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1. Introduction

We consider the linear elliptic differential equation

d

dx

(
aε(x)

d

dx
uε(x)

)
= f (x) (1.1)

on the interval x ∈ (0,1) with Dirichlet boundary conditions

uε(0)= uε(1)= 0. (1.2)

Here, ε > 0 is a small parameter and aε(x) = a(x/ε). Under natural suppositions on the
coefficient function a and the data f given below, the boundary problem given above
does possess a unique solution uε ∈H1

0 ((0,1);R).

Assumption 1.1. The space-dependent coefficient is of the form aε(x) = a(x/ε), where
the mapping a : R→ R is measurable, essentially bounded, and periodic. In particular,
there are constants 0 < α ≤ β <∞ and Y > 0 such that 0 < α ≤ a(y) ≤ β <∞ and a(y) =
a(y +Y) for a.a. y ∈R.
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Assumption 1.2. As for the data, we assume that f ∈H−1((0,1);R)= (H1
0 ((0,1);R))∗.

Accordingly, f is of the form f = f0 + (d/dx) f1, with f0, f1 ∈ L2((0,1);R), where d/dx
denotes the distributional derivative. Note that f0, f1 are not uniquely determined by f .

For both numerical and theoretical considerations, it is quite advantageous to sim-
plify the differential equation. Averaging leads to the so-called homogenized differential
equation

d

dx

(
a0

d

dx
u0(x)

)
= f (x), (1.3)

where the constant coefficient is given by

1
a0
= 1

Y

∫ Y

0

1
a(y)

dy. (1.4)

Naturally, the corresponding Dirichlet boundary problem is uniquely solvable in
H1

0 ((0,1);R) as well. The relation between the original and the homogenized solutions
can be described as follows, see [1, Theorem 6.1].

Theorem 1.3. Let Assumptions 1.1, 1.2 be satisfied. Then one has the convergence relation
uε → u0 weak in H1

0 ((0,1);R), as ε→ 0.

There are several methods available to prove the homogenization result above. We
mention Tatar’s method displayed in [2] and the two-scale convergence method elabo-
rated in [3]. Both methods are applicable to differential equations in higher dimensional
domains. It is well known, see [4], that the approximation is linear in ε > 0 for L2-data,
but it seems that the order of approximation has not yet been investigated for H−1-data.
In the present paper, we assume that the Fourier coefficients given by the H−1-data have
a sufficiently fast decay and obtain approximation orders (with respect to the uniform
convergence) in dependence of the order of the decay of the Fourier coefficients. Here,
the usual linear order for L2-data appears as a limit, as the H−1-data approaches an L2-
function. Note that the method of proof has nothing in common with the Fourier ho-
mogenization method, see, for instance, [5], since we do not use a Fourier analysis for
the rapidly varying coefficients.

2. Order of approximation

In order to obtain an order of approximation we have to suppose a sufficient fast decay
of the Fourier coefficients of f1. Here we set

c0 :=
∫ 1

0
f1(x)dx,

ck :=
∫ 1

0
f1(x)

cos(k2πx)√
2

dx, sk :=
∫ 1

0
f1(x)

sin(k2πx)√
2

dx,

(2.1)

for k = 1,2,3, . . . .
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Theorem 2.1. Let Assumptions 1.1, 1.2 be satisfied. Moreover, assume that the Fourier co-
efficients of f1 fulfill the estimation

ck =O
(
k−γ

)
, sk =O

(
k−γ

)
, as k −→∞, (2.2)

for a γ > 1/2. Then the solutions u0 and uε are continuous on [0,1] and, as ε→ 0, one can
estimate

∥∥uε −u0
∥∥∞ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O
(
εγ−1/2

)
, if

1
2
< γ <

3
2

,

O
(
ε
∣∣ log(ε)

∣∣), if γ = 3
2

,

O(ε), if γ >
3
2
.

