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We prove the existence of one-signed periodic solutions of second-order nonlinear difference
equation on a finite discrete segment with periodic boundary conditions by combining some
properties of Green’s function with the fixed-point theorem in cones.

1. Introduction

Let R be the set of real numbers, Z be the integers set, T, a, b ∈ Z with T > 2, a > b, and
[a, b]

Z
= {a, a + 1, . . . , b}.
In recent years, the existence and multiplicity of positive solutions of periodic

boundary value problems for difference equations have been studied extensively, see [1–5]
and the references therein. In 2003, Atici and Cabada [2] studied the existence of solutions of
second-order difference equation boundary value problem

Δ2y(n − 1) + a(n)y(n) + f
(
n, y(n)

)
= 0, n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(1.1)

where a, f satisfy
(H1) a : [1, T]

Z
→ (−∞, 0] and a(·)/≡ 0;

(H2) f : [1, T]
Z
× R → R is continuous with respect to y ∈ R.

The authors obtained the existence results of solutions of (1.1) under conditions (H1), (H2),
and the used tool is upper and lower solutions techniques.

Naturally, whether there exists the Green function G(t, s) of the homogeneous linear
boundary value problem corresponding to (1.1) if a(n) ≥ 0? Moreover, if the answer is
positive, whether G(t, s) keeps its sign? To the knowledge of the authors, there are very few
works on the case a(n) ≥ 0.
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Recently, in 2003, Torres [6] investigated the existence of one-signed periodic solutions
for second-order differential equation boundary value problem

x′′(t) = f(t, x(t)), t ∈ [1, T],

x(0) = x(T), x′(0) = x′(T),
(1.2)

by applying the fixed-point theorem in cones, and constructed Green’s function of

x′′(t) + a(t)x(t) = 0, t ∈ [1, T],

x(0) = x(T), x′(0) = x′(T),
(1.3)

where a ∈ Lp(0, T) satisfies either
(H3) a ≤ 0, a(·)/≡ 0 on [0, T];
(H4) a ≥ 0, a(·)/≡ 0 on [0, T] and ‖a‖p ≤ K(2p∗) for some 1 ≤ p ≤ +∞.
Motivated by Torres [6], in Section 2, the paper gives the new expression of Green’s

function of the linear boundary value problem

Δ2y(t − 1) + a(t)y(t) = 0, t ∈ [1, T]
Z
, (1.4)

y(0) = y(T), Δy(0) = Δy(T), (1.5)

where a ∈ Λ+ ∪Λ− and

Λ− = {a | a : [1, T]
Z
−→ (−∞, 0], a(·)/≡ 0},

Λ+ =
{
a | a : [1, T]

Z
−→ [0,∞), a(·)/≡ 0, max

t∈[1,T]
Z

|a(t)| < 4 sin2 π

2T

}
,

(1.6)

and obtains the sign properties of Green’s function of (1.4), (1.5).
In Section 3, we obtain the existence of one-signed periodic solutions of the discrete

second-order nonlinear periodic boundary value problem

Δ2y(t − 1) = f
(
t, y(t)

)
, t ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(1.7)

where f : [1, T]
Z
× R → R is continuous. For related results on the associated differential

equations, see Torres [6].

2. Preliminaries

Let

E =
{
y | y : [0, T + 1]

Z
−→ R, y(0) = y(T), y(1) = y(T + 1)

}
(2.1)

be a Banach space endowed with the norm ‖y‖ = maxt∈[0,T+1]
Z
|y(t)|.
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We say that the linear boundary value problem (1.4), (1.5) is nonresonant when its
unique solution is the trivial one. If (1.4), (1.5) is nonresonant, and let h : [1, T]

Z
→ R, by

the virtue of the Fredholm’s alternative theorem, we can get that the discrete second-order
periodic boundary value problem

Δ2y(t − 1) + a(t)y(t) = h(t), t ∈ [1, T]
Z

(2.2)

y(0) = y(T), Δy(0) = Δy(T) (2.3)

has a unique solution y,

y(t) =
T∑

s=1

G(t, s)h(s), t ∈ [0, T + 1]
Z
, (2.4)

where G(t, s) is Green’s function related to (1.4), (1.5).

Definition 2.1 (see [7]). We say that a solution y of (1.4) has a generalized zero at t0 provided
that y(t0) = 0 if t0 = 0 and if t0 > 0 either y(t0) = 0 or y(t0 − 1)y(t0) < 0.

