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Lattice-valued fuzzy measures are lattice-valued set functions which assign the bottom element of
the lattice to the empty set and the top element of the lattice to the entire universe, satisfying the
additive properties and the property of monotonicity. In this paper, we use the lattice-valued fuzzy
measures and outer measure definitions and generalize the Caratheodory extension theorem for
lattice-valued fuzzy measures.

1. Introduction

Recently studies including the fuzzy convergence [1], fuzzy soft multiset theory [2], lattices
of fuzzy objects [3], on fuzzy soft sets [4], fuzzy sets, fuzzy S-open and S-closed mappings
[5], the intuitionistic fuzzy normed space of coefficients [6], set-valued fixed point theorem
for generalized contractive mapping on fuzzy metric spaces [7], the centre of the space of
Banach lattice-valued continuous functions on the generalized Alexandroff duplicate [8],
(L,M)-fuzzy σ-algebras [9], fuzzy number-valued fuzzy measure and fuzzy number-valued
fuzzy measure space [10–12], construction of a lattice on the completion space of an algebra
and an isomorphism to its Caratheodory extension [13], fuzzy sets [14, 15], generalized σ-
algebras and generalized fuzzy measures [16], generalized fuzzy sets [17–19], common fixed
points theorems for commutating mappings in fuzzy metric spaces [20], and fuzzy measure
theory [21] have been investigated.

The well-known Caratheodory extension theorem in classical measure theory is very
important [22, 23]. In a graduate course in real analysis, students learn the Caratheodory
extension theorem, which shows how to extended an algebra to a σ-algebra, and a finitely
additive measure on the algebra to a countable additive measure on the σ-algebra [13]. In
this paper, first we give new definition for lattice-valued-fuzzy measure on [−∞,∞], which
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is more general than that of [24]. Using this new definition, we provide new proof of
Caratheodory extension theorem for lattice valued-fuzzy measure. In related literature, not
many studies have been explored including Caratheodory extension theorem on lattice-
valued fuzzy measure. In [25], Sahin used the definitions given in [19] and generalized Car-
atheodory extension theorem for fuzzy sets. In [24], lattice-valued fuzzy measure and fuzzy
integral were studied on [0,∞]. However, no study has been done related to Caratheodory
extension theorem for lattice-valued fuzzy measure. This provides the motivation for present
paper where we provide the proof of generalized Caratheodory extension theorem for lattice-
valued fuzzy measure space.

The outline of the paper is as follows. In the next section, basic definitions of lattice
theory, lattice σ-algebra, are given. In Section 3, definitions for lattice-valued fuzzy σ-algebra,
and lattice-valued fuzzy outer measure are given, and some necessary theorems for our main
theorem (generalized caratheodory extension theorem) related to lattice-valued fuzzy outer
measure and main theorem of this paper are given.

2. Preliminaries

In this section, we shall briefly review the well-known facts about lattice theory [26, 27],
purpose an extension lattice, and investigate its properties. (L,∧,∨) or simply L under closed
operations ∧, ∨ is called a lattice. For two lattices L and L∗, a bijection from L to L∗, which pre-
serves lattice operations is called a lattice isomorphism, or simply an isomorphism. If there is
an isomorphism from L to L∗, then L is called a lattice isomorphic with L∗, and we write L ∼=
L∗. We write x ≤ y if x∧y = x or, equivalently, if x∧y = y. L is called complete, if any subsetA
of L includes the supremum ∨A and infimum ∧A, with respect to the above order. A complete
lattice L includes the maximum and minimum elements, which are denoted L1 and L0.

Throughout this paper, X will be denoted the entire set and L is a lattice of any subset
sets of X.

Definition 2.1 (see [28]). If a lattice L satisfies the following conditions, then it is called a lattice
σ-algebra.

(i) For all f ∈ L, fc ∈ L.
(ii) If fn ∈ L for n = 1, 2, 3, . . ., then

∨∞
n=1fn ∈ L.

It is denoted σ(L) as the lattice σ-algebra generated by L.

