \lim_{n \to \infty} 2^n f(x/2^n)$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.9), we get (3.8).

The rest of proof is similar to that of Theorem 2.2.

Remark 3.3. Assume that a mapping $f : G \to Y$ satisfies inequality (3.1) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the conditions

- (1) $\rho(x) := \sum_{j=0}^{\infty} (1/2^{j+2}) [\phi(-2^{j+1}x, 0, 2^j x) + \phi(2^{j+1}x, 0, -2^j x)] < \infty,$
- (2) $\lim_{n\to\infty} (1/2^n)\phi(2^nx, 2^ny, 2^nz) = 0$ for all $x, y, z \in G$.

Then, there exists a unique Cauchy-Jensen additive mapping $L: G \rightarrow Y$ such that

$$\left| \left| L(x) - \frac{f(x) - f(-x)}{2} \right| \right| \le \rho(x) + 3 \left| \left| f(0) \right| \right|$$
(3.10)

for all $x \in G$.

Proof. Let g(x) := (f(x) - f(-x))/2. Then, we get by (3.4)

$$\begin{aligned} ||2g(x) - g(2x)|| &\leq \left| \left| f(x) + \frac{1}{2}f(-2x) \right| \right| + \left| \left| f(-x) + \frac{1}{2}f(2x) \right| \right| \\ &\leq \frac{1}{2} \left[\phi(-2x, 0, x) + \phi(2x, 0, -x) \right] + 3 \left| \left| f(0) \right| \right| \end{aligned}$$
(3.11)

for all $x \in G$. Hence, we get by (3.11)

$$\begin{aligned} \left\| \frac{1}{2^{l}}g(2^{l}x) - \frac{1}{2^{m}}g(2^{m}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}}g(2^{j}x) - \frac{1}{2^{j+1}}g(2^{j+1}x) \right\| = \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} \left[\left\| 2g(2^{j}x) - g(2^{j+1}x) \right\| \right] \\ &\leq \sum_{j=l}^{m-1} \frac{1}{2^{j+2}} \left[\phi(-2^{j+1}x, 0, 2^{j}x) + \phi(2^{j+1}x, 0, -2^{j}x) + 6 \| f(0) \| \right] \end{aligned}$$
(3.12)

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that a sequence $\{(1/2^n)g(2^nx)\}$ is a Cauchy sequence for all $x \in G$. So, one can define a mapping $L: G \to Y$ by $L(x) := \lim_{n\to\infty} (1/2^n)g(2^nx) = \lim_{n\to\infty} (1/2^n)[(f(2^nx) - f(-2^nx))/2]$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.12), we get (3.10). Next, we claim that the mapping $L: G \to Y$ is a Cauchy-Jensen additive mapping. Note that L(-x) = -L(x) because g(-x) = -g(x). Then

$$||L(x) + L(y) - L(x+y)|| = \lim_{n \to \infty} \frac{1}{2^n} ||g(2^n x) + g(2^n y) - g(2^n x + y)||,$$
(3.13)

 \Box

and so we obtain by (3.1) and (3.4),

$$\begin{aligned} \frac{1}{2^{n}} ||g(2^{n}x) + g(2^{n}y) + g(2^{n}(-x-y))|| \\ &\leq \frac{1}{2^{n+1}} ||f(2^{n}x) + f(2^{n}y) + 2f(2^{n-1}(-x-y))|| \\ &+ \frac{1}{2^{n+1}} || - f(-2^{n}x) - f(-2^{n}y) - 2f(2^{n-1}(x+y))|| \\ &+ \frac{1}{2^{n+1}} || - 2f(2^{n-1}(-x-y)) - f(2^{n}(x+y))|| \\ &+ \frac{1}{2^{n+1}} ||f(2^{n}(-x-y)) + 2f(2^{n-1}(x+y))|| \\ &\leq \frac{1}{2^{n+1}} [\phi(2^{n}x, 2^{n}y, 2^{n-1}(-x-y)) + \phi(-2^{n}x, -2^{n}y, 2^{n-1}(x+y)) + 4||f(0)||] \\ &+ \frac{1}{2^{n+1}} [||6f(0)|| + \phi(-2^{n}(x+y), 0, 2^{n-1}(x+y)) + \phi(2^{n}(x+y), 0, -2^{n-1}(x+y))]], \end{aligned}$$
(3.14)

which tends to zero as $n \to \infty$ for all $x \in G$. Hence, we see that *L* is additive.