Theorem 2.2. Assume that the distance between two consecutive generalized zeros of a nontrivial
solution of (1.4) is greater than T . Then Green’s function G(t, s) has constant sign.

Proof. Obviously, G is well defined on [0, T + 1]
Z
× [1, T]

Z
. We only need to prove that G

has no generalized zero in any point. Suppose on the contrary that there exists (t0, s0) ∈
[0, T + 1]

Z
× [1, T]

Z
such that (t0, s0) is a generalized zero of G(t, s). It is well known that for

a given s0 ∈ [1, T]
Z
, G(t, s0) as a function of t is a solution of (1.4) in the intervals [0, s0 − 1]

Z

and [s0 + 1, T + 1]
Z
such that

G(0, s0) = G(T, s0), G(1, s0) = G(T + 1, s0). (2.5)

Case 1 (G(t0, s0) = 0, (t0, s0) ∈ [0, T + 1]
Z
× [1, T]

Z
). If t0 ∈ [s0 + 1, T + 1]

Z
, we can construct

y(t) =
{
G(t, s0), t ∈ [s0, T + 1]

Z
,

G(t − T, s0), t ∈ [T + 1, s0 + T]Z
.

(2.6)

Consequently, y is a solution of (1.4) in the whole interval [s0, s0 + T]Z
. Since y(t0) = 0, we

have Δ2y(t0 − 1) = −a(t)y(t0) = 0, that is, y(t0 − 1)y(t0 + 1) < 0. Moreover, y(s0) = y(s0 + T),
so there at least exists another generalized zero t1 ∈ [s0+1, s0+T]Z

of y. Note that the distance
between t0 and t1 is smaller than T , which is a contradiction.

Analogously, if t0 ∈ [0, s0 − 1]
Z
, we get a contradiction by the same reasoning with

y(t) =
{
G(t + T, s0), t ∈ [s0 − T, 0]Z

,
G(t, s0), t ∈ [0, s0]Z

.
(2.7)

If t0 = s0, we can apply y as defined (2.7). Since y(t0) = y(s0) = 0 and y(s0−T) = y(s0),
which contradicts with the hypothesis.
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Case 2 (G(t0 − 1, s0)G(t0, s0) < 0, (t0, s0) ∈ [1, T + 1]
Z
× [1, T]

Z
). If t0 ∈ [s0 + 1, T + 1]

Z
, we can

construct y defined as (2.6). It is not difficult to verify that y is a solution of (1.4) in the whole
interval [s0, s0 +T]Z

. Also, we have that y(t0 − 1)y(t0) < 0, that is, t0 is a generalized zero of y.
Moreover, y(s0) = y(s0+T), so there at least exists another generalized zero t1 ∈ [s0+1, s0+T]Z

of y. Note that the distance between t0 and t1 is smaller than T , which is a contradiction.
Similarly, if t0 ∈ [1, s0 − 1]

Z
, we can get a contradiction by the same reasoning as y

defined (2.7).
If t0 = s0, we can construct y defined by (2.7). Since y(t0 − 1)y(t0) = y(s0 − 1)y(s0) < 0

and y(s0−T) = y(s0), it is clear that there exists another generalized zero t1 ∈ [s0−T, s0]Z
of y.

Note that the distance between t0 and t1 is smaller than T , this contradicts with the hypothesis.

To apply the above result, we are going to study the two following cases.

Corollary 2.3. If a ∈ Λ−, then G(t, s) < 0 for all (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

Proof. If a ∈ Λ−, by [7, Corollary 6.7], it is easy to verify that (1.4) is disconjugate on [0, T+1]
Z
,

and any nontrivial solution of (1.4) has at most one generalized zero on [0, T + 1]
Z
. Hence, by

Theorem 2.2, Green’s function G(t, s) has constant sign. We claim that the sign is negative. In
fact, y(t) =

∑T
s=1G(t, s) is the unique T -periodic solution of the equation

Δ2y(t − 1) + a(t)y(t) = 1, (2.8)

and summing both sides of (2.8) from t = 1 to t = T , we can get

T∑

t=1

a(t)y(t) = T > 0. (2.9)

Since a(t) < 0, y(t) < 0 for some t ∈ [1, T]
Z
, and as a consequence G(t, s) < 0 for all (t, s) ∈

[0, T + 1]
Z
× [1, T]

Z
.