Definition 2.2 (see [29]). A lattice-valued set μE is called lattice-valued m∗-measurable if for
every μA ≤ μX ,

m∗(μA
)
= m∗(μA ∧ μE

)
+m∗

(
μA ∧ μCE

)
. (2.1)

This is equivalent to requiring only m∗(μA) ≥ m∗(μA ∧ μE) +m∗(μA ∧ μCE), since the converse
inequality is obvious from the subadditive property ofm∗.

Also,M = {μE : μE is m∗-measurable} is a class of all lattice-valued measurable sets.

Theorem 2.3 (see [29]). Let μE1 and μE2 be measureable lattice-valued sets. Then,

m∗
(
μE1 ∧ μCE1

)
= 0,

m∗(μE1 ∨ μE2

)
= m∗(μE1

)
+m∗

(
μE2 ∧ μCE1

)
.

(2.2)
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3. Main Results

Throughout this paper, we will consider lattices as complete lattices,X will denote space, and
μ is a membership function of any fuzzy set X.

Definition 3.1. If m : σ(L) → R ∪ {∞} satisfies the following properties, then m is called a
lattice measure on the lattice σ-algebra σ(L).

(i) m(∅) = L0.

(ii) For all f, g ∈ σ(L) such thatm(f), m(g) ≥ L0 : f ≤ g ⇒ m(f) ≤ m(g).

(iii) For all f, g ∈ σ(L) : m(f ∨ g) +m(f ∧ g) = m(f) +m(g).

(iv) fn ⊂ σ(L), n ∈ N such that f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · , then m(
∨∞
n=1fn) =

limn→∞ m(fn).

Definition 3.2. Let m1 and m2 be lattice measures defined on the same lattice σ-algebra σ(L).
If one of them is finite, the set function m(E) = m1(E) −m2(E), E ∈ σ(L) is well defined and
countable additive σ(L).

Definition 3.3. If a family σ(L) of membership functions on X satisfies the following
conditions, then it is called a lattice fuzzy σ-algebra.

(i) For all α ∈ L, α ∈ σ(L), (α constant).

(ii) For all μ ∈ σ(L), μC = 1 − μ ∈ σ(L).
(iii) If (μn) ∈ σ(L), sup(μn) ∈ σ(L) for all n ∈N.

Definition 3.4. If m : σ(L) → R ∪ {∞} satisfies the following properties, then m is called a
lattice-valued fuzzy measure.

(i) m(∅) = L0.

(ii) For all μ1, μ2 ∈ σ(L) such thatm(μ1), m(μ2) ≥ L0 : μ1 ≤ μ2 ⇒ m(μ1) ≤ m(μ2).

(iii) For all μ1, μ2 ∈ σ(L) : m(μ1 ∨ μ2) +m(μ1 ∧ μ2) = m(μ1) +m(μ2).

(iv) (μn) ∈ σ(L), n ∈ N such that μ1 ≤ μ2 ≤ · · · ≤ μn ≤ · · · ; sup(μn) = μ ⇒ m(μn) =
limn→∞m(μn).

Definition 3.5. With a lattice-valued fuzzy outer measurem∗ having the following properties,
we mean an extended lattice-valued set function defined on LX :

(i) m∗(∅) = L0,

(ii) m∗(μ1) ≤ m∗(μ2) for μ1 ≤ μ2,

(iii) m∗(
∨∞
n=1μEn) ≤ (

∨∞
n=1m

∗(μEn)).

Example 3.6. Suppose

m∗ =

{
L0, μE = ∅,
L1, μE /= ∅. (3.1)

L0 is infimum of sets of lattice family, and L1 is supremum of sets of lattice family.
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If X has at least two member, thenm∗ is a lattice-valued fuzzy outer measure which is
not lattice-valued fuzzy measure on LX .

Proposition 3.7. Let F be a class of fuzzy sublattice sets of X containing L0 such that for every
μA ≤ μX , there exists a sequence (μBn)

∞
n=1 from F such that μA ≤ (μBn)

∞
n=1. Let ψ be an extended

lattice-valued function on F such that ψ(∅) = L0 and ψ(μA) ≥ L0 for μA ∈ F. Then,m∗ is defined on
LX by

m∗(μA
)
= inf

{
ψ
(
μBn
)∞
n=1 : μBn ∈ F, μA ≤ μBn

}
, (3.2)

andm∗ is a lattice fuzzy outer measure.