The remaining proof is similar to the corresponding part of Theorem 2.3.

Remark 3.4. Assume that a mapping $f : G \to X$ satisfies inequality (3.1) and that the map $\phi : G \times G \times G \to [0, \infty)$ satisfies the conditions

- (1) $\rho(x) := \sum_{j=0}^{\infty} 2^{j-1} [\phi(-x/2^j, 0, x/2^{j+1}) + \phi(x/2^j, 0, -x/2^{j+1})] < \infty,$
- (2) $\lim_{n\to\infty} 2^n \phi(x/2^n, y/2^n, z/2^n) = 0$ for all $x, y, z \in G$.

Then, there exists a unique Cauchy-Jensen additive mapping $L: G \rightarrow Y$ such that

$$\left\| L(x) - \frac{f(x) - f(-x)}{2} \right\| \le \rho(x)$$
 (3.15)

for all $x \in G$.

Proof. Letting x, y, z := 0 in (3.1), we get $||f(0)|| \le (1/2)\phi(0,0,0) = 0$. So f(0) = 0. Let g(x) := (f(x) - f(-x))/2. Then, we get by (3.4)

$$\begin{aligned} ||2g(x) - g(2x)|| &\leq \left| \left| f(x) + \frac{1}{2}f(-2x) \right| \right| + \left| \left| f(-x) + \frac{1}{2}f(2x) \right| \right| \\ &\leq \frac{1}{2} \left[\phi(-2x, 0, x) + \phi(2x, 0, -x) \right] \end{aligned}$$
(3.16)

for all $x \in G$. Hence, we get by (3.16)

$$\begin{aligned} \left\| 2^{l}g\left(\frac{x}{2^{l}}\right) - 2^{m}g\left(\frac{x}{2^{m}}\right) \right\| &\leq \sum_{j=l}^{m-1} \left\| 2^{j}g\left(\frac{x}{2^{j}}\right) - 2^{j+1}g\left(\frac{x}{2^{j+1}}\right) \right\| \\ &\leq \sum_{j=l}^{m-1} 2^{j-1} \left[\phi\left(-\frac{x}{2^{j}}, 0, \frac{x}{2^{j+1}}\right) + \phi\left(\frac{x}{2^{j}}, 0, -\frac{x}{2^{j+1}}\right) \right] \end{aligned}$$
(3.17)

for all nonnegative integers *m* and *l* with m > l and all $x \in G$. It means that the sequence $\{2^n g(x/2^n)\}$ is a Cauchy sequence for all $x \in G$. So, one can define a mapping $L : G \to Y$ by $L(x) := \lim_{n\to\infty} 2^n g(x/2^n) = \lim_{n\to\infty} 2^n [(f(x/2^n) - f(-x/2^n))/2]$ for all $x \in G$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.17), we get (3.15).

Next, we claim that the mapping $L: G \to Y$ is a Cauchy-Jensen additive mapping. Note that L(-x) = -L(x) because g(-x) = -g(x). So, we obtain by (3.1) and (3.4)

$$\begin{split} \|L(x) + L(y) - L(x+y)\| \\ &= \lim_{n \to \infty} 2^n \left\| g\left(\frac{x}{2^n}\right) + g\left(\frac{y}{2^n}\right) - g\left(\frac{x+y}{2^n}\right) \right\| \\ &= \lim_{n \to \infty} 2^n \left\| g\left(\frac{x}{2^n}\right) + g\left(\frac{y}{2^n}\right) + g\left(\frac{-x-y}{2^n}\right) \right\| \\ &\leq \lim_{n \to \infty} \frac{2^n}{2} \left[\left\| f\left(\frac{x}{2^n}\right) + f\left(\frac{y}{2^n}\right) + 2f\left(\frac{-x-y}{2^{n+1}}\right) \right\| \right] \\ &+ \left\| - f\left(\frac{-x}{2^n}\right) - f\left(\frac{-y}{2^n}\right) - 2f\left(\frac{x+y}{2^{n+1}}\right) \right\| \right] \\ &+ \lim_{n \to \infty} \frac{2^n}{2} \left[\left\| - 2f\left(\frac{-x-y}{2^{n+1}}\right) - f\left(\frac{x+y}{2^n}\right) \right\| + \left\| f\left(\frac{-x-y}{2^n}\right) + 2f\left(\frac{x+y}{2^{n+1}}\right) \right\| \right] \\ &\leq \lim_{n \to \infty} 2^{n-1} \left[\phi\left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{-x-y}{2^{n+1}}\right) + \phi\left(\frac{-x}{2^n}, \frac{-y}{2^n}, \frac{x+y}{2^{n+1}}\right) \right] \\ &+ \lim_{n \to \infty} 2^{n-1} \left[\phi\left(\frac{x+y}{2^n}, 0, \frac{-x-y}{2^{n+1}}\right) + \phi\left(\frac{-x-y}{2^n}, 0, \frac{x+y}{2^{n+1}}\right) \right] = 0 \end{split}$$
(3.18)