Remark 2.4. If a(·) ≡ a0 (a0 is a negative constant), then by computing we can obtain

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− λt−s1 + λT−t+s1(
λ1 − λ−11

)(
λT1 − 1

) , 1 ≤ s ≤ t ≤ T + 1,

− λs−t1 + λT−s+t1(
λ1 − λ−11

)(
λT1 − 1

) , 0 ≤ t ≤ s ≤ T,
(2.10)

where λ1 = (2 − a0 +
√
a20 − 4a0)/2 > 1. Obviously, G(t, s) < 0, (t, s) ∈ [0, T + 1]

Z
× [1, T]

Z
.

If a ≥ 0, then the solutions of (1.4) are oscillating, that is, there are infinite zeros, and
to get the required distance between generalized zeros, a should satisfy Λ+.

Corollary 2.5. If a ∈ Λ+, then G(t, s) > 0 for all (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

Proof. We claim that the distance between two consecutive generalized zeros of a nontrivial
solution y of (1.4) is strictly greater than T . In fact, it is not hard to verify that
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Δ2y(t − 1) + ‖a‖y(t) = 0 is disconjugate on [0, T + 1]
Z
under assumption ‖a‖ < 4 sin2(π/2T).

Since a(t) ≤ ‖a‖, t ∈ [1, T]
Z
, by Sturm comparison theorem [7, Theorem 6.19], (1.4) is

disconjugate on [0, T +1]
Z
, that is, any nontrivial solution of (1.4) has at most one generalized

zero on [0, T + 1].
Hence, by Theorem 2.2,G(t, s) has constant sign on [0, T+1]

Z
×[1, T]

Z
, and the positive

sign of G is determined as the proof process of Corollary 2.3.

Remark 2.6. If a(·) ≡ a (a is apositive constant), and 0 < a < 4 sin2(π/2T), then by
computing we can obtain

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

sin[θ(t − s)] + sin[θ(T − t + s)]
2 sin θ(1 − cos(θT))

, 1 ≤ s ≤ t ≤ T + 1,

sin[θ(s − t)] + sin[θ(T − s + t)]
2 sin θ(1 − cos(θT))

, 0 ≤ t ≤ s ≤ T,
(2.11)

where θ = arccos((2 − a)/2) and 0 < θ < π/T . Clearly, G(t, s) > 0, (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

If a(·) ≡ a and a = 4 sin2(π/2T), then θ = π/T , and by computing we get

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 sin(π/T)

sin
[π
T
(t − s)

]
, 1 ≤ s ≤ t ≤ T + 1,

1
2 sin(π/T)

sin
[π
T
(s − t)

]
, 0 ≤ t ≤ s ≤ T.

(2.12)

Obviously, Green’s function G(t, s) = 0 for t = s and G(t, s) > 0 for t /= s.
If a(·) ≡ a and a = 4 sin2(π/T), then θ = 2π/T , and it is not difficult to verify that

ϕ(t) = sin
(
2π
T
t

)
, ψ(t) = cos

(
2π
T
t

)
, t ∈ [0, T + 1]

Z
(2.13)

are nontrivial solutions of (1.4), (1.5). That is, the problem (1.4), (1.5) has no Green’s function.
If a(·) ≡ a and 4 sin2(π/2T) < a < 4 sin2(π/T), then Green’s function may change

its sign. For example, let T = 6, a = 4 sin2(π/8) = 2 − √
2, it is easy to verify that 2 − √

3 =
4sin2(π/12) < a < 4sin2(π/6) = 1 and θ = π/4, thus

G(t, s) =

⎧
⎪⎨

⎪⎩

sin
[π
4
(t − s − 1)

]
, 1 ≤ s ≤ t ≤ T + 1,

sin
[π
4
(s − t − 1)

]
, 0 ≤ t ≤ s ≤ T.

(2.14)

Clearly, G(t, s) = − sin(π/4) < 0 for t = s, G(t, s) = 0 for |t − s| = 1, and G(t, s) = sin(π/4) > 0
for |t − s| = 2.

Consequently, a ∈ Λ+ is the optimal condition ofG(t, s) > 0, (t, s) ∈ [0, T +1]
Z
×[1, T]

Z
.