Proof. (i)m∗(∅) = L0 is obvious.

(ii) If μA1 ≤ μA2 and μA2 ≤ (μBn)
∞
n=1, then μA1 ≤ (μBn)

∞
n=1. This means that m∗(μA1) ≤

m(μA2).

(iii) Let μEn ≤ μX for each natural number n. Then, m∗(μEn) = ∞ for some n.
m∗(
∨∞
n=1μEn) ≤ (

∨∞
n=1m

∗(μEn)).

The following theorem is an extension of the above proposition.

Theorem 3.8. The class B of m∗ lattice-valued fuzzy measurable sets is a σ-algebra. Also, m the
restrictionm∗ of to B is a lattice valued fuzzy measure.

Proof. It follows from extension of the proposition.

Now, we shall generalize the well-known Caratheodory extension theorem in classical
measure theory for lattice-valued fuzzy measure.

Theorem 3.9 (Generalized Caratheodory Extension Theorem). Let m be a lattice valued fuzzy
measure on a σ-algebra (L) ≤ LX . Suppose for μE ≤ μX , m∗(μE) = inf {m(

∨∞
n=1μEn) : μEn ∈

σ(L), μE ≤ ∨∞
n=1μEn}.

Then, the following properties are hold.

(i) m∗ is a lattice-valued fuzzy outer measure.

(ii) μE ∈ σ(L) impliesm(μE) = m∗(μE).

(iii) μE ∈ σ(L) implies μE ism∗ lattice fuzzy measurable.

(iv) The restrictionm ofm∗ to them∗-lattice-valued fuzzy measurable sets in an extension ofm
to a lattice-valued fuzzy measure on a fuzzy σ-algebra containing (L).

(v) Ifm is lattice-valued fuzzy σ-finite, thenm is the only lattice fuzzy measure (on the smallest
fuzzy σ- algebra containing σ(L) that is an extension ofm).

Proof. (i) It follows from Proposition 3.7.
(ii) Sincem∗ is a lattice-valued fuzzy outer measure, we have

m∗(μE
) ≤ m(μE

)
. (3.3)

For given ε > 0, there exists (μEn ;n = 1, 2, . . .) such that
∨∞
n=1(m(μEn)) ≤ m∗(μE) + ε [29]. Since

μE = μE ∧ (
∨∞
n=1μEn) =

∨∞
n=1(μE ∧μEn) and by the monotonicity and σ-additivity ofm, we have
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m(μE) ≤ ∨∞
n=1m(μE ∧ μEn) ≤ ∨∞

n=1m(μEn) ≤ m∗(μE) + ε. Since ε > 0 is arbitrary, we conclude
that

m
(
μE
) ≤ m∗(μE

)
. (3.4)

From (3.3) and (3.4),m(μE) = m∗(μE) is obtained.
(iii) Let μE ∈ σ(L). In order to prove μE is lattice fuzzy measurable, it suffices to show

that

m∗(μA
) ≥ m∗(μA ∧ μE

)
+m∗(μA ∧ μcE

)
, for μA ≤ μE. (3.5)

For given ε > 0, there exists μAn ∈ σ(L), 1 ≤ n <∞ such that

∞∨

n=1

m
(
μAn

) ≤ m∗(μA
)
+ ε, μA ≤

∞∨

n=1

(
μAn

)
. (3.6)

Now,

μA ∧ μE ≤
∞∨

n=1

(
μAn ∧ μE

)
,

μA ∧ μcE ≤
∞∨

n=1

(
μAn ∧ μcE

)
.

(3.7)

Therefore,

m∗(μA ∧ μE
) ≤

∞∨

n=1

m
(
μAn ∧ μE

)
,

m∗(μA ∧ μcE
) ≤

∞∨

n=1

m
(
μAn ∧ μcE

)
.