(2.3)

Proof. The differential equation (1.1) is equivalent to

d

dx
ξε(x)= f0(x) +

d

dx
f1(x),

d

dx
uε(x)= ξε(x)

aε(x)
. (2.4)

Hence, with an appropriate constant Cε ∈R, we can write

ξε(x)=
∫ x

0
f0(w)dw+ f1(x) +Cε, uε(x)=

∫ x

0

∫ z
0 f0(w)dw+ f1(z) +Cε

aε(z)
dz, (2.5)

for all ε > 0. The homogenized differential equation (1.3) is equivalent to

d

dx
ξ0(x)= f0(x) +

d

dx
f1(x),

d

dx
u0(x)= ξ0(x)

a0
. (2.6)

Hence, with an appropriate constant C0 ∈R, we can write

ξ0(x)=
∫ x

0
f0(w)dw+ f1(x) +C0, u0(x)=

∫ x

0

∫ z
0 f0(w)dw+ f1(z) +C0

a0
dz. (2.7)

Integrating by parts, we conclude that

uε(x)−u0(x)

=
∫ x

0

Cε +F0(z) + f1(z)
aε(z)

dz−
∫ x

0

C0 +F0(z) + f1(z)
a0

dz

=
∫ x

0

Cε −C0

aε(z)
dz+

∫ x

0
C0gε(z)dz+

∫ x

0
F0(z)gε(z)dz+

∫ x

0
f1(z)gε(z)dz

=
∫ x

0

Cε −C0

aε(z)
dz+C0εA

(
x

ε

)
−
∫ x

0
f0(z)εA

(
z

ε

)
dz+F0(x)εA

(
x

ε

)
+
∫ x

0
f1(z)gε(z)dz,

(2.8)
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where

gε(z) := 1
aε(z)

− 1
a0

, F0(z) :=
∫ z

0
f0(w)dw, A(y) :=

∫ y

0

(
1

a(q)
− 1
a0

)
dq.

(2.9)

By the periodicity of a :R→R and A(0)= A(Y)= 0, we easily obtain the estimation

max
y∈R

∣∣A(y)
∣∣= max

0≤y≤Y
∣∣A(y)

∣∣≤ Y
(

1
α
− 1
β

)
. (2.10)

Furthermore, we obviously have

max
z∈R

∣∣gε(z)
∣∣≤ 1

α
− 1
β
. (2.11)

The boundary condition 0= uε(1)= u0(1) implies that

∫ 1

0

Cε −C0

aε(z)
dz =−C0εA

(
1
ε

)
+
∫ 1

0
f0(z)εA

(
z

ε

)
dz−F0(1)εA

(
1
ε

)
−
∫ 1

0
f1(z)gε(z)dz

(2.12)

and that

∣∣Cε −C0
∣∣≤ β

(∣∣∣∣C0εA
(

1
ε

)∣∣∣∣+
∣∣∣∣
∫ 1

0
f0(z)εA

(
z

ε

)
dz
∣∣∣∣+

∣∣∣∣F0(1)εA
(

1
ε

)∣∣∣∣
+
∣∣∣∣
∫ 1

0
f1(z)gε(z)dz

∣∣∣∣
)
.

(2.13)

Overall, we obtain

∣∣uε(x)−u0(x)
∣∣≤

(
β

α
+ 1
)
εY
(

1
α
− 1
β

)(∣∣C0
∣∣+ 2

∫ 1

0

∣∣ f0(z)
∣∣dz

)

+
(
β

α
+ 1
)

max
0≤x≤1

∣∣∣∣
∫ x

0
f1(z)gε(z)dz

∣∣∣∣.
(2.14)

Let us note that the boundary condition u0(1)= 0 gives us

∣∣C0
∣∣≤ ∥∥ f0∥∥L2 +

∥∥ f1∥∥L2 , (2.15)

which yields

∥∥uε −u0
∥∥∞ ≤ β2−α2

α2β
εY
(

3
∥∥ f0∥∥L2 +

∥∥ f1∥∥L2

)
+
(
β

α
+ 1
)

max
0≤x≤1

∣∣∣∣
∫ x

0
f1(z)gε(z)dz

∣∣∣∣.
(2.16)

In case that γ > 3/2, the distributional derivative (d/dx) f1 is square integrable, that is,
f ∈ L2((0,1);R) and we can assume that f1 = 0. By (2.16), we obtain the linear approx-
imation. In case that 1/2 < γ ≤ 3/2, it only remains to obtain an estimation for the last



G. Grammel 5

summand in (2.16). To this end, we write with Kε ∈N (to be specified later)

f1(x)= c0 +
Kε∑
k=1

(
ck

cos(2πkx)√
2

+ sk
sin(2πkx)√

2

)
+

∞∑
k=Kε+1

(
ck

cos(2πkx)√
2

+ sk
sin(2πkx)√

2

)
.