Next, we provide a way to get the expression of G(t, s). Let u be the unique solution of
the initial value problem

Δ2u(t − 1) + a(t)u(t) = 0, t ∈ [1, T]
Z
, u(0) = 0, Δu(0) = 1, (2.15)
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and v be the unique solution of the initial value problem

Δ2v(t − 1) + a(t)v(t) = 0, t ∈ [1, T]
Z
, v(T) = 0, Δv(T) = −1. (2.16)

Lemma 2.7. Let a ∈ Λ− ∪Λ+. Then Green’s function G(t, s) of (1.4), (1.5) is explicitly given by

G(t, s) =
[u(s) + v(s)][u(t) + v(t)]
v(0)[2 + v(1) − u(T + 1)]

− 1
v(0)

{
u(t)v(s), 0 ≤ t ≤ s ≤ T,
u(s)v(t), 1 ≤ s ≤ t ≤ T + 1.

(2.17)

Proof. Suppose that Green’s function of (1.4), (1.5) is of the form

G(t, s) =
[
α(s)u(t) + β(s)v(t)

] − 1
v(0)

{
u(t)v(s), 0 ≤ t ≤ s ≤ T,
u(s)v(t), 1 ≤ s ≤ t ≤ T + 1,

(2.18)

where α(s), β(s) can be determined by imposing the boundary conditions.
From the basis theory of Green’s function, we know that

G(0, s) = G(T, s), G(1, s) = G(T + 1, s), ∀s ∈ [1, T]
Z
, v(0) = u(T). (2.19)

Hence, β(s)v(0) = G(0, s) = G(T, s) = α(s)u(T), s ∈ [1, T]
Z
, combining with v(0) = u(T), we

can get

α(s) = β(s), s ∈ [1, T]
Z
. (2.20)

Moreover, since G(1, s) = G(T + 1, s), it follows that

α(s) =
u(s) + v(s)

v(0)[2 + v(1) − u(T + 1)]
. (2.21)

Note that α(·) has the same sign with a(·). In fact, by the comparison theorem [7,
Theorem 6.6], it is easy to prove that u, v ≥ 0 on [0, T]

Z
. If a(t) ≥ 0, then

Δ2u(t − 1) = −a(t)u(t) ≤ 0, Δu(t) ≤ Δu(t − 1), t ∈ [1, T]
Z
. (2.22)

Thus Δu(T) < Δu(0) = 1. Similarly, we can get that Δv(0) > Δv(T) = −1. Since v(0) = u(T),
we have

2 + v(1) − u(T + 1) = 2 + Δv(0) −Δu(T) > 0. (2.23)

That is α(t) = (u(t) + v(t))/(v(0)[2 + v(1) − u(T + 1)]) > 0.
If a(·) ≤ 0, by the similar method, we can prove α(·) < 0.
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Lemma 2.8. Let a ∈ Λ− ∪Λ+. Then the periodic boundary value problem (2.2), (2.3) has the unique
solution

y(t) =
T∑

s=1

G(t, s)h(s), t ∈ [0, T + 1]
Z
, (2.24)

where G(t, s) is defined by (2.17).

Proof. We check that y satisfies (2.2). In fact,

y(t) =
T∑

s=1

(u(t) + v(t))α(s)h(s) − 1
v(0)

t−1∑

s=1

u(t)v(s)h(s) − 1
v(0)

T∑

s=t
u(s)v(t)h(s)

= (u(t) + v(t))
T∑

s=1

α(s)h(s) − u(t)
v(0)

t−1∑

s=1

v(s)h(s) − v(t)
v(0)

T∑

s=t
u(s)h(s),

y(t + 1) = (u(t + 1) + v(t + 1))
T∑

s=1

α(s)h(s)

− u(t + 1)
v(0)

t∑

s=1

v(s)h(s) − v(t + 1)
v(0)

T∑

s=t+1

u(s)h(s),

y(t − 1) = (u(t − 1) + v(t − 1))
T∑

s=1

α(s)h(s)

− u(t − 1)
v(0)

t−2∑

s=1

v(s)h(s) − v(t − 1)
v(0)

T∑

s=t−1
u(s)h(s),

Δ2y(t − 1) + a(t)y(t) = y(t + 1) − (2 − a(t))y(t) + y(t − 1)

=
[
Δ2u(t − 1) + a(t)u(t) + Δ2v(t − 1) + a(t)v(t)