(3.8)

From inequalities (3.6) and (3.8), the inequality (3.5) follows.
(iv) Let m be the restriction of m∗ to the m∗ lattice-valued measurable sets, when we

writem = m∗/σ(L). Now, wemust show that σ(L) is a lattice fuzzy σ-algebra containing σ(L)
andm is a lattice-valued fuzzy measure on σ(L). We show it step by stepin the following.
Step 1. If μA, μB ∈ σ(L), then μA ∨ μB ∈ σ(L). It also implies that

m∗(μE
)
= m∗(μE ∧ μB

)
+m∗(μE ∧ μcB

)
. (3.9)

If we write μE ∧ μA instead of μE in (3.9),

m∗(μE ∧ μA
)
= m∗(μE ∧ μA ∧ μB

)
+m∗(μE ∧ μA ∧ μcB

)
(3.10)
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is obtained. Now, if we write μE ∧ μcA instead of μE in (3.9),

m∗(μE ∧ μcA
)
= m∗(μE ∧ μcA ∧ μB

)
+m∗(μE ∧ μcA ∧ μcB

)
(3.11)

is obtained. If we aggregate with (3.10) and (3.11); we have

m∗(μE
)
= m∗(μE ∧ μA ∧ μB

)
+m∗(μE ∧ μA ∧ μcB

)
+m∗(μE ∧ μcA ∧ μB

)

+m∗(μE ∧ μcA ∧ μcB
)
.

(3.12)

If we write μE ∧ (μA ∨ μB) instead of μE in (3.12), then we get

m∗(μE ∧ (μA ∨ μB
))

= m∗(μE ∧ (μA ∨ μB
) ∧ μA ∧ μB

)
+m∗(μE ∧ (μA ∨ μB

) ∧ (μcA ∧ μB
))

+m∗(μE ∧ (μA ∨ μB
) ∧ μA ∧ μcB

)
+m∗(μE ∧ (μA ∨ μB

) ∧ μcA ∧ μcB
)

= m∗(μE ∧ μA ∧ μB
)
+m∗(μE ∧ μcA ∧ μB

)
+m∗(μE ∧ μA ∧ μcB

)
+m∗(L0)

= m∗(μE ∧ μA ∧ μB
)
+m∗(μE ∧ μcA ∧ μB

)
+m∗(μE ∧ μA ∧ μcB

)
.

(3.13)

From (3.12) and (3.13), we obtain

m∗(μE
)
= m∗(μE ∧ (μA ∨ μB

))
+m∗(μE ∧ (μA ∨ μB

)c)
. (3.14)

Step 2. If μA ∈ σ(L), then μCA ∈ σ(L). If we write μcA instead of μA in the equality

m∗(μE
)
= m∗(μE ∧ μA

)
+m∗(μE ∧ μcA

)
, (3.15)

we have

m∗(μE
)
= m∗(μE ∧ μcA

)
+m∗(μE ∧ (μcA

)c);
(
μcA
)c = μA

= m∗(μE ∧ μcA
)
+m∗(μE ∧ μA

)
= m∗(μE

)
.

(3.16)

Therefore, it follows that μCA ∈ σ(L). Therefore, we showed that σ(L) is the algebra of lattice
sets.
Step 3. Let μA, μB ∈ σ(L) and μA ∧ μB = ∅, From (3.13), we have

m∗(μE ∧ (μA ∨ μB
))

= m∗(μE ∧ μcA ∧ μB
)
+m∗(μE ∧ μA ∧ μcB

)

= m∗(μE ∧ μB
)
+m∗(μE ∧ μA

)
.

(3.17)

Step 4.σ(L) is a lattice σ-algebra.
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From the previous step, we have for every family of (for each disjoint lattice sets)
(μBn), n = 1, 2, . . .,

m∗
(

μE ∧
(

k∨

n=1

μBn

))

=
k∨

n=1

m∗(μE ∧ μBn
)
. (3.18)

Let μA =
∨∞
n=1μAn and μAn ∈ σ(L). Then, μA =

∨∞
n=1μBn , μBn = (μAn ∧ (

∨n−1
x=1μAx)

c
), and

μBi ∧ μBj = ∅ for i /= j. Therefore, we obtain following inequality:

m∗(μE
) ≥ m∗

(

μE ∧
( ∞∨

n=1

μBn

))