from the condition of ϕ . So, we have L(x + y) = L(x) + L(y).

The remaining proof is similar to that of Theorem 2.2.

Acknowledgment

This work was supported by the second Brain Korea 21 Project in 2006.

References

 S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, NY, USA, 1960.

 \square

- [2] D. H. Hyers, "On the stability of the linear functional equation," Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 4, pp. 222–224, 1941.
- [3] Th. M. Rassias, "On the stability of the linear mapping in Banach spaces," *Proceedings of the American Mathematical Society*, vol. 72, no. 2, pp. 297–300, 1978.
- [4] Z. Gajda, "On stability of additive mappings," International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 431–434, 1991.
- [5] Th. M. Rassias and P. Semrl, "On the behavior of mappings which do not satisfy Hyers-Ulam stability," *Proceedings of the American Mathematical Society*, vol. 114, no. 4, pp. 989–993, 1992.
- [6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, USA, 2002.

- [7] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1998.
- [8] P. Găvruța, "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings," *Journal of Mathematical Analysis and Applications*, vol. 184, no. 3, pp. 431–436, 1994.
- [9] K.-W. Jun and Y.-H. Lee, "A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations," *Journal of Mathematical Analysis and Applications*, vol. 297, no. 1, pp. 70– 86, 2004.
- [10] S.-M. Jung, *Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis*, Hadronic Press, Palm Harbor, Fla, USA, 2001.
- [11] C. Park, "Homomorphisms between Poisson JC*-algebras," Bulletin of the Brazilian Mathematical Society, vol. 36, no. 1, pp. 79–97, 2005.
- [12] C. Park, Y.-S. Cho, and M. Han, "Functional inequalities associated with Jordan-von Neumanntype additive functional equations," *Journal of Inequalities and Applications*, vol. 2007, Article ID 41820, 13 pages, 2007.
- [13] C. Park and J. Cui, "Generalized stability of C*-ternary quadratic mappings," *Abstract and Applied Analysis*, vol. 2007, Article ID 23282, 6 pages, 2007.
- [14] C. Park and A. Najati, "Homomorphisms and derivations in C*-algebras," to appear in *Abstract and Applied Analysis*.
- [15] A. Gilányi, "Eine zur Parallelogrammgleichung äquivalente Ungleichung," Aequationes Mathematicae, vol. 62, no. 3, pp. 303–309, 2001.
- [16] J. Rätz, "On inequalities associated with the Jordan-von Neumann functional equation," *Aequationes Mathematicae*, vol. 66, no. 1-2, pp. 191–200, 2003.
- [17] A. Gilányi, "On a problem by K. Nikodem," *Mathematical Inequalities & Applications*, vol. 5, no. 4, pp. 707–710, 2002.
- [18] W. Fechner, "Stability of a functional inequality associated with the Jordan-von Neumann functional equation," *Aequationes Mathematicae*, vol. 71, no. 1-2, pp. 149–161, 2006.

Young-Sun Cho: Department of Mathematics, Chungnam National University, Daejeon 305-764, South Korea *Email address*: yscho@cnu.ac.kr

Hark-Mahn Kim: Department of Mathematics, Chungnam National University, Daejeon 305-764, South Korea *Email address*: hmkim@cnu.ac.kr