] T∑

s=1

α(s)h(s)

− Δ2u(t − 1) + a(t)u(t)
v(0)

t−2∑

s=1

v(s)h(s)

− Δ2v(t − 1) + a(t)v(t)
v(0)

T∑

s=t+1

u(s)h(s)

− u(t − 1)h(t − 1)
v(0)

[
Δ2v(t − 1) + a(t)v(t)

]

− u(t)h(t)
v(0)

[
Δ2v(t − 1) + a(t)v(t)

]

+
u(t)v(t − 1)h(t) − u(t − 1)v(t)h(t)

v(0)
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=
h(t)
v(0)

∣
∣
∣
∣
∣

u(t) v(t)

u(t − 1) v(t − 1)

∣
∣
∣
∣
∣
=
h(t)
v(0)

∣
∣
∣
∣
∣

u(1) v(1)

u(0) v(0)

∣
∣
∣
∣
∣
= h(t).

(2.25)

On the other hand, it is easy to verify that y(0) = y(T), y(1) = y(T + 1).

Denote that

m = min
t,s∈[1,T]

Z

G(t, s), M = max
t,s∈[1,T]

Z

G(t, s). (2.26)

As a direct application, we can compute the maximum and the minimum of the Green’s
function when a(·) ≡ a0, it follows that

0 > m ≥ − 2λT/21(
λ1 − λ−11

)(
λT1 − 1

) , M = − λT1 + 1
(
λ1 − λ−11

)(
λT1 − 1

) , (2.27)

where λ1 is defined in Remark 2.4. Similarly, when 0 < a(·) ≡ a < 4 sin2(π/2T), we can get

m =
1

2 sin θ
cot

(
θT

2

)
> 0, M ≤ 1

2 sin θ sin(θT/2)
, (2.28)

where θ is defined in Remark 2.6.

3. Main Results

In this section, we consider the existence of one-signed solutions of (1.7). The following well-
known fixed-point theorem in cones is crucial to our arguments.

Theorem 3.1 (see [8]). Let E be a Banach space and K ⊂ E be a cone. Suppose Ω1 and Ω2 are
bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2. Assume that A : K ∩ (Ω2 \ Ω1) → K is a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2 or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 3.2. Assume that there exist a ∈ Λ+ and 0 < r < R such that

f
(
t, y

)
+ a(t)y ≥ 0, ∀y ∈

[
m

M
r,
M

m
R

]
, t ∈ [1, T]

Z
. (3.1)

If one of the following conditions holds:
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(i)

f
(
t, y

)
+ a(t)y ≥ M

Tm2
y, ∀y ∈

[ m
M

r, r
]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≤ 1

TM
y, ∀y ∈

[
R,
M

m
R

]
, t ∈ [1, T]

Z
,

(3.2)

(ii)

f
(
t, y

)
+ a(t)y ≤ 1

TM
y, ∀y ∈

[ m
M

r, r
]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≥ M

Tm2
y, ∀y ∈

[
R,
M

m
R

]
, t ∈ [1, T]

Z
,

(3.3)

then problem (1.7) has a positive solution.

Proof. FromCorollary 2.5, we get thatM > m > 0. It is easy to see that the equationΔ2y(t−1) =
f(t, y(t)) is equivalent to

Δ2y(t − 1) + a(t)y(t) = f
(
t, y(t)

)
+ a(t)y(t). (3.4)

Define the open sets

Ω1 =
{
y ∈ E :

∥∥y
∥∥ < r

}
, Ω2 =

{
y ∈ E :

∥∥y
∥∥ <

M

m
R

}
, (3.5)

and the cone P in E,

P =
{
y ∈ E : min

t∈[0,T+1]
Z

y(t) >
m

M

∥∥y
∥∥
}
. (3.6)

Clearly, if y ∈ P ∩ (Ω2 \Ω1), then (m/M)r ≤ y(t) ≤ (M/m)R, for all t ∈ [0, T + 1]
Z
.

From Lemma 2.8, we define the operator A : E → E by

(
Ay

)
(t) =

T∑

s=1

G(t, s)
[
f
(
s, y(s)

)
+ a(s)y(s)

]
, t ∈ [0, T + 1]

Z
. (3.7)

From (3.1), if y ∈ P ∩ (Ω2 \Ω1), then

Ay(t) ≥ m

M
M

T∑

s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

]

>
m

M
max

t∈[0,T+1]
Z

T∑

s=1

G(t, s)
[
f
(
s, y(s)

)
+ a(s)y(s)

]
=
m

M

∥∥Ay
∥∥.