+m∗
(

μE ∧
( ∞∨

n=1

μBn

)c)

. (3.19)

Hence,m∗ is a lattice σ-semiadditive.
Since σ(L) is an algebra,

∨k
n=1μBn ∈ σ(L) for all n ∈ N. The following inequality is

satisfied for all n:

m∗(μE
) ≥ m∗

(

μE ∧
(

k∨

n=1

μBn

))

+m∗
(

μE ∧
(

k∨

n=1

μBn

)c)

. (3.20)

From the inequality μE ∧ (
∨∞
n=1μBn)

c ≤ μE ∧ (
∨∞
n=1μBn)

c and monotonicity of lattice-valued
fuzzy measure and (3.20), we have

m∗(μE
) ≥

n∨

j=1

m∗
(
μE ∧ μBj

)
+m∗(μE ∧ μcA

)
. (3.21)

Then, taking the limit of both sides, we get

m∗(μE
) ≥

∞∨

j=1

m∗
(
μE ∧ μBj

)
+m∗(μE ∧ μcA

)
. (3.22)

Using the semiadditivity, we have,

m∗(μE ∧ μA
)
= m∗

⎛

⎝
∞∨

j=1

(
μE ∧ μBj

)
⎞

⎠ = m∗

⎛

⎝μE ∧
⎛

⎝
∞∨

j=1

μBj

⎞

⎠

⎞

⎠ ≤ m∗
(
μE ∧ μBj

)
. (3.23)

From (3.22), we have

m∗(μE
) ≥ m∗(μE ∧ μA

)
+m∗(μE ∧ μcA

)
. (3.24)

Hence, μA ∈ σ(L). This shows that σ(L) is a lattice fuzzy σ-algebra.
Step 5. m = m∗/σ(L) is a lattice fuzzy measure, where we only need to show lattice is σ-
additive.
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Let μE =
∨∞
j=1μAj . From (3.22), we have

m∗

⎛

⎝
∞∨

j=1

μAj

⎞

⎠ ≥
∞∨

j=1

m∗
(
μAj

)
. (3.25)

Step 6. We have σ(L) ⊃ σ(L).
Let μA ∈ σ(L) and μE ≤ μA. Then, we must show the following inequality:

m∗(μE
) ≥ m∗(μE ∧ μA

)
+m∗(μE ∧ μcA

)
. (3.26)

If μE ∈ σ(L), then μE ∧ μA and μE ∧ μcA are different and both of them belong to σ(L),
(3.26) is obvious and sincem∗ = m, hence additive.

With μE ≤ μX and given ε > 0, σ(L), there is μEj which contains σ(L) such that we
have

m∗(μE
)
+ ε >

∞∨

j=1

m
(
μEj

)
. (3.27)

Now, from the equality

μEj =
(
μEj ∧ μA

)
∨
(
μEj ∧ μcA

)
(3.28)

and from the Definition 2.1 and Theorem 2.3, we have the following equality:

m
(
μEj

)
= m
(
μEj ∧ μA

)
+m
(
μEj ∧ μcA

)
. (3.29)

Therefore, we obtain the following:

μE ∧ μA ≤
∞∨

j=1

(
μEj ∧ μA

)
,

μE ∧ μcA ≤
∞∨

j=1

(
μEj ∧ μcA

)
.

(3.30)

Using the monotonicity and semiadditivity, we obtain

m∗(μE ∧ μA
) ≤

∞∨

j=1

m
(
μEj ∧ μA

)
,

m∗(μE ∧ μcA
) ≤

∞∨

j=1

m
(
μEj ∧ μcA

)
.