(2.17)

As Kε →∞, we can estimate

∥∥∥∥∥
d

dx

Kε∑
k=1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
2

L2

= (2π)2
Kε∑
k=1

((
kck
)2

+
(
ksk
)2
)
=

⎧⎪⎪⎨
⎪⎪⎩
O
(
K

3−2γ
ε

)
, if

1
2
< γ <

3
2

,

O
(

log
(
Kε
))

, if γ = 3
2

,

∥∥∥∥∥c0 +
Kε∑
k=1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
∞

≤ ∣∣c0
∣∣+

1√
2

Kε∑
k=1

(∣∣ck∣∣+
∣∣sk∣∣)=

⎧⎪⎪⎨
⎪⎪⎩
O
(
K

3/2−γ
ε

)
, if

1
2
< γ <

3
2

,

O(1), if γ = 3
2

,

∥∥∥∥∥
∞∑

k=Kε+1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
2

L2

=
∞∑

k=Kε+1

(
c2
k + s2

k

)
=

⎧⎪⎪⎨
⎪⎪⎩
O
(
K

1−2γ
ε

)
, if

1
2
< γ <

3
2

,

O
(
K−2
ε
)
, if γ = 3

2
.

(2.18)

Integrating by parts, we can estimate

max
0≤x≤1

∣∣∣∣
∫ x

0
f1(z)gε(z)dz

∣∣∣∣≤ max
0≤x≤1

∣∣∣∣∣
∫ x

0

(
c0 +

Kε∑
k=1

(
ck

cos(2πkz)√
2

+ sk
sin(2πkz)√

2

))
gε(z)dz

∣∣∣∣∣

+ max
0≤x≤1

∣∣∣∣∣
∫ x

0

∞∑
k=Kε+1

(
ck

cos(2πkz)√
2

+ sk
sin(2πkz)√

2

)
gε(z)dz

∣∣∣∣∣

≤
∥∥∥∥∥
d

dx

Kε∑
k=1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
L2

∥∥∥∥εA
( ·
ε

)∥∥∥∥
L2

+

∥∥∥∥∥c0 +
Kε∑
k=1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
∞

∥∥∥∥εA
( ·
ε

)∥∥∥∥
∞

+

∥∥∥∥∥
∞∑

k=Kε+1

(
ck

cos(2πk·)√
2

+ sk
sin(2πk·)√

2

)∥∥∥∥∥
L2

∥∥gε(·)∥∥L2 .

(2.19)
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For 1/2 < γ < 3/2, the boundedness of A and g yields

max
0≤x≤1

∣∣∣∣
∫ x

0
f1(z)gε(z)dz

∣∣∣∣= εO
(
K

3/2−γ
ε

)
+ εO

(
K

3/2−γ
ε

)
+O

(
K

1/2−γ
ε

)
. (2.20)

Choosing Kε ∈N such that

Kε − 1≤ 1
ε
≤ Kε (2.21)

yields the required estimation.
For γ = 3/2, the boundedness of A and g yields

max
0≤x≤1

∣∣∣∣
∫ x

0
f1(z)gε(z)dz

∣∣∣∣= εO
(√

log
(
Kε
))

+ εO(1) +O
(
K−1
ε
)
. (2.22)

Choosing Kε ∈N such that

Kε − 1≤ 1
ε

| log(ε)|
≤ Kε (2.23)

yields the required estimation. �

Remark 2.2. The suppositions of Theorem 2.1 can be verified for f1 ∈ C([0,1];R). Let
the modulus of continuity ω of f1 satisfy ω(δ)=O(δγ), as δ→ 0, for a γ ∈ (1/2,1]. Then
the Fourier coefficients fulfill

ck =O
(
k−γ

)
, sk =O

(
k−γ

)
, as k −→∞, (2.24)

see [6, Theorem 4.6].
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