(3.8)
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Thus A(P ∩ (Ω2 \Ω1)) ⊂ P . Moreover, E is a finite space, it is easy to prove that A : P ∩ (Ω2 \
Ω1) → P is a completely continuous operator. Clearly, y is the solution of problem (1.7) if
and only if y is the fixed point of the operator A.

We only prove (i). (ii) can be obtained by the similar method. If y ∈ ∂Ω1 ∩ P , then
‖y‖ = r and (m/M)r ≤ y(t) ≤ r for all t ∈ [0, T + 1]

Z
. Therefore, from (i),

Ay(t) ≥ m
T∑

s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

] ≥ M

Tm

T∑

s=1

y(s) ≥ r = ∥
∥y

∥
∥. (3.9)

If y ∈ ∂Ω2 ∩ P , then ‖y‖ = (M/m)R and R ≤ y(t) ≤ (M/m)R for all t ∈ [0, T + 1]
Z
. As a

consequence,

Ay(t) ≤M
T∑

s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

] ≤ 1
T

T∑

s=1

y(s) ≤ ∥
∥y

∥
∥. (3.10)

From Theorem 3.1, A has a fixed point y ∈ P ∩ (Ω2 \Ω1) and satisfies

m

M
r ≤ y(t) ≤ M

m
R. (3.11)

Therefore, y is a positive solution of (1.7).

Similar to the proof of Theorem 3.2, we can prove the following.

Corollary 3.3. Assume that there exist a ∈ Λ+ and 0 < r < R such that

f
(
t, y

)
+ a(t)y ≤ 0, ∀y ∈

[
−M
m
R,− m

M
r

]
, t ∈ [1, T]

Z
. (3.12)

If one of the following conditions holds

(i)

f
(
t, y

)
+ a(t)y ≤ M

Tm2
y, ∀y ∈

[
−r,− m

M
r
]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≥ 1

TM
y, ∀y ∈

[
−M
m
R,−R

]
, t ∈ [1, T]

Z
,

(3.13)

(ii)

f
(
t, y

)
+ a(t)y ≥ 1

TM
y, ∀y ∈

[
−r,− m

M
r
]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≤ M

Tm2
y, ∀y ∈

[
−M
m
R,−R

]
, t ∈ [1, T]

Z
,

(3.14)

then (1.7) has a negative solution.
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Applying the sign properties ofG(t, s)when a ∈ Λ− and the similar argument to prove
Theorem 3.2 with obvious changes, we can prove the following.

Theorem 3.4. Assume that there exist a ∈ Λ− and 0 < r < R such that

f
(
t, y

)
+ a(t)y ≤ 0, ∀y ∈

[
M

m
r,
m

M
R

]
, t ∈ [1, T]

Z
. (3.15)

If one of the following conditions holds

(i)

f
(
t, y

)
+ a(t)y ≤ m

TM2
y, ∀y ∈

[
M

m
r, r

]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≥ 1

Tm
y, ∀y ∈

[
R,

m

M
R
]
, t ∈ [1, T]

Z
,

(3.16)

(ii)

f
(
t, y

)
+ a(t)y ≥ 1

Tm
y, ∀y ∈

[
M

m
r, r

]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≤ m

TM2
y, ∀y ∈

[
R,

m

M
R
]
, t ∈ [1, T]

Z
,

(3.17)

then (1.7) has a positive solution.

Proof. Sincem <M < 0, define the open sets

Ω1 =
{
y ∈ E :

∥∥y
∥∥ < r

}
, Ω2 =

{
y ∈ E :

∥∥y
∥∥ <

m

M
R
}
, (3.18)

and define the cone P in E,

P =
{
y ∈ E : min

t∈[0,T+1]
Z

y(t) >
M

m

∥∥y
∥∥
}
. (3.19)

If x ∈ P ∩ (Ω2 \Ω1), then

M

m
r ≤ y(t) ≤ m

M
R, ∀t ∈ [0, T + 1]

Z
. (3.20)

Define the operator A as (3.7), and the proof is analogous to that of Theorem 3.2 and is
omitted.