(3.31)
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Using the sum of the inequalities (3.31),

m∗(μE ∧ μA
)
+m∗

(
μEj ∧ μcA

)
≤

∞∨

j=1

m∗
(
μEj

)
< m∗(μE

)
+ ε (3.32)

is obtained. For arbitrary ε > 0, (3.26) is proven. Therefore, (iv) it is obtained as required.
(v) Let σ(L) be the smallest σ-algebra which contain the σ(L) and let m1 be a lattice

fuzzy measure on σ(L). Then,m1(μE) = m(μE) for all μE ∈ σ(L). We must show that

m1
(
μA
)
= m
(
μA
)
. (3.33)

Sincem is a finite σ-lattice fuzzy measure, we can write

X =
∞∨

n=1

μEn , μEn ∈ σ(L), n /= k, μEn ∧ μEk = ∅, m
(
μEn
)
<∞; 1 ≤ n <∞. (3.34)

If μA ∈ σ(L), then we have

m
(
μB
)
=

∞∨

n=1

m
(
μA ∧ μEn

)
, m1

(
μA
)
=

∞∨

n=1

m1
(
μA ∧ μEn

)
. (3.35)

To prove the inequality (3.33), it suffices to show that

m1
(
μA
)
= m
(
μA
)
, μA ∈ σ

(
L
)
, m

(
μA
)
<∞. (3.36)

Let μA ∈ σ(L),m(μA) <∞, and ε > 0 arbitrary. Then, we have

μA ≤
∞∨

n=1

μEn , for μEn ∈ σ(L), 1 ≤ n <∞, (3.37)

m

( ∞∨

n=1

μEn

)

≤
∞∨

n=1

m
(
μEn
)
< m
(
μA
)
+ ε. (3.38)

Sincem1(μA) ≤ m1(
∨∞
n=1μEn) ≤

∨∞
n=1m1(μEn) =

∨∞
n=1m(μEn) and from (3.38), we get

m1
(
μA
) ≤ m(μA

)
. (3.39)
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Also, from (3.38), we can write μF = ∨∞
n=1μEn ∈ σ(L) for the sets μEn . Therefore, μF ism∗ lattice

fuzzy measurable. From the inequality μA ≤ μF and (3.38),

m
(
μF
)
= m
(
μA
)
+m
(
μF − μA

)
,

m
(
μF − μA

)
= m
(
μF
) −m(μA

)
< ε

(3.40)

are obtained.
From the equalities m(μE) = m(μE) and m1(μF) = m(μF) for all μA ∈ σ(L), we can

write

m
(
μA
) ≤ m(μF

)
= m1

(
μF
)
= m1

(
μA
)
+m1

(
μF − μA

)

≤ m1
(
μA
)
+m
(
μF − μA

)
.

(3.41)

Therefore, from (3.41),

m
(
μA
) ≤ m1

(
μA
)

(3.42)

is obtained.
Finally from the inequalities (3.41) and (3.39), hence the proof is completed.

An Application of Generalized Caratheodory Extension Theorem

An application of generalized Caratheodory extension theorem is in the following. This
application is essentially related to option (v)th of the generalized Caratheodory extension
theorem.

Example 3.10. Show that the lattice-valued fuzzy σ-finiteness assumption is essential in
generalized Caratheodory extension theorem for the uniqueness of the extension of m on
the smallest fuzzy σ-algebra containing σ(L).

In this example, let we assume σ(L) is the smallest fuzzy σ-algebra containing σ(L).
And let σ(L) be the smallest fuzzy σ-algebra containing σ(L). Otherwise, let L be lattice
family such that L = (L0, L1] and

σ(L) =

{ ∞∨

i=1

(L0i , L1i] : (L0i , L1i] ⊂ (L0, L1]

}

. (3.43)

For μA ∈ σ(L), m(μA) = ∞ if μA /= ∅, andm(μA) = L0 if μA = ∅.
After all these, solution of application is clearly in the generalized Caratheodory

extension theorem at property (v).
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an isomorphism to its Carathéodory extension,” Far East Journal of Mathematical Sciences, vol. 43, no. 2,
pp. 153–164, 2010.

[14] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965.
[15] L. A. Zadeh, “Calculus of fuzzy restrictions,” in Fuzzy Sets and Their Applications to Cognitive and Deci-

sion Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, Eds., pp. 1–39, Academic Press, New
York, NY, USA, 1975.

[16] M. Sahin, Generalized σ-algebras and Generalizedfuzzy Measures [Ph.D. thesis], Trabzon, Turkey, 2004.
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