Corollary 3.5. Assume that there exist a ∈ Λ− and 0 < r < R such that

f
(
t, y

)
+ a(t)y ≥ 0, ∀y ∈

[
− m
M

R,−M
m
r

]
, t ∈ [1, T]

Z
. (3.21)
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If one of the following conditions holds

(i)

f
(
t, y

)
+ a(t)y ≥ m

TM2
y, ∀y ∈

[
−r,−M

m
r

]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≤ 1

Tm
y, ∀y ∈

[
− m
M

R,−R
]
, t ∈ [1, T]

Z
,

(3.22)

(ii)

f
(
t, y

)
+ a(t)y ≤ 1

Tm
y, ∀y ∈

[
−r,−M

m
r

]
, t ∈ [1, T]

Z
,

f
(
t, y

)
+ a(t)y ≥ m

TM2
y, ∀y ∈

[
− m
M

R,−R
]
, t ∈ [1, T]

Z
,

(3.23)

then (1.7) has a negative solution.

Example 3.6. Let us consider the periodic boundary value problem

Δ2y(n − 1) = f
(
n, y(n)

)
, n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(3.24)

where

f
(
n, y

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2n2 + 3y, y ∈
[√

2
2
r, r

]

, n ∈ [1, T]
Z
,

(
2n2 + 3y

)R − y
R − r − 0.25y

y − r
R − r , y ∈ [r, R], n ∈ [1, T]

Z
,

−0.25y, y ∈
[
R,

√
2R

]
, n ∈ [1, T]

Z
.

(3.25)

Consider the auxiliary problem

Δ2y(n − 1) + a(n)y(n) = f
(
n, y(n)

)
+ a(n)y(n), n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(3.26)

take r = 2
√
2, R = 8

√
2, T = 3, a(n) ≡ a = 2 − √

3 < 4 sin2(π/2T), θ = π/6, cos θ =
(2−a)/2 =

√
3/2, sin θ = 1/2, m = (1/2 sin θ)cot(θT/2) = 1, M = 1/(2 sin θ sin(θT/2)) =

√
2.

By computing, f(n, y) + a(n)y ≥ 0, y ∈ [(
√
2/2)r,

√
2R], n ∈ [1, T]

Z
;f(n, y) + a(n)y ≥

(
√
2/3)y, y ∈ [(

√
2/2)r, r], n ∈ [1, T]

Z
; f(n, y)+a(n)y ≤ (1/3

√
2)y, y ∈ [R,

√
2R], n ∈ [1, T]

Z
.

Consequently, from Theorem 3.2, the problem (3.24) has a positive solution.



Abstract and Applied Analysis 13

Acknowledgment

This work was supported by the NSFC (no. 11061030) and the Fundamental Research Funds
for the Gansu Universities.

References

[1] F. M. Atici and G. S. Guseinov, “Positive periodic solutions for nonlinear difference equations with
periodic coefficients,” Journal of Mathematical Analysis and Applications, vol. 232, no. 1, pp. 166–182,
1999.

[2] F. M. Atici and A. Cabada, “Existence and uniqueness results for discrete second-order periodic
boundary value problems,” Computers & Mathematics with Applications, vol. 45, no. 6-9, pp. 1417–1427,
2003.

[3] F. M. Atici, A. Cabada, and V. Otero-Espinar, “Criteria for existence and nonexistence of positive
solutions to a discrete periodic boundary value problem,” Journal of Difference Equations and
Applications, vol. 9, no. 9, pp. 765–775, 2003.

[4] R. Ma and H. Ma, “Positive solutions for nonlinear discrete periodic boundary value problems,”
Computers & Mathematics with Applications, vol. 59, no. 1, pp. 136–141, 2010.

[5] T. He and Y. Xu, “Positive solutions for nonlinear discrete second-order boundary value problems with
parameter dependence,” Journal of Mathematical Analysis and Applications, vol. 379, no. 2, pp. 627–636,
2011.

[6] P. J. Torres, “Existence of one-signed periodic solutions of some second-order differential equations via
a Krasnoselskii fixed point theorem,” Journal of Differential Equations, vol. 190, no. 2, pp. 643–662, 2003.

[7] W. G. Kelley and A. C. Peterson,Difference Equations-An Introduction with Applications, Academic Press,
San Diego, Calif, USA, 2nd edition, 2001.

[8